13.07.2013 Views

Characterizing the Molecular Interstellar Medium in ... - Caltech

Characterizing the Molecular Interstellar Medium in ... - Caltech

Characterizing the Molecular Interstellar Medium in ... - Caltech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Characteriz<strong>in</strong>g</strong> <strong>the</strong> <strong>Molecular</strong><br />

<strong>Interstellar</strong> <strong>Medium</strong> <strong>in</strong> Galaxies us<strong>in</strong>g<br />

Archival Herschel Data<br />

Naseem Rangwala<br />

University of Colorado - Boulder<br />

NASA Ames Research Center<br />

Ma<strong>in</strong> Collaborators: Jason Glenn (CU)<br />

Julia Kamenetzky (CU)<br />

Phil Maloney (CU)<br />

This work is supported by a NASA ADAP grant


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Outl<strong>in</strong>e<br />

Description of <strong>the</strong> program<br />

Goals<br />

Sample<br />

Methodology/Pipel<strong>in</strong>e<br />

Prelim<strong>in</strong>ary Results (spectra, model<strong>in</strong>g results,<br />

CO SLEDs etc.)<br />

Conclusions


•<br />

Description of our Archival Program<br />

Archival (publicly available) survey us<strong>in</strong>g photometric and<br />

spectroscopic data of all <strong>the</strong> galaxies (~300) observed with Herschel-<br />

SPIRE’s Fourier Transform Spectrometer (FTS).


Flux [Jy]<br />

•<br />

•<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CO (43)<br />

CI (10)<br />

CH<br />

CH<br />

CO (54)<br />

CO (65)<br />

HCN 87<br />

HCO+ 87<br />

H2O +<br />

H2O +<br />

H2O 211202<br />

HCN 98<br />

HCO+ 98<br />

CO (76)<br />

CI (21)<br />

CH +<br />

HCN 109<br />

HCO+ 109<br />

NH2 OH +<br />

CO (87)<br />

NH2 OH +<br />

HCN 1110<br />

NH<br />

HCO+ 1110<br />

H2O 202111<br />

NH<br />

OH +<br />

CO (98)<br />

HCN 1211<br />

HCO+ 1211<br />

H2O 312303<br />

H2O 111000<br />

H2O +<br />

H2O +<br />

HCN 1312<br />

CO (109)<br />

H2O 312221<br />

HCO+ 1312<br />

H2O 321312<br />

H2O 422413<br />

NH3 H2O 220211<br />

HF<br />

HCN 1413<br />

HCO+ 1413<br />

CO (1110)<br />

HCN 1514<br />

HCO+ 1514<br />

CO (1211)<br />

H2O 523514<br />

HCN 1615<br />

HCO+ 1615<br />

NH2 NH2 NII<br />

CH<br />

CH<br />

CO (1312)<br />

HCN 1716<br />

HCO+ 1716<br />

0<br />

670 µm<br />

SPIRE-FTS spectrum of Arp 220<br />

300 µm<br />

600 800 1000<br />

rest [GHz]<br />

1200 1400<br />

Cont<strong>in</strong>uous spectral coverage<br />

spectral resolution = 1.44 GHz<br />

•<br />

•<br />

Rangwala et al. (2011)<br />

several molecular and atomic species<br />

190 µm<br />

CO rotational transitions from J = 4-3 to 13-12


•<br />

•<br />

Description of our Archival Program<br />

Archival (publicly available) survey us<strong>in</strong>g photometric and<br />

spectroscopic data of all <strong>the</strong> galaxies (~300) observed with Herschel-<br />

SPIRE’s Fourier Transform Spectrometer (FTS).<br />

This sample spans a wide range <strong>in</strong> <strong>the</strong> far-<strong>in</strong>frared lum<strong>in</strong>osity (L FIR)<br />

and galaxy types.


N<br />

SPIRE- FTS Archival Sample<br />

80<br />

60<br />

40<br />

20<br />

Full Sample<br />

with CO J = 76<br />

LIRG<br />

0<br />

8 9 10 11<br />

Log LFIR (Lsun) 12 13 14<br />

•Ntot<br />

~ 300 (AGN = 78, Ellipticals = 32)<br />

•168/227<br />

galaxies have CO J = 7-6 detection<br />

•redshift<br />

up to z = 0.2<br />

ULIRG<br />

HLIRG


•<br />

•<br />

•<br />

•<br />

Description of our Archival Program<br />

Archival (publicly available) survey us<strong>in</strong>g photometric and<br />

spectroscopic data of all <strong>the</strong> galaxies (~300) observed with Herschel-<br />

SPIRE’s Fourier Transform Spectrometer (FTS).<br />

This sample span a wide range <strong>in</strong> <strong>the</strong> far-<strong>in</strong>frared lum<strong>in</strong>osity (L FIR)<br />

and galaxy types.<br />

CO spectral l<strong>in</strong>e energy distributions (SLEDs) from <strong>the</strong>se spectra<br />

will be uniformly re-reduced, re-calibrated and modeled to estimate<br />

<strong>the</strong> physical conditions and reservoir of <strong>the</strong> molecular gas<br />

Application of consistent methodology for data reduction and<br />

model<strong>in</strong>g across <strong>the</strong> entire sample will enable accurate comparison<br />

between different galaxies


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Goals of <strong>the</strong> Program<br />

Determ<strong>in</strong>e <strong>the</strong> molecular gas (and dust) properties as a function of<br />

