13.07.2013 Views

TALAT lecture 3300: fundamentals of metal forming - CORE-Materials

TALAT lecture 3300: fundamentals of metal forming - CORE-Materials

TALAT lecture 3300: fundamentals of metal forming - CORE-Materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>TALAT</strong> Lecture <strong>3300</strong><br />

Fundamentals <strong>of</strong> Metal Forming<br />

18 pages, 27 figures<br />

Basic Level<br />

prepared by Klaus Siegert and Eckart Dannenmann, Institut für Umformtechnik,<br />

Universität Stuttgart<br />

Objectives:<br />

− a brief review <strong>of</strong> the fundamental terms and laws governing <strong>metal</strong> <strong>forming</strong> at<br />

room temperature as well as at high temperatures. This <strong>lecture</strong> is a necessary<br />

prerequisite to understand the more specific treatment <strong>of</strong> <strong>metal</strong> <strong>forming</strong><br />

subjects such as forging, impact extrusion and sheet <strong>metal</strong> <strong>forming</strong> in the<br />

subsequent <strong>TALAT</strong> Lectures 3400 to 3800.<br />

Prerequisites:<br />

− General background in production engineering, machine tools<br />

Date <strong>of</strong> Issue: 1996<br />

© EAA - European Aluminium Association


<strong>3300</strong> Fundamentals <strong>of</strong> Metal Forming<br />

Table <strong>of</strong> Contents<br />

<strong>3300</strong> Fundamentals <strong>of</strong> Metal Forming ............................................................2<br />

3301 Introduction................................................................................................... 3<br />

3301.01 Definition <strong>of</strong> Forming..............................................................................3<br />

3302 Terms for Classifying Forming Processes .................................................. 4<br />

3302.01 Classification by State <strong>of</strong> Stress (Figure 3302.01.01)..............................4<br />

3302.02 Classification by Type <strong>of</strong> Raw Material (Figure 3302.02.01) .................4<br />

3302.03 Classification by Forming Temperature...................................................5<br />

3302.04 Classification by Methods <strong>of</strong> Induction <strong>of</strong> Forces into the Work-Piece..5<br />

3303 Characteristic Values and Basic Laws <strong>of</strong> Metal Forming......................... 6<br />

3303.01 Flow Stress...............................................................................................6<br />

3303.02 Plastic Strain, Rate and Acceleration.......................................................7<br />

Logarithmic (True) Plastic Strain....................................................................... 7<br />

Logarithmic Strain in Upsetting ......................................................................... 7<br />

Law <strong>of</strong> Volume Constancy .................................................................................. 8<br />

Plastic Strain Rate .............................................................................................. 8<br />

Plastic Strain Acceleration ................................................................................. 9<br />

3303.03 Plastic Flow under Combined Stresses....................................................9<br />

Criteria for Plastic Flow..................................................................................... 9<br />

Maximum Shear Stress Hypothesis................................................................... 10<br />

Mises Flow Criterion........................................................................................ 11<br />

Yield Criteria for Plane Stress (Yield Locus) ................................................... 12<br />

3303.04 Law <strong>of</strong> Plastic Flow ...............................................................................12<br />

3303.05 Flow Curves.............................................................................................13<br />

General Definition <strong>of</strong> the Flow Curve .............................................................. 13<br />

Flow Curves at Room Temperature.................................................................. 13<br />

Flow Curves at Elevated Temperatures............................................................ 14<br />

3303.06 Average Flow Stress ..............................................................................16<br />

3303.07 Energy Considerations ...........................................................................16<br />

Forming Energy................................................................................................ 16<br />

Heat Development during Forming.................................................................. 17<br />

Literature/References ............................................................................................. 18<br />

List <strong>of</strong> Figures.......................................................................................................... 18<br />