L FIR and galaxy type (starburst, AGN, disks and ellipticals)<br />

Address <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> excitation of warm molecular gas of<br />

vary<strong>in</strong>g L FIR: Star-Formation vs AGN?<br />

Compare <strong>the</strong> gas excitation and dust properties of <strong>the</strong> local IR<br />

lum<strong>in</strong>ous galaxies to high-z submm galaxies.<br />

Explore *Total* L CO - L FIR Relation<br />

Direct measurement of [CO/H 2] abundance for warm molecular<br />

gas.<br />

Substantial public database of legacy value for nearby galaxies


Normalized Lum<strong>in</strong>osity<br />

10 7<br />

10 6<br />

CO SLED: diagnostic for<br />

Star Formation Vs AGN?<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

J upper<br />

Mrk 231 (AGN)<br />

Arp 220 (Starburst)<br />

M82 (Starburst)<br />

Mid- to High-J CO traces warm gas and dom<strong>in</strong>ates <strong>the</strong> CO lum<strong>in</strong>osity and cool<strong>in</strong>g


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Goals of <strong>the</strong> Program<br />

Determ<strong>in</strong>e <strong>the</strong> molecular gas (and dust) properties as a function of<br />

L FIR and galaxy type (starburst, AGN, disks and ellipticals)<br />

Address <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> excitation of warm molecular gas of<br />

vary<strong>in</strong>g L FIR: Star-Formation Vs AGN?<br />

Compare <strong>the</strong> gas excitation and dust properties of <strong>the</strong> local IR<br />

lum<strong>in</strong>ous galaxies to high-z submm galaxies.<br />

Explore *Total* L CO - L FIR Relation<br />

Direct measurement of [CO/H 2] abundance for warm molecular<br />

gas.<br />

Substantial public database of legacy value for nearby galaxies


Herschel!<br />

Archive!<br />

Literature!<br />

data!!<br />

!<br />

Pipel<strong>in</strong>e Schematic<br />

SPIRE!<br />

Photometry!<br />

and!<br />

Spectrum!<br />

Photometry!data:!!<br />

10!–!850!µm!<br />

Dust!SED!Model<strong>in</strong>g!<br />

and!Likelihood!<br />

analysis!<br />

Probability!<br />

Distributions:!!<br />

Tdust,''τ,'&'β'<br />

Dust:!<br />

Temperature,!optical!<br />

depth,!FIR!<br />

lum<strong>in</strong>osity!and!Mass!<br />

Spectrum:!<br />

Additional!<br />

Reprocess<strong>in</strong>g!for!<br />

extended!sources!<br />

Literature!<br />

lowJJ!CO!<br />

ext<strong>in</strong>ction correction<br />

L<strong>in</strong>e!Fitter!!<br />

(Integrated!<br />

Fluxes!<strong>in</strong>!Jy!<br />

km/s!)!<br />

CO!SLEDs!!<br />

J!=!1J0!to!!<br />

J!=!13J12!<br />

Model<strong>in</strong>g!CO!and!<br />

Likelihood!<br />

analysis!<br />

Probability!<br />

Distributions:!T,#<br />

n,#P,!NCO,$&$Mgas$<br />

<strong>Molecular</strong>!Gas:!<br />

Temperature!<br />

Density!<br />

Mass!<br />

Lum<strong>in</strong>osity!<br />

Pipel<strong>in</strong>e developed by<br />

J. Kamenetzky<br />

L CO /L FIR<br />

CO#Excitation:<br />

PDR,#cosmic<br />

rays,#XDR,<br />

Mechanical<br />

energy


DATA


Flux (Jy)<br />

600<br />

400<br />

200<br />

0<br />

CO (43)<br />

CI (10)<br />

CO (54)<br />

CO (65)<br />

M82 (Starburst)<br />

CO (76)<br />

CI (21)<br />

CO (87)<br />

CO (98)<br />

600 800 1000 1200 1400 1600<br />

rest (GHz) [used z = 0.0008]<br />

This survey will focus only on CO, CI and NII l<strong>in</strong>es. CO and CI for<br />

characteriz<strong>in</strong>g molecular gas and NII as a star formation tracer<br />

CO (109)<br />

CO (1110)<br />

CO (1211)<br />

NII 205<br />

CO (1312)<br />

CO (1413)


Flux (Jy)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CO (43)<br />

CI (10)<br />

CO (54)<br />

NGC 6240 (LIRG/AGN)<br />

CO (65)<br />

CO (76)<br />

CI (21)<br />

CO (87)<br />

CO (98)<br />

600 800 1000 1200 1400 1600<br />

rest (GHz) [used z = 0.0243]<br />

CO (109)<br />

CO (1110)<br />

CO (1211)<br />

NII 205<br />

CO (1312)<br />

CO (1413)


Flux (Jy)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CO (43)<br />

CI (10)<br />

CO (54)<br />

MRK 231 (ULIRG/AGN)<br />

CO (65)<br />

CO (76)<br />

CI (21)<br />

CO (87)<br />

CO (98)<br />

600 800 1000 1200 1400 1600<br />

rest (GHz) [used z = 0.0418]<br />

CO (109)<br />

CO (1110)<br />

CO (1211)<br />

NII 205<br />

CO (1312)<br />

CO (1413)


UGC 05101<br />

(LIRG/AGN)<br />

Flux (Jy)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CO (43)<br />

CI (10)<br />

CO (54)<br />

CO (65)<br />

CO (76)<br />

CI (21)<br />

CO (87)<br />

CO (98)<br />

600 800 1000 1200 1400 1600<br />

rest (GHz) [used z = 0.0393]<br />

CO (109)<br />

CO (1110)<br />

CO (1211)<br />

NII 205<br />

CO (1312)<br />

CO (1413)


Model<strong>in</strong>g and<br />

Prelim<strong>in</strong>ary Results


ladder<br />

FTS<br />

Ground<br />

JCMT<br />

Z−spec<br />

10 12 14<br />

–47–<br />

I (K km s −1 )<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

Non-LTE Radiative Transfer Model<strong>in</strong>g Arp<br />

this work<br />

ground−based<br />

T = 1350 K, V = 350 km s −1<br />

T = 50 K, V = 500 km s −1<br />

0 5 10 15<br />

J upper<br />

cted lum<strong>in</strong>osity distribution of <strong>the</strong> CO ladder from J = 1-0<br />

of J = 10-9 l<strong>in</strong>e, which is blended withawaterl<strong>in</strong>e. The<br />

urements and <strong>the</strong> blue triangles are average l<strong>in</strong>e fluxes from<br />

lso shown for comparison are new measurements by Z-spec<br />

del fit to <strong>the</strong> observed CO l<strong>in</strong>e temperatures. There are two<br />

m component (dotted l<strong>in</strong>e) traced by <strong>the</strong> mid-J to high-J<br />

hed l<strong>in</strong>e) traced by <strong>the</strong> low-J l<strong>in</strong>es.<br />

<br />

%$ # <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

•<br />

•<br />

•<br />

<br />

% # <br />

10.0<br />

Mid- to high-J CO are trac<strong>in</strong>g warm<br />

1.0<br />

<br />

<br />

<br />

<br />

%# <br />

<br />

<br />

del<strong>in</strong>g of CO: Likelihood distributions for gas k<strong>in</strong>etic temand<br />

pressure. The blue l<strong>in</strong>e represents <strong>the</strong> cold component<br />

g low-J transitions and <strong>the</strong> red l<strong>in</strong>e represents <strong>the</strong> warm<br />

from model<strong>in</strong>g <strong>the</strong> mid-J to high-J transitions.<br />

•<br />

•<br />

gas<br />

low-J CO are trac<strong>in</strong>g cold molecular<br />

gas.<br />

ARP220 − CO ladder<br />

0 2 4 6 8 10 12 14<br />

J upper<br />

T k<strong>in</strong>(warm CO) = T k<strong>in</strong>(warm H 2)<br />

M gas(warm) ~ 10% M gas(cold)<br />

<br />

<br />

<br />

L <br />

CO (cold) ~ 8% Total L CO<br />

<br />

! $<br />

<br />

L [x 10 6 L Sun]<br />

0.1<br />

FTS<br />

Ground<br />

JCMT<br />

Z−spec<br />

–47–<br />

220<br />

L [x 10 6 L Sun]<br />

10.0<br />

1.0<br />

0.1<br />

ARP220 − CO ladder<br />

FTS<br />

Ground<br />

JCMT<br />

Z−spec<br />

0 2 4 6 8 10 12 14<br />

J upper<br />

–47–<br />

I (K km s −1 )<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

this work<br />

ground−based<br />

T = 1350 K, V = 350 km s −1<br />

T = 50 K, V = 500 km s −1<br />

0 5 10 15<br />

J upper<br />

Fig. 5.— Left: Ext<strong>in</strong>ction corrected lum<strong>in</strong>osity distribution of <strong>the</strong> CO ladder from J = 1-0<br />

to J = 13-12 with <strong>the</strong> exception of J = 10-9 l<strong>in</strong>e, which is blended withawaterl<strong>in</strong>e. The<br />

black solid circles are FTS measurements and <strong>the</strong> blue triangles are average l<strong>in</strong>e fluxes from<br />

ground-based measurements. Also shown for comparison are new measurements by Z-spec<br />

and JCMT. Right: Non-LTE model fit to <strong>the</strong> observed CO l<strong>in</strong>e temperatures. There are two<br />

temperature components: a warm component (dotted l<strong>in</strong>e) traced by <strong>the</strong> mid-J to high-J<br />

l<strong>in</strong>es and a cold component (dashed l<strong>in</strong>e) traced by <strong>the</strong> low-J l<strong>in</strong>es.<br />

%&#" ' !" %%<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

! $<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

%$# <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

%# <br />

<br />

<br />

<br />

<br />

<br />

<br />

%# <br />

<br />

<br />

Fig. 6.— Radiative transfer model<strong>in</strong>g of CO: Likelihood distributions for gas k<strong>in</strong>etic temperature,<br />

density, column density and pressure. The blue l<strong>in</strong>e represents <strong>the</strong> cold component<br />

at 50 K obta<strong>in</strong>ed from model<strong>in</strong>g low-J transitions and <strong>the</strong> red l<strong>in</strong>e represents <strong>the</strong> warm<br />

component at 1350 K obta<strong>in</strong>ed from model<strong>in</strong>g <strong>the</strong> mid-J to high-J transitions.<br />

I (K km s −1 )<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

this work<br />

ground−based<br />

T = 1350 K, V = 350 km s −1<br />

T = 50 K, V = 500 km s −1<br />

0 5 10 15<br />

J upper<br />

Fig. 5.— Left: Ext<strong>in</strong>ction corrected lum<strong>in</strong>osity distribution of <strong>the</strong> CO ladder from J = 1-0<br />

to J = 13-12 with <strong>the</strong> exception of J = 10-9 l<strong>in</strong>e, which is blended withawaterl<strong>in</strong>e. The<br />

black solid circles are FTS measurements and <strong>the</strong> blue triangles are average l<strong>in</strong>e fluxes from<br />

ground-based measurements. Also shown for comparison are new measurements by Z-spec<br />

and JCMT. Right: Non-LTE model fit to <strong>the</strong> observed CO l<strong>in</strong>e temperatures. There are two<br />

temperature components: a warm component (dotted l<strong>in</strong>e) traced by <strong>the</strong> mid-J to high-J<br />

l<strong>in</strong>es and a cold component (dashed l<strong>in</strong>e) traced by <strong>the</strong> low-J l<strong>in</strong>es.<br />