<strong>TALAT</strong> <strong>3300</strong> 2


3301 Introduction<br />

3301.01 Definition <strong>of</strong> Forming<br />

The general description given in Figure 3301.01.01 defines <strong>metal</strong> <strong>forming</strong> by plastic<br />

deformation and distinguishes it from other <strong>forming</strong> and shaping processes like casting<br />

and machining.<br />

K.Siegert<br />

alu<br />

Training in Aluminium Application Technologies<br />

Definition <strong>of</strong> Forming<br />

Forming is a fabrication process for solid substances by controlled<br />

plastic deformation in order to obtain alterations <strong>of</strong>:<br />

- the form,<br />

- the material properties and/or<br />

- the surface properties,<br />

whereby the mass and material continuum remain unchanged.<br />

Definition <strong>of</strong> Forming<br />

<strong>TALAT</strong> <strong>3300</strong> 3<br />

3301.01.01


3302 Terms for Classifying Forming Processes<br />

• Classification by State <strong>of</strong> Stress<br />

• Classification by Type <strong>of</strong> Raw Material<br />

• Classification by Forming Temperature<br />

• Classification by Methods <strong>of</strong> Induction <strong>of</strong> Forces into the Work-Piece<br />

3302.01 Classification by State <strong>of</strong> Stress (Figure 3302.01.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Terms for classifying the <strong>forming</strong> process:<br />

Classification by State <strong>of</strong> Stress<br />

Pressure Forming<br />

Tension-Compression<br />

Forming<br />

Tension Forming<br />

Bend Forming<br />

Shear Forming<br />

DIN 8583<br />

DIN 8584<br />

DIN 8585<br />

DIN 8586<br />

DIN 8587<br />

Classifying the Forming Process by State <strong>of</strong> Stress<br />

<strong>TALAT</strong> <strong>3300</strong> 4<br />

Rolling, Open-Die Forming,<br />

Die Forming, Indenting,<br />

Pressing Through<br />

Drawing, Deep Drawing,<br />

Collar Forming, Compressing,<br />

Upset Bulging<br />

Stretch Reducing, Bulge Forming,<br />

Stretch Forming<br />

Bending with Linear Tool Movement,<br />

Bending with Rotating Tool Movement<br />

Shear Displacement, Twisting<br />

3302.01.01<br />

3302.02 Classification by Type <strong>of</strong> Raw Material (Figure 3302.02.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Terms for classifying the <strong>forming</strong> process:<br />

Type <strong>of</strong> Raw Material<br />

Sheet Forming<br />

The raw material consists <strong>of</strong> flat parts <strong>of</strong> constant thickness.<br />

The parts produced have a three-dimensional form with<br />

approximately constant wall thickness ( ≈ raw material thickness).<br />

Bulk Forming<br />

Raw parts are three-dimensional.<br />

The parts produced are also three-dimensional but <strong>of</strong>ten have<br />

very different wall thicknesses and/ or cross-sections.<br />

Classifying the Forming Process by<br />

Types <strong>of</strong> Raw <strong>Materials</strong><br />

3302.02.01


3302.03 Classification by Forming Temperature<br />

(Figure 3302.03.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Terms for classifying the <strong>forming</strong> process:<br />

Forming Temperature<br />

Cold Forming<br />

Process in which the work-piece is not heated before <strong>forming</strong>,<br />

but instead formed at room temperature.<br />

Warm Forming<br />

ϑ = ϑRoom (ca. 20° C )<br />

Process in which the work-piece is heated to an elevated temperature<br />

higher than room temperature before <strong>forming</strong>.<br />

ϑ > ϑ Room (ca. 20° C )<br />

Classifying the Forming Process by<br />

Forming Temperature<br />

<strong>TALAT</strong> <strong>3300</strong> 5<br />

3302.03.01<br />

3302.04 Classification by Methods <strong>of</strong> Induction <strong>of</strong> Forces into the Work-Piece<br />

(Figure 3302.04.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Terms for classifying the <strong>forming</strong> process:<br />

Methods <strong>of</strong> Applying Force<br />

Process with Indirect Force Application<br />

(Deep Drawing)<br />

K. Siegert<br />

FN<br />

Forming Zone<br />

F St<br />

Bending Zone<br />

Force Transmission Zone<br />

Force Induction Zone<br />

Classifying the Forming Process by<br />

Methods <strong>of</strong> Applying Force<br />

Process with Direct Force Application<br />

(Upsetting) F<br />

F<br />

3302.04.01


3303 Characteristic Values and Basic Laws <strong>of</strong> Metal Forming<br />

• Flow Stress<br />

• Plastic Strain, Rate and Acceleration<br />

• Plastic Flow under Combined Stresses<br />

• Law <strong>of</strong> Plastic Flow<br />

• Flow Curves<br />

• Average Flow Stress<br />

• Energy Considerations<br />

3303.01 Flow Stress<br />

(Figure 3303.01.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Characteristic Values, Basic Laws<br />

Flow Stress<br />

The flow stress (resistance to plastic deformation) <strong>of</strong> a<br />

material is the stress required to initiate or continue<br />

plastic deformation under uniaxial state <strong>of</strong> stress.<br />

Flow stress<br />

(true stress)<br />

By comparison<br />

(technical stress)<br />

Conversion:<br />

with<br />

one obtains<br />

F<br />

k f<br />

A<br />

=<br />

σ = F<br />

A 0<br />

ε = ( l−l )/ l 0 0<br />

= σε ( + 1)<br />

k f l<br />

<strong>TALAT</strong> <strong>3300</strong> 6<br />

A<br />

A 0<br />

F<br />

l 0<br />

l<br />

Definition <strong>of</strong> Flow Stress 3303.01.01<br />

F


3303.02 Plastic Strain, Rate and Acceleration<br />

Logarithmic (True) Plastic Strain<br />

(Figure 3303.02.01)<br />

logarithmic (or true) strain dϕ<br />

=<br />

l<br />

∫<br />

l0<br />

ε = = − ∫ = −<br />

dl<br />

1<br />

l1 l0<br />

l1<br />

1.<br />

l l l<br />

alu<br />

Training in Aluminium Application Technologies<br />

l<br />

l 0 0<br />

⎛ l ⎞ 1<br />

⎜ ⎟ = ( ε + 1)<br />

⎝ l ⎠<br />

0<br />

0<br />

ϕ l = ln( ε + 1)<br />

Logarithmic (True) Strain<br />

The logarithmic strain ϕ (true strain; degree <strong>of</strong> deformation)<br />

is a measure <strong>of</strong> the permanent (plastic) deformation<br />

<strong>TALAT</strong> <strong>3300</strong> 7<br />

0<br />

dl<br />

l<br />

1<br />

dl<br />

l1<br />

ϕ l = = lnl1− lnl0 = ln .<br />

l<br />

l<br />

As opposed to this, elongation<br />

(relative deformation)<br />

Conversion:<br />

with<br />

one obtains<br />

Logarithmic Strain in Upsetting<br />

(Figure 3303.02.02)<br />

Cuboid<br />

Circular<br />

Cylinder<br />

h 0<br />

alu<br />

Training in Aluminium Application Technologies<br />

0<br />

dl<br />

dε<br />

=<br />

l<br />

0<br />

Logarithmic (True) Strain<br />

l 1<br />

dl<br />

2<br />

l<br />

dl<br />

2<br />

Logarithmic Strain in Upsetting<br />

h0<br />

b 0<br />

l 0<br />

r 0<br />

h1<br />

h 1<br />

b 1<br />

r 1<br />

l 0<br />

F<br />

h<br />

ϕ h =<br />

h<br />

b<br />

ϕ b<br />

b<br />

l<br />

ϕ l<br />

l<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

= ⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

= ⎛<br />

1 ln<br />

0<br />

1 ln<br />

0<br />

⎞ 1 ln⎜<br />

⎟<br />

⎝ ⎠<br />

F<br />

3303.02.01<br />

h<br />

ϕ h =<br />

h<br />

r<br />

ϕr ϕt<br />

r<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

= ⎛<br />

1 ln<br />

0<br />

⎞ 1 ln⎜<br />

⎟ =<br />

⎝ ⎠<br />

Logarithmic Strain in Upsetting 3303.02.02<br />

l 1<br />

0<br />

0<br />

A 0<br />

A<br />

A 1


Law <strong>of</strong> Volume Constancy<br />

(Figure 3303.02.03)<br />

Taking the logarithms<br />

<strong>of</strong> both sides:<br />

or:<br />

alu<br />

Training in Aluminium Application Technologies<br />

h 0<br />

Law <strong>of</strong> Volume Constancy<br />

⎛ h ⎞ 1 b1<br />

l1<br />

ln⎜ ⎟ + ln ln 0<br />

⎝ h ⎠ b l<br />

⎛ ⎞<br />

⎜ ⎟ +<br />

⎝ ⎠<br />

⎛<br />

V=h1⋅b1⋅ l1 = h0⋅b0⋅l0 ⎛ h ⎞ 1 b1<br />

l1<br />

⎜ ⎟ ⋅ 1<br />

⎝ h0<br />

⎠ b0<br />

l0<br />

⎞<br />

⎜ ⎟ =<br />

⎝ ⎠<br />

⎛ ⎞<br />

⎜ ⎟ ⋅<br />

⎝ ⎠<br />

⎛ ⎞<br />

⎜ ⎟ =<br />

⎝ ⎠<br />

<strong>TALAT</strong> <strong>3300</strong> 8<br />

b 0<br />

0<br />

l 0<br />

h 1<br />

Assuming that during <strong>forming</strong> the volume <strong>of</strong> a cuboid remains constant,<br />