%&#" ' !" %%<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

%$# <br />

•Radiative(Transfer(code(ma<strong>in</strong>ta<strong>in</strong>ed(by!Phil!Maloney<br />

cool<strong>in</strong>g rate = 22 L /M <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

%# <br />

<br />

<br />

<br />

<br />

<br />

<br />

%# <br />

<br />

<br />

Fig. 6.— Radiative transfer model<strong>in</strong>g of CO: Likelihood distributions for gas k<strong>in</strong>etic temperature,<br />

density, column density and pressure. The blue l<strong>in</strong>e represents <strong>the</strong> cold component<br />

at 50 K obta<strong>in</strong>ed from model<strong>in</strong>g low-J transitions and <strong>the</strong> red l<strong>in</strong>e represents <strong>the</strong> warm<br />

component at 1350 K obta<strong>in</strong>ed from model<strong>in</strong>g <strong>the</strong> mid-J to high-J transitions.<br />

Rangwala et al. (2011)


Arp 220: Excitation source of warm<br />

molecular gas<br />

•<br />

•<br />

•<br />

•<br />

Observed ratio: Total L CO/L FIR ~ 10 -4<br />

[T, n(H 2)] cold = [50 K, 1000 cm -3 ] and [T, n(H 2)] warm = [1350<br />

K, 1000 cm -3 ]<br />

This ratio along with tight constra<strong>in</strong>ts on T k<strong>in</strong> and n(H 2)<br />

rules out PDRs, XDRs and Cosmic ray models<br />

Require a non-ioniz<strong>in</strong>g source of energy: A small fraction<br />

of mechanical energy from supernovae and stellar w<strong>in</strong>ds<br />

can satisfy a cool<strong>in</strong>g rate = 22 L /M <br />

Similar method has been successfully applied <strong>in</strong> cases NGC 1068 (Sp<strong>in</strong>oglio et<br />

al. 2012; Hailey-Dunsheath et al. 2012), M82 (Kamenetzky et al. 2012), NGC<br />

4038/39 (Schirm et al. <strong>in</strong> prep.) and Cloverleaf (Bradford et al. 2009)


3 4 5 6<br />

Log 10 n(H 2) (cm 3 )<br />

5 6 7 8<br />

Log 10 Pressure (K cm 3 )<br />

I CO (K km s 1 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

18 19 20 21 22 23<br />

Log10 NCO (cm 2 0.0<br />

)<br />

10000<br />

1000<br />

2<br />

Log10 N[H2] [cm ]<br />

23 24 25 26 27 28<br />

0 2 4 6 8 10 12 14<br />

J upper<br />

•<br />

•<br />

•<br />

Cold<br />

Warm<br />

Total<br />

Prelim<strong>in</strong>ary<br />

NGC6240: CO Model<strong>in</strong>g<br />

T k<strong>in</strong>(warm CO) ~ 1580 K<br />

T k<strong>in</strong>(cold CO) ~ 50<br />

0.2<br />

0.2<br />

cool<strong>in</strong>g rate ~ 35 L/M 0.0 0.0<br />

10 100 1000<br />

Log10 Tk<strong>in</strong> (K)<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Cold<br />

Warm<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

2 3 4 5 6<br />

Log 10 n(H 2) (cm 3 )<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Cold<br />

Warm<br />

10 100 1000<br />

Log 10 T k<strong>in</strong> (K)<br />

0.0<br />

1.0 0.8 0.6 0.4 0.2 0.0<br />

Log10 ff<br />

2<br />

Log10 N[H2] [cm ]<br />

23 24 25 26 27 28<br />

18 19 20 21 22 23<br />

Log10 NCO (cm 2 0.0<br />

)<br />

1.0 1.0 Cold<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2 3 4 5 6<br />

Log 10 n(H 2) (cm 3 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

3 4 5 6 7 8<br />

Log 10 Pressure (K cm 3 )<br />

Marg<strong>in</strong>alized Likellihood<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Cold<br />

Warm<br />

10 100 1000<br />

Log 10 T k<strong>in</strong> (K)<br />

0.0<br />

1.0 0.8 0.6 0.4 0.2 0.0<br />

Log10 ff<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

I CO (K km s 1 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2<br />

Log10 N[H2] [cm ]<br />

23 24 25 26 27 28<br />

18 19 20 21 22 23<br />

Log10 NCO (cm 2 0.0<br />

)<br />

10000<br />

1000<br />

2 3 4 5 6<br />

Log10 n(H2) (cm 3 0.0<br />

)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

3 4 5 6 7 8<br />

Log10 Pressure (K cm 3 0.0<br />

)<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

Cold<br />

Warm<br />

Total<br />

0 2<br />

0.6<br />

4 6 8<br />

Jupper 10 12 14<br />

I CO (K km s 1 )<br />

0.4<br />

0.2<br />

2<br />

Log10 N[H2] [cm ]<br />

23 24 25 26 27 28<br />

18 19 20 21 22 23<br />

Log10 NCO (cm 2 0.0<br />

)<br />

10000<br />

1000<br />

Cold<br />

Warm<br />

Total<br />

0 2 4 6 8 10 12 14<br />

J upper


3 4 5 6<br />

Log 10 n(H 2) (cm 3 )<br />

4 5 6 7 8<br />

Log 10 Pressure (K cm 3 )<br />

I CO (K km s 1 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1000<br />

100<br />

10<br />

•<br />

•<br />

•<br />

2<br />

Log10 N[H2] [cm ]<br />

21.0 21.5 22.0 22.5 23.0 23.5<br />

17.5 18.0 18.5 19.0 19.5 20.0<br />

Log 10 N CO (cm 2 )<br />

Cold<br />

Warm<br />

Total<br />

0 2 4 6 8 10 12 14<br />

J upper<br />

Prelim<strong>in</strong>ary<br />

M82: CO Model<strong>in</strong>g Results<br />

T k<strong>in</strong> (warm CO) ~ 500 K = T k<strong>in</strong> (warm H 2 )<br />