the following equation is valid for a homogeneous compression:<br />

so that:<br />

Plastic Strain Rate<br />

(Figure 3303.02.04)<br />

0<br />

0<br />

b 1<br />

ϕ + ϕ + ϕ = 0 or ϕ = 0<br />

h h h<br />

∑<br />

Law <strong>of</strong> Volume Constancy 3303.02.03<br />

·<br />

The true strain rate or logarithmic strain rate ϕ is the derivative <strong>of</strong> the<br />

logarithmic strain (true strain) ϕ with time t:<br />

From the law <strong>of</strong> volume constancy one obtains:<br />

. . .<br />

ϕh + ϕb + ϕl = 0<br />

.<br />

Σϕ = 0<br />

·<br />

One has to differentiate between the strain rate ϕ and the<br />

tool speed vwz. For a homogeneous compression where<br />

h = instantaneous height <strong>of</strong> the material being compressed,<br />

the following relation is valid:<br />

alu<br />

Training in Aluminium Application Technologies<br />

Plastic Strain Rate<br />

(True strain rate)<br />

ϕ<br />

ϕ = d<br />

dt<br />

ϕ = vwz<br />

h<br />

Plastic Strain Rate (True Strain Rate)<br />

l 1<br />

3303.02.04


Plastic Strain Acceleration<br />

(Figure 3303.02.05)<br />

<br />

The plastic strain acceleration ϕ is the derivative<br />

<br />

<strong>of</strong> the plastic strain rate ϕ with time t:<br />

alu<br />

Training in Aluminium Application Technologies<br />

Plastic Strain Acceleration<br />

& & ϕ<br />

ϕ = d<br />

dt<br />

<strong>TALAT</strong> <strong>3300</strong> 9<br />

Forming Strain Acceleration 3303.02.05<br />

3303.03 Plastic Flow under Combined Stresses<br />

Criteria for Plastic Flow<br />

(Figure 3303.03.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Criteria for Plastic Flow<br />

Criteria for plastic flow describe the requirements<br />

which must be fulfilled in order for plastic deformation to<br />

occur under a multiaxial state <strong>of</strong> stress.<br />

The requirements for flow are met when an equivalent<br />

stress, σv , derived from the multiaxial stress state,<br />

equals the flow stress kf: σv = k f<br />

In the <strong>forming</strong> technology, two types <strong>of</strong> flow hypothesis<br />

are used to derive the comparative stress σv :<br />

-the shear stress hypothesis according to TRESCA<br />

-the <strong>forming</strong> energy hypothesis according to v. MISES<br />

Criteria for Plastic Flow 3303.03.01


Maximum Shear Stress Hypothesis<br />

(Figure 3303.03.02, Figure 3303.03.03, Figure 3303.03.04)<br />

Flow occurs when the maximum shear stress τmax reaches a value<br />

characteristic for the material, the so-called shear yield stress k:<br />

alu<br />

Training in Aluminium Application Technologies<br />

τmax = k .<br />

Based on the stresses ( σ1 > σ2 > σ3 ) in the MOHR stress circle,<br />

the following equations can be derived:<br />

τ<br />

τmax =<br />

1<br />

2 ( σ1 − σ3 ) = k<br />

1<br />

τmax = ( σmax − σmin ) = k<br />

2<br />

alu<br />

Training in Aluminium Application Technologies<br />

Shear Stress Hypothesis (1)<br />

σ3<br />

= σmin<br />

<strong>TALAT</strong> <strong>3300</strong> 10<br />

σ2<br />

τmax<br />

(=k)<br />

Shear Stress Hypothesis (1)<br />

Shear Stress Hypothesis (2)<br />

For a uniaxial state <strong>of</strong> tensile stress ( σ1 = σmax , σ2 = σ3 = σmin = 0 ),<br />