T k<strong>in</strong>(cold CO) ~ 35 K<br />

cool<strong>in</strong>g rate ~ 1.4 L /M <br />

Marg<strong>in</strong>alized Likellihood<br />

ikellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

Cold<br />

Warm<br />

10 100 1000<br />

Log 10 T k<strong>in</strong> (K)<br />

Marg<strong>in</strong>alized Likellihood<br />

ikellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

2 3 4 5 6<br />

Log10 n(H2) (cm 3 0.0<br />

)<br />

1.0<br />

0.8<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Cold<br />

Warm<br />

10 100 1000<br />

Log 10 T k<strong>in</strong> (K)<br />

0.0<br />

3.0 2.5 2.0 1.5 1.0 0.5 0.0<br />

Log10 ff<br />

s 1 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1000<br />

100<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2<br />

Log10 N[H2] [cm ]<br />

21.0 21.5 22.0 22.5 23.0 23.5<br />

17.5 18.0 18.5 19.0 19.5 20.0<br />

Log 10 N CO (cm 2 )<br />

Cold<br />

Warm<br />

Total<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2 3 4 5 6<br />

Log10 n(H2) (cm 3 0.0<br />

)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.8<br />

0.8<br />

3 4 5 6 7 8<br />

Marg<strong>in</strong>alized Likellihood<br />

Log10 Pressure (K cm 3 )<br />

0.6<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Cold<br />

Warm<br />

10 100 1000<br />

Log 10 T k<strong>in</strong> (K)<br />

0.0<br />

3.0 2.5 2.0 1.5 1.0 0.5 0.0<br />

Log10 ff<br />

Marg<strong>in</strong>alized Likellihood<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

0.6<br />

0.4<br />

0.2<br />

I CO (K km s 1 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1000<br />

100<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

10<br />

2 3 4 5 6<br />

Log10 n(H2) (cm 3 0.0<br />

)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

3 4 5 6 7 8<br />

Log10 Pressure (K cm 3 0.0<br />

)<br />

2<br />

Log10 N[H2] [cm ]<br />

21.0 21.5 22.0 22.5 23.0 23.5<br />

17.5 18.0 18.5 19.0 19.5 20.0<br />

Log 10 N CO (cm 2 )<br />

Marg<strong>in</strong>alized Likellihood<br />

1.0<br />

Cold<br />

Warm<br />

Total<br />

0.8<br />

0 2 4 6 8 10 12 14<br />

Jupper 0.6<br />

I CO (K km s 1 )<br />

1000<br />

100<br />

0.4<br />

0.2<br />

0.0<br />

10<br />

2<br />

Log10 N[H2] [cm ]<br />

21.0 21.5 22.0 22.5 23.0 23.5<br />

17.5 18.0 18.5 19.0 19.5 20.0<br />

Log 10 N CO (cm 2 )<br />

Cold<br />

Warm<br />

Total<br />

0 2 4 6 8 10 12 14<br />

J upper


CO SLEDs<br />

Normalized Lum<strong>in</strong>osity<br />

10 7<br />

10 6<br />

0 115 230 345 461 576 691 806 922 1037 1152 1267 1382 1497 1611<br />

Mrk 231 (AGN)<br />

UGC05101 (AGN)<br />

Arp 220 (ULIRG/starburst)<br />

M82 (starburst)<br />

NGC7552 (barred spiral)<br />

Milky Way<br />

Frequency (GHz)<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Jupper Us<strong>in</strong>g a large sample we will establish if <strong>the</strong> shape and brightness of<br />

<strong>the</strong> CO SLED <strong>in</strong> galaxies can be used as a diagnostic between dom<strong>in</strong>ant<br />

sources of energy affect<strong>in</strong>g <strong>the</strong>ir molecular ISM and star formation.


Dust Model<strong>in</strong>g<br />

Arp220<br />

NGC 6240<br />

S( )= Nbb(1 e<br />

0<br />

e hc<br />

kT 1<br />

)(c/ ) 3<br />

+ Npl ↵ e ( / c) 2


•<br />

•<br />

•<br />

•<br />

•<br />

Conclusions<br />

<strong>Molecular</strong> gas and dust survey of nearby galaxies us<strong>in</strong>g<br />

Herschel-SPIRE.<br />

Systematic re-process<strong>in</strong>g and model<strong>in</strong>g; Pipel<strong>in</strong>e is almost<br />

complete.<br />

Previous studies have shown that <strong>the</strong> high-J CO l<strong>in</strong>es are trac<strong>in</strong>g<br />

<strong>the</strong> warm molecular ISM and dom<strong>in</strong>ate <strong>the</strong> CO lum<strong>in</strong>osity and<br />

hence <strong>the</strong> cool<strong>in</strong>g.<br />

Observed L CO/L FIR comb<strong>in</strong>ed with physical properties of <strong>the</strong><br />

molecular gas will enable us to constra<strong>in</strong> <strong>the</strong> dom<strong>in</strong>ant power<br />

source (AGN or SF (PDR, XDR, shocks etc. )) <strong>in</strong> <strong>the</strong>se galaxies.<br />

Investigate global properties of <strong>the</strong> molecular gas and dust as<br />

function of L FIR and galaxy types.


Extra Slides


Arp 220: Excitation source of warm<br />

molecular gas<br />

•<br />

•<br />

•<br />

!44B444<br />

!4B444<br />

!B444<br />

4B!44<br />

4B4!4<br />

4B44!<br />

Observed ratio: Total L CO/L FIR ~ 10 -4<br />

This ratio along with tight constra<strong>in</strong>ts on T k<strong>in</strong> and n(H 2)<br />

rules out PDRs, XDRs and Cosmic rays<br />

Require a non-ioniz<strong>in</strong>g source of energy: Mechanical<br />

energy from supernovae and stellar w<strong>in</strong>ds to satisfy a<br />

cool<strong>in</strong>g rate = 20 L /M <br />

/E?@A/0)F7+/+ /12 /+F 3<br />

, -./01/23/4 & 5<br />

567/8 4<br />

(a)<br />

3456+,780<br />

&!!!!<br />

&<br />

%<br />

$<br />

#<br />

"<br />

!<br />

4<br />

%1"<br />

$12<br />

$1"<br />

"12<br />

"1"<br />

"12<br />

$1"<br />

9:+;& +;$ "=<br />

9:+;2 &=<br />

9:+;! 2=<br />

9:+;? !=<br />

9>+;% $=<br />

9:+;# ?=<br />

9:+;@ #=<br />

!"" #"" $""" $%"" $&"" $!""<br />

'()*+,-./0<br />

5(678-9:;*'-,:88-?67<br />

9:+;$$ $"=<br />

9:+;$% $$=<br />

A>>+; < B $ < B "=<br />

9:+;$< $%=<br />

UGC05101 - Two-Component Radiative Transfer Model<strong>in</strong>g<br />

Model Fit<br />

Temperature<br />

PDR Models<br />

567/9:0!" !!3;9:0% $3<br />

%B4<br />

ARP220<br />

$B4<br />

M82<br />

#B4<br />

-678<br />

9:+3<br />

;6


UGC 05101<br />

(LIRG/AGN)<br />

Flux [Jy]<br />

3456+,780<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

%1"<br />

$12<br />

$1"<br />

"12<br />

"1"<br />

"12<br />

$1"<br />

(a)<br />

9:+;&+;$"=<br />

(b)<br />

Flux (Jy)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

9:+;2&=<br />

CO (43)<br />

CI (10)<br />

CO (54)<br />

9:+;!2=<br />

CO (65)<br />

600 800 1000 1200 1400 1600<br />

rest (GHz) [used z = 0.0393]<br />

Herschel SPIRE-FTS Spectrum of UGC05101<br />

600 800 1000 1200 1400 1600<br />

rest [GHz]<br />

9:+;?!=<br />

9>+;%$=<br />

CO (76)<br />

CI (21)<br />

9:+;#?=<br />

CO (87)<br />

9:+;@#=<br />

CO (98)<br />

!"" #"" $""" $%"" $&"" $!""<br />

'()*+,-./0<br />

CO (109)<br />

9:+;$"@=<br />

CO (1110)<br />

9:+;$$$"=<br />

CO (1211)<br />

9:+;$%$$=<br />

NII 205<br />

CO (1312)<br />

A>>+; < B $ < B "=<br />

9:+;$


Normalized Lum<strong>in</strong>osity<br />

10 7<br />

10 6<br />

CO SLED: diagnostic for<br />

Star Formation Vs AGN?<br />

Mrk 231 (AGN)<br />

Arp 220 (Starburst)<br />

M82 (Starburst)<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Us<strong>in</strong>g a large sample Jupper we will establish if <strong>the</strong><br />

shape and brightness of <strong>the</strong> CO SLED <strong>in</strong><br />

galaxies can be used as a diagnostic between<br />

dom<strong>in</strong>ant sources of energy affect<strong>in</strong>g <strong>the</strong>ir<br />

molecular ISM and star formation.<br />

•<br />

•<br />

•<br />

Models have suggested that<br />

<strong>the</strong> shape of <strong>the</strong> CO SLEDs can<br />

be used to discrim<strong>in</strong>ate<br />

between SF and AGN [e.g. Spaans<br />

& Meijer<strong>in</strong>k (2008); Lagos et al. (2012)].<br />

Observations:<br />

Starburst - CO SLEDs turn<br />

over after J = 6-5 e.g.<br />

Arp220 [Rangwala et al. (2011)] and<br />

M82 [Panuzzo, Rangwala et al. (2010);<br />

Kamenetzky et al. 2012 (<strong>in</strong>cl. N. Rangwala)].<br />

Similar turn over observed <strong>in</strong><br />

high-z submm galaxies [Bothwell<br />

et al. (2013)].<br />

AGN: CO SLED rema<strong>in</strong>s flat<br />

after J = 6-5 [e.g.,Van der werf et al.<br />

(2010)]


L CO (65) (L sun)<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

cena<br />

10 10<br />

LCO - LFIR relation<br />

NGC1365NE<br />

NGC1365SW<br />

ngc1068<br />

ngc1266<br />

NGC253 m82 ngc4038overlap<br />

NGC1222 ngc4038<br />

m83<br />

10 11<br />

Mrk273<br />

arp220<br />

UGC05101<br />

Mrk231<br />

NGC6240<br />

IRAS090223615<br />

IRASF172070014<br />

Arp299A<br />

Arp299B Arp299C<br />

L FIR (L sun)<br />

10 12<br />

SMMJ2135<br />

10 13<br />

HLSW01<br />

Riechers<br />

GN20<br />

Cloverleaf<br />

APM08279<br />

10 14


log 10 L CO (65) (K km s 1 pc 2 )<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

cena<br />

L CO - L FIR relation<br />

SMMJ2135<br />

Mrk273<br />

arp220<br />

UGC05101<br />

NGC1365NE<br />

NGC1365SW<br />

ngc1068<br />

m82 ngc4038overlap<br />

m83 ngc4038<br />

Mrk231<br />

NGC6240<br />

IRAS090223615<br />

IRASF172070014<br />

Arp299A<br />

Arp299B Arp299C<br />

ngc1266<br />

NGC253<br />

NGC1222<br />

HLSW01 Cloverleaf<br />

Riechers<br />

GN20<br />

APM08279 MM18423<br />

5<br />

9 10 11 12<br />

log10 LFIR (Lsun) 13 14 15


3060 M. S. Bothwell et al.<br />

4.3 The L ′ CO –LFIR correlation<br />

A useful quantity to measure for our sample of SMGs is <strong>the</strong> efficiency<br />

with which <strong>the</strong>ir molecular gas is be<strong>in</strong>g converted <strong>in</strong>to stars.<br />