the following relationship is valid:<br />

τ<br />

σmax - σmin = σ1 = 2k<br />

and ( definition <strong>of</strong> flow stress )<br />

σ1 = k f .<br />

Considering the flow conditions ( σv = k f ), one<br />

obtains:<br />

σv = k f = σmax - σmin.<br />

σ2 = σ3 = 0<br />

Thus, flow starts when the difference between the largest and<br />

smallest principal normal stresses equals the flow stress.<br />

τmax= k<br />

σ1 = σmax<br />

σ1<br />

σ<br />

3303.03.02<br />

Shear Stress Hypothesis (2) 3303.03.03<br />

σ


alu<br />

Training in Aluminium Application Technologies<br />

Mises Flow Criterion<br />

(Figure 3303.03.05)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Shear Stress Hypothesis (3)<br />

According to the shear stress theory, the<br />

comparative deformation strain is equal to the<br />

largest value <strong>of</strong> the logarithmic deformation strain:<br />

( )<br />

ϕ ϕ , ϕ , ϕ .<br />

g = 1 2 3<br />

ϕg is the principal logarithmic (or true) strain.<br />

Shear Stress Hypothesis (3)<br />

Distortion Energy (von-Mises) Theory<br />

<strong>TALAT</strong> <strong>3300</strong> 11<br />

max<br />

3303.03.04<br />

Flow sets in when the elastic distortion energy for changing the form exceeds a criterical value.<br />

If σ1 > σ2 > σ3, then the comparative stress is given by<br />

σ v σ σ σ σ σ σ<br />

f k<br />

1<br />

= = 1− 2 + 2 − 3 + 3 − 1<br />

2<br />

Using the average stress<br />

1<br />

σ m = ( σ1+ σ 2 + σ 3)<br />

3<br />

one obtains<br />

2<br />

2<br />

( ) ( ) ( )<br />

3<br />

σ = k = σ − σ + σ − σ + σ −σ<br />

v f 1 m 2 m 3 m<br />

2<br />

2<br />

2<br />

( ) ( ) ( )<br />

Then, according to the distortion energy theory, the comparative deformation strain becomes<br />

2 2 2 2<br />

ϕv = ( ϕ1+ ϕ2+ ϕ3)<br />

.<br />

3<br />

2<br />

2<br />

.<br />

.<br />

Distortion Energy Hypothesis (v. Mises) 3303.03.05


Yield Criteria for Plane Stress (Yield Locus)<br />

(Figure 3303.03.06)<br />

−σ1<br />

-k f<br />

k f<br />

Maximum shear stress theory<br />

(Tresca)<br />

alu<br />

Training in Aluminium Application Technologies<br />

σ3<br />

-k f<br />

−σ3<br />

Yield Criteria for Plane Stress<br />

Distortion energy<br />

theory (v. Mises)<br />

<strong>TALAT</strong> <strong>3300</strong> 12<br />

k f<br />

σ2 = 0<br />

σ1<br />

3303.04 Law <strong>of</strong> Plastic Flow<br />

(Figure 3303.04.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

The comparision <strong>of</strong> yield criteria for a<br />

plane state <strong>of</strong> stresses (σ2 = 0) indicates<br />

the stress combinations σ1 , σ3 at which<br />

flow sets in.<br />

The curves depicting the yield criteria can<br />

thus be considered as an illustration <strong>of</strong> the<br />

flow theory in the σ1 , σ3 plane state <strong>of</strong><br />

stresses.<br />

The two flow theories sometimes deliver<br />

somewhat different stress values for the<br />

start <strong>of</strong> flow. This difference is, however,<br />

small and does not exceed 15%.<br />

Yield Criteria for Plane Stress 3303.03.06<br />

Law <strong>of</strong> Plastic Flow<br />

The law <strong>of</strong> plastic flow describes the correlation between stress<br />

and the resulting deformation strain for the plastic state.<br />

Assuming that the ratios <strong>of</strong> the deformation strains among each other<br />

remain constant during the process, the correlation between the<br />

deformation strain ϕ and the principal stress σ which causes the<br />

deformation can be given by:<br />

1<br />

σ = ( σ + σ m<br />

1 2<br />

3<br />

+ σ 3)<br />

ϕ : ϕ : ϕ = σ −σ : σ −σ : σ −σ<br />

( ) ( ) ( )<br />

1 2 3 1 m 2 m 3 m<br />

Important consequences:<br />

The logarithmic deformation strain attains the value zero<br />

when the corresponding principal stress equals σm.<br />

Law <strong>of</strong> Plastic Flow 3303.04.01


3303.05 Flow Curves<br />

General Definition <strong>of</strong> the Flow Curve<br />

(Figure 3303.05.01)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Flow Curve<br />

The flow stress kf <strong>of</strong> a material depends on<br />

- the logarithmic principal deformation strain ϕg<br />

- the logarithmic principal deformation strain rate ϕg<br />

- the temperature ϑ<br />

and, during the high speed <strong>forming</strong>, also on<br />

<br />

- the principal deformation strain acceleration ϕg<br />

<br />

i.e. k f = f(ϕg, ϕg, ϑ, (ϕg)).<br />

The flow curve is the illustration <strong>of</strong> the flow stress k f as a<br />

<br />

function <strong>of</strong> ϕg, ϕg, ϑ and ϕg.<br />

Flow Curves at Room Temperature<br />

(Figure 3303.05.02, Figure 3303.05.03)<br />

alu<br />

Training in Aluminium Application Technologies<br />

<strong>TALAT</strong> <strong>3300</strong> 13<br />

Flow Curve 3303.05.01<br />

Flow Curves at Room Temperature (1)<br />

In the range <strong>of</strong> cold <strong>forming</strong> (<strong>forming</strong> temperature ϑ<br />

is considerably lower than the recrystallisation<br />

temperature ϑRekr ), the flow stress k f for most <strong>metal</strong>lic<br />

materials depends only on the logarithmic principal<br />

deformation strain ϕg:<br />

k = f ( )<br />

f ϕg<br />

This dependence can be replaced for a number <strong>of</strong><br />

materials by the approximate relationship<br />

n k = a·<br />

ϕ<br />

f g<br />

(valid for ϕg ≠ 0, i.e. for k f ≥ R p0.2 respectively<br />

approximation for k f ≥ R eH)<br />

(a and n are material constants;<br />

n is called strain hardening exponent)<br />

Flow Curves at Room Temperature (1) 3303.05.02<br />

k f<br />

<br />

n k = a·<br />

ϕ<br />

f g<br />

ϕg


log k f<br />

log kf = n log · ϕ g + log · a<br />

∆ log k f<br />

n = tanα<br />

=<br />

∆ logϕ<br />

alu<br />

Training in Aluminium Application Technologies<br />

Flow Curves at Room Temperature (2)<br />

α<br />

∆ logϕ g<br />

g<br />

logϕ g<br />

∆ log k f<br />

<strong>TALAT</strong> <strong>3300</strong> 14<br />

By taking the logarithm <strong>of</strong> the equation kf = a · ϕg n<br />

log k f = n log · ϕ g + log · a<br />

The illustration <strong>of</strong> a flow curve <strong>of</strong> the form kf = a · ϕg n<br />

in a coordinate system with axes in a logarithmic<br />

scale is a straight line whose gradient is the<br />

coefficient n.<br />

The coefficient n is a measure <strong>of</strong> the amount by which<br />

a material hardens with increasing deformation strain<br />

ϕg and is therefore known as the strain hardening<br />

coefficient.<br />

Typical values <strong>of</strong> n for an aluminium-killed steel<br />

are in the range <strong>of</strong><br />

0.2 ≤ n ≤ 0.25<br />

and for aluminium sheet alloys (AlMg0,4Si1,2 ka,<br />

AlMg,5Mn w) in the range <strong>of</strong><br />

0.2 ≤ n ≤ 0.3<br />

Flow Curves at Room Temperature (2) 3303.05.03<br />

Flow Curves at Elevated Temperatures<br />

(Figure 3303.05.04, Figure 3303.05.05 and Figure 3303.05.06)<br />

Material Al 99.5<br />

ϕg = 4 s-1 180<br />

N / mm² <br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Flow Stress kf<br />

Source: Bühler a.o<br />

Flow Curves at Elevated Temperature (1)<br />

alu<br />

Training in Aluminium Application Technologies<br />

20°C<br />

120°C<br />

240°C<br />

360°C<br />

480°C<br />

0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Logarithmic Principal<br />