The SFE is sometimes def<strong>in</strong>ed as SFR/M(H2) – <strong>the</strong> <strong>in</strong>verse of <strong>the</strong> gas<br />

depletion time – but here we take <strong>the</strong> approach of parameteriz<strong>in</strong>g<br />

this as a ratio of observable quantities: LFIR and L ′ CO(1−0) .<br />

There has been debate, <strong>in</strong> recent years, as to <strong>the</strong> value of <strong>the</strong><br />

slope of <strong>the</strong> L ′ CO(1−0) − LFIR relation. Whereas, earlier we discussed<br />

<strong>the</strong> difference <strong>in</strong> slopes between <strong>the</strong> various transitions observed<br />

(<strong>in</strong> order to derive <strong>the</strong> median SLED), here we present <strong>the</strong> relation<br />

between <strong>the</strong> derived 12CO J = 1–0 lum<strong>in</strong>osity and LFIR – a relation<br />

which describes, <strong>in</strong> observable terms, <strong>the</strong> relationship between <strong>the</strong><br />

lum<strong>in</strong>osity due to star formation and <strong>the</strong> total gas content. (Section<br />

2.1.1 conta<strong>in</strong>s a discussion of <strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong>herent to deriv<strong>in</strong>g<br />

IR lum<strong>in</strong>osities for sources such as ours.)<br />

In <strong>the</strong>ir study of 12 SMGs, Greve et al. (2005) found a slope of<br />

<strong>the</strong> relation between LFIR and L ′ CO(1−0) of 0.62 ± 0.08 fit a comb<strong>in</strong>ed<br />

sample of lower redshift LIRGs, ULIRGs and SMGs – identical to<br />

<strong>the</strong> slope derived for <strong>the</strong> local LIRGs/ULIRGs alone. The small<br />

number of galaxies <strong>in</strong> Greve et al. (2005), however, prevented a full<br />

<strong>in</strong>vestigation of <strong>the</strong> SFE slopes with<strong>in</strong> <strong>the</strong> SMG population itself.<br />

Some recent authors, however, have found <strong>the</strong> slope to be closer to<br />

l<strong>in</strong>ear – Genzel et al. (2010) found that a slope of 0.87 ± 0.09 fits a<br />

comb<strong>in</strong>ed sample of SMGs across a wide range of redshifts.<br />

Fig. 6 shows <strong>the</strong> L ′ CO−LFIR relation for our sample of SMGs.<br />

Included <strong>in</strong> <strong>the</strong> plot are data po<strong>in</strong>ts for local (U)LIRGs, as measured<br />

by Sanders, Scoville & Soifer (1991) and Solomon et al.<br />

(1997). We also show three power-law fits to <strong>the</strong> local (U)LIRGs<br />

alone, <strong>the</strong> SMGs alone and <strong>the</strong> comb<strong>in</strong>ed sample. We f<strong>in</strong>d <strong>the</strong><br />

SMGs to lie slightly above <strong>the</strong> best-fitt<strong>in</strong>g (sub-l<strong>in</strong>ear) l<strong>in</strong>e for local<br />

(U)LIRGs, necessitat<strong>in</strong>g a steeper slope. The power-law fit to <strong>the</strong><br />

local (U)LIRGs alone has a slope of 0.79 ± 0.08, while <strong>the</strong> fit to<br />

<strong>the</strong> comb<strong>in</strong>ed sample of SMGs and (U)LIRGs has a slope of 0.83 ±<br />

0.09. It can also be seen that a fit to <strong>the</strong> SMG sample alone has<br />

an even steeper slope of 0.93 ± 0.14 – very close to l<strong>in</strong>ear – although,<br />

with<strong>in</strong> <strong>the</strong> uncerta<strong>in</strong>ty, this is consistent with <strong>the</strong> slope for<br />

<strong>the</strong> comb<strong>in</strong>ed samples. These results are <strong>in</strong> good agreement with<br />

Figure 6. The SFE, L ′ CO versus LFIR. Included <strong>in</strong> <strong>the</strong> plot are two samples<br />

of local ULIRGs, and <strong>the</strong> J = (1–0) SMG observations of Ivison et al.<br />

(2011). Best-fitt<strong>in</strong>g slopes to <strong>the</strong> SMGs alone, <strong>the</strong> local ULIRGs alone and<br />

all three comb<strong>in</strong>ed samples are overplotted. They have slopes of 0.93 ±<br />

0.14, 0.79 ± 0.08 and 0.83 ± 0.09, respectively.<br />

L CO - L FIR relation<br />

most previous f<strong>in</strong>d<strong>in</strong>gs; <strong>the</strong> near-l<strong>in</strong>ear slopes (which agree well<br />

with those found by Genzel et al. 2010) would imply a roughly<br />

constant gas depletion time-scale across <strong>the</strong> entire range of far-IR<br />

lum<strong>in</strong>osities shown here.<br />

However, we caution that our analysis requires extrapolat<strong>in</strong>g from<br />

high-Jup 12 CO transitions to 12 CO (1–0). Ivison et al. (2010) have<br />

undertaken a similar analysis based solely on directly observed<br />

12 CO (1–0) observations and homogeneously derived far-IR lumi-<br />

nosities and conclude that <strong>the</strong> L ′ CO(1−0) −LFIR relation has a slope<br />

substantially below unity. We <strong>the</strong>refore suggest that it is difficult to<br />

draw any strong conclusions from high-Jup observations about <strong>the</strong><br />

gas depletion time-scales of <strong>the</strong> different populations or <strong>the</strong> form of<br />