Deformation Strain ϕg<br />

During <strong>forming</strong> at elevated temperatures<br />

(warm <strong>forming</strong>), the flow stress kf depends on<br />

the logarithmic principal deformation strain ϕg ,<br />

the <strong>forming</strong> temperature ϑ and the<br />

logarithmic principal deformation strain rate<br />

<br />

(deformation strain rate) ϕg:<br />

k f = f(ϕg , ϑ , ϕg)<br />

As a rule, the flow stress k f decreases with<br />

increasing temperature ϑ for a given<br />

logarithmic principal deformation strain ϕg,<br />

Flow Curves at Elevated Temperature (1) 3303.05.04


100<br />

N / mm²<br />

80<br />

Flow Stress k f<br />

60<br />

40<br />

20<br />

Source: Bühler a.o.<br />

Flow Curves at Elevated Temperature (2)<br />

alu<br />

Training in Aluminium Application Technologies<br />

N / mm²<br />

200<br />

Flow Stress kf<br />

100<br />

80<br />

60<br />

Source: Bühler a.o<br />

ϕg = 63 s -1<br />

<br />

<br />

<br />

ϕg = 4 s -1<br />

ϕg = 0.25 s -1<br />

Material Al 99.5<br />

Temperature ϑ = 360°C<br />

0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Logarithmic Principal<br />

Deformation Strain ϕg<br />

<strong>TALAT</strong> <strong>3300</strong> 15<br />

- With increasing temperature ϑ , the influence<br />

<strong>of</strong> the logarithmic principal deformation strain<br />

ϕg on the flow stress k f decreases.<br />

<br />

- The influence <strong>of</strong> the deformation strain rate ϕg<br />

on the flow stress kf increases with increasing<br />

temperature ϑ. For a given logarithmic principal<br />

<br />

deformation strain ϕg and a given . <strong>forming</strong><br />

temperature ϑ, the flow stress kf increases with<br />

<br />

increasing deformation strain rate ϕg.<br />

Flow Curves at Elevated Temperature (2) 3303.05.05<br />

Flow Curves at Elevated Temperature (3)<br />

20°C 120°C<br />

240°C<br />

360°C<br />

ϕg = 1<br />

Material Al 99.5<br />

0.25 40 s 63<br />

Logarithmic Principal<br />

Deformation Strain Rate ϕg<br />

-1<br />

40<br />

20<br />

<br />

480°C<br />

For a given logarithmic principal deformation<br />

<br />

strain ϕg and a given <strong>forming</strong> temperature ϑ,<br />

the relationship between the flow stress kf and<br />

the deformation strain rate ϕg is given<br />

approximately by the equation<br />

k = b⋅<br />

ϕ<br />

m<br />

f g<br />

The exponent m is a measure <strong>of</strong> the hardening<br />

<strong>of</strong> the material which depends on the<br />

deformation strain rate.<br />

It increases with increasing temperature.<br />

alu<br />

Training in Aluminium Application Technologies Flow Curves at Elevated Temperature (3) 3303.05.06


3303.06 Average Flow Stress<br />

(Figure 3303.06.01)<br />

k f<br />

k f1<br />

k fm<br />

k f0<br />

0 ϕg1 ϕg<br />

alu<br />

Training in Aluminium Application Technologies<br />

ϕ<br />

g1<br />

∫<br />

0<br />

( )<br />

k f (ϕg)<br />

k ϕ dϕ<br />

f g<br />

3303.07 Energy Considerations<br />

Forming Energy<br />

(Figure 3303.07.01)<br />

Ideal <strong>forming</strong> energy<br />

The ideal <strong>forming</strong> energy W id is that part <strong>of</strong><br />

mechanical energy which has to be used for<br />

the <strong>forming</strong> process without external friction<br />

and internal displacements.<br />

The following relation is valid for the <strong>forming</strong><br />

energy W id:<br />

alu<br />

Training in Aluminium Application Technologies<br />

( )<br />

W = V k d<br />

id ∫ ϕ ϕ<br />

f g<br />

where V is the formed volume.<br />

Using the average flow stress k fm, one obtains<br />

W = V k ϕ<br />

id fm g<br />

Average Flow Stress<br />

<strong>TALAT</strong> <strong>3300</strong> 16<br />

The calculation <strong>of</strong> stresses, energies and forces is<br />

simplified, if one uses an equivalent constant flow<br />

stress instead <strong>of</strong> the actual flow stress k fm. For a<br />

<strong>forming</strong> process in the range 0 ≤ ϕg ≤ ϕg1 , it is<br />

defined as<br />

ϕg1<br />

1<br />

k = k ( ) d<br />

fm ∫ ϕ ϕ<br />

f g<br />

ϕ<br />

g1<br />

0<br />

As an approximation, one can use<br />

k<br />

fm<br />

k + k<br />

=<br />

2<br />

f0 f1<br />

kf0 - flow stress at start <strong>of</strong> process (ϕg = 0)<br />

k f1 - flow stress at end <strong>of</strong> process (ϕg = ϕg1)<br />

Average Flow Stress 3303.06.01<br />

Forming Energy<br />

Forming Energy<br />

Total energy (effective <strong>forming</strong><br />

energy)<br />

The total <strong>forming</strong> energy W ges includes the<br />

ideal <strong>forming</strong> energy W id as well as the<br />

energy required to overcome the external<br />

friction (W R) and the internal displacement<br />

(W Sch), so that<br />

W = W + W +<br />

W<br />

ges id R Sch<br />

3303.07.01


Heat Development during Forming<br />

(Figure 3303.07.02)<br />

alu<br />

Training in Aluminium Application Technologies<br />

Heat Developed during Forming<br />

Forming processes are irreversible processes. The major part <strong>of</strong><br />

the energy applied for the <strong>forming</strong> process is converted into heat,<br />

causing the work-piece to warm up. Assuming that the total <strong>forming</strong><br />

energy Wges is converted into heat and that no heat is lost to the<br />

environment (tool), the rise in temperature is given by the equation<br />

∆ϑ = Wges<br />

V* *<br />

c<br />

(V formed volume, ρ density and cp specific heat <strong>of</strong> the work-piece<br />

material)<br />

Heat Developed during Forming<br />

<strong>TALAT</strong> <strong>3300</strong> 17<br />

ρ<br />

p<br />

3303.07.02


Literature/References<br />

K. Lange (Editor): Umformtechnik, Springer-Verlag, Berlin, Heidelberg, New York,<br />

Tokyo, 1984<br />

List <strong>of</strong> Figures<br />

Figure No. Figure Title (Overhead)<br />

3301.01.01<br />

Definition <strong>of</strong> Forming<br />

3302.01.01 Classifying the Forming Process by State <strong>of</strong> Stress<br />

3302.02.01 Classifying the Forming Process by Types <strong>of</strong> Raw <strong>Materials</strong><br />

3302.03.01 Classifying the Forming Process by Forming Temperature<br />

3302.04.01 Classifying the Forming Process by Methods <strong>of</strong> Applying Force<br />

3303.01.01 Characteristic Values, Basic Laws: Flow Stress<br />

3303.02.01 Logarithmic (True) Strain<br />

3303.02.02 Logarithmic Strain in Upsetting<br />

3303.02.03 Law <strong>of</strong> Volume Constancy<br />

3303.02.04 Plastic Strain Rate (True Strain Rate)<br />

3303.02.05 Forming Strain Acceleration<br />

3303.03.01 Criteria for Plastic Flow<br />

3303.03.02 Shear Stress Hypothesis (1)<br />

3303.03.03 Shear Stress Hypothesis (2)<br />

3303.03.04 Shear Stress Hypothesis (3)<br />

3303.03.05 Distortion Energy Hypothesis (v. Mises)<br />

3303.03.06 Yield Criteria for Plane Stress<br />

3303.04.01 Law <strong>of</strong> Plastic Flow<br />

3303.05.01 Flow Curve<br />

3303.05.02 Flow Curves at Room Temperature (1)<br />

3303.05.03 Flow Curves at Room Temperature (2)<br />

3303.05.04 Flow Curves at Elevated Temperature (1)<br />

3303.05.05 Flow Curves at Elevated Temperature (2)<br />

3303.05.06 Flow Curves at Elevated Temperature (3)<br />

3303.06.01 Average Flow Stress<br />

3303.07.01 Forming Energy<br />

3303.07.02 Heat Developed during Forming<br />

<strong>TALAT</strong> <strong>3300</strong> 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!