<strong>the</strong> Kennicutt–Schmidt relation <strong>in</strong> <strong>the</strong>se galaxies, as <strong>the</strong>se are too<br />

uncerta<strong>in</strong> without brightness temperature ratio measurements for<br />

<strong>in</strong>dividual sources.<br />

4.4 <strong>Molecular</strong> gas masses<br />

Part of <strong>the</strong> power of observations of 12CO emission from highredshift<br />

galaxies is that <strong>the</strong>y provide a tool to derive <strong>the</strong> mass of<br />

<strong>the</strong> reservoir of molecular gas <strong>in</strong> <strong>the</strong>se systems. This is of critical<br />

importance because this reservoir is <strong>the</strong> raw material from which<br />

<strong>the</strong> future stellar mass <strong>in</strong> <strong>the</strong>se systems is formed. Along with <strong>the</strong><br />

exist<strong>in</strong>g stellar population, it <strong>the</strong>refore gives some <strong>in</strong>dication of<br />

<strong>the</strong> potential stellar mass of <strong>the</strong> result<strong>in</strong>g galaxy at <strong>the</strong> end of <strong>the</strong><br />

starburst phase (subject, of course, to <strong>the</strong> unknown contribution<br />

from <strong>in</strong>-fall<strong>in</strong>g and out-flow<strong>in</strong>g material).<br />

Estimat<strong>in</strong>g <strong>the</strong> mass of H2 from <strong>the</strong> measured L ′ CO requires two<br />

steps. First, lum<strong>in</strong>osities orig<strong>in</strong>at<strong>in</strong>g from higher transitions (Jup ≥<br />

2) must be transformed to an equivalent 12CO J = 1–0 lum<strong>in</strong>osity,<br />

us<strong>in</strong>g a brightness ratio. We have derived <strong>the</strong> necessary brightness<br />

ratios us<strong>in</strong>g our composite SLED as discussed <strong>in</strong> Section 3 above.<br />

Once an L ′ CO(1−0) has been determ<strong>in</strong>ed, it must be converted <strong>in</strong>to<br />

an H2 mass by adopt<strong>in</strong>g a conversion factor α: M(H2) = αL ′ CO ,<br />

where α is <strong>in</strong> units of M⊙ (K km s−1 pc2 ) −1 (when discuss<strong>in</strong>g α<br />

hereafter, we omit <strong>the</strong>se units for <strong>the</strong> sake of brevity). This can <strong>the</strong>n<br />

be converted to a total gas mass, <strong>in</strong>clud<strong>in</strong>g He, Mgas = 1.36 M(H2).<br />

There is a large body of work, both observational and <strong>the</strong>oretical,<br />

dedicated to determ<strong>in</strong><strong>in</strong>g <strong>the</strong> value – and ascerta<strong>in</strong><strong>in</strong>g <strong>the</strong> metallicity<br />

or environmental dependence – of α (e.g. Young & Scoville<br />

1991; Solomon & Vanden Bout 2005; Liszt, Pety & Lucas 2010;<br />

Bolatto et al. 2011; Genzel et al. 2012; Narayanan et al. 2011; Papadopoulos<br />

et al. 2012). While secular discs such as <strong>the</strong> Milky Way<br />

have a relatively ‘high’ value of α ∼ 3–5, us<strong>in</strong>g this value for <strong>the</strong><br />

gas <strong>in</strong> nuclear discs/r<strong>in</strong>gs with<strong>in</strong> merg<strong>in</strong>g systems and starbursts at<br />

z ∼ 0 leads to <strong>the</strong> molecular gas mass sometimes exceed<strong>in</strong>g <strong>the</strong>ir<br />

dynamical masses. As such, a lower value – motivated by a radiative<br />

transfer model of <strong>the</strong> 12CO k<strong>in</strong>ematics – is typically used<br />

for <strong>the</strong> <strong>in</strong>tense nuclear starbursts <strong>in</strong> <strong>the</strong> most IR-lum<strong>in</strong>ous local<br />

systems: α ∼ 0.8, with a range of 0.3–1.3 (Downes & Solomon<br />

1998). However, some recent results have suggested that this value<br />

might, <strong>in</strong> fact, underestimate <strong>the</strong> true value <strong>in</strong> high-redshift SMGs.<br />

Bothwell et al. (2010) found that apply<strong>in</strong>g <strong>the</strong> canonical ULIRG<br />

value to two z ∼ 2 SMGs resulted <strong>in</strong> gas fractions of


Flux (Jy)<br />

•<br />

•<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

670 µm<br />

CO (43)<br />

CI (10)<br />

SPIRE-FTS spectrum of Arp 220<br />

CO (54)<br />

CO (65)<br />

CO (76)<br />

CI (21)<br />

CO (87)<br />

CO (98)<br />

600 800 1000 1200 1400 1600<br />

rest (GHz) [used z = 0.0181]<br />

Cont<strong>in</strong>uous spectral coverage<br />

spectral resolution = 1.44 GHz<br />

•<br />

•<br />

CO (109)<br />

300 µm<br />

CO (1110)<br />

CO (1211)<br />

NII 205<br />

CO (1312)<br />

CO (1413)<br />

190 µm<br />

several molecular and atomic species<br />

CO rotational transitions from J = 4-3 to 13-12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!