13.07.2013 Views

ARTEMIS IV, Thermopylae

ARTEMIS IV, Thermopylae

ARTEMIS IV, Thermopylae

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ARTEMIS</strong> <strong>IV</strong><br />

observing the Sun at t 20 to 650 MHz at <strong>Thermopylae</strong><br />

X. Moussas(1), P. Tsitsipis(1,3), A. Kontogeorgos(1,3), C. Caroubalos(1), P. Preka-Papadema(1),<br />

A. Hillaris(1), C. Alissandrakis (4), J.-L. Bougeret(2), G. Dumas(2),<br />

(1) University of Athens, GR-15783 Panepistimiopolis Zographos, Athens, Greece<br />

(2) LESIA, Observatoire de Paris, UMR CNRS 8109, F-92195 Meudon Cedex, France<br />

(3) Department of Electronics, Technological Education Institute of Lamia, Lamia, Greece<br />

(4) Section of Astro-Geophysics, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece<br />

<strong>ARTEMIS</strong>-<strong>IV</strong> is a solar radio spectrograph (a franco-hellenic collaboration) which<br />

observes the Sun continuously in the frequency rate of 20 to 650 MHz (recording 10<br />

spectra per second) and in the 270 to 450 MHz (recording 100 spectra per second), or<br />

~1.2 to 1,6 Gb/day. The instrument is situated at <strong>Thermopylae</strong> (Central Greece).<br />

With this instrument we have observed a large number of solar radio bursts, several of<br />

them associated with CMEs. We have analysed the fine structure of several events with<br />

pulsating structure and fiber bursts.<br />

2-7 May 2005, Graz, Austria


The fine structure in three solar type <strong>IV</strong> radio bursts was studied using the French-<br />

Greek <strong>ARTEMIS</strong>-<strong>IV</strong> multichannel radio spectrograph. The bursts were recorded<br />

during three major solar events, on the 26 and 28 October.and 3 Nov. 2003 and<br />

January 2005; these we associated with intense flares and CMEs. The observed fine<br />

structure includes inter-mediate drift bursts (fibers) and pulsations.<br />

The complexity and overlapping of the various spectral characteristics necessitated<br />

the utilization of certain, 2D-FFT based, filtering processes, aiming firstly at<br />

structure detection in the frequency-time plane (ie the dynamic spectrum) and<br />

secondly in the separation of fibers and pulsations and the suppression of the type<br />

<strong>IV</strong> continuum.<br />

This methodology results also to the fibers frequency drift rate distributions and<br />

their evolution in time. These fiber frequency drift distributions may be interpreted<br />

as the exciter velocity distributions, using a Newkirk coronal density model; the<br />

latter may be used as diagnostics of the magnetic field restructuring and energy<br />

release during a solar energetic event (flare and/or CME).<br />

Artemis <strong>IV</strong> will provide complementary data to the STEREO/WAVES experiment.


The oldest known map of the Sky Debra, Germany, 1500 B.C.<br />

Ο αρχαιότερος χάρτης του ουρανού Debra, Γερµανία, 1500 π.Χ<br />

The oldest known observatory,<br />

near Goseck, Germany, 5000 B.C.<br />

Το αρχαιότερο αστεροσκοπείο,<br />

στο Goseck, Γερµανία, 5000 π.Χ.


Prehistoric observatory<br />

Stonehenge, U.K. 2000 200 B.C.


First record of an eclipse in China, 2136 BC<br />

Πρώτη καταγραφή έκλειψης στην Κίνα το 2136 π.Χ.


University of Athens<br />

Cardiff University<br />

University of Thessaloniki<br />

National Archeological Museum<br />

Athens<br />

Under the Aegis of the<br />

Greek Ministry of Culture<br />

and support by the Leverhulme<br />

Foundation<br />

The Antikythera Mechanism<br />

The Greek astronomical computer of the 1 st century B.C.


A Holistic View to Study Explosive Solar Phenomena<br />

and Space Weather<br />

1. optical<br />

2. UV<br />

3. X-rays<br />

4. gamma rays<br />

5. radio bursts (type III, type II and type <strong>IV</strong>) <strong>ARTEMIS</strong><br />

6. energetic particles, electron and spectra, anisotropies etc<br />

7. cosmic rays<br />

8. solar wind plasma (velocity, density, temperature, magnetic<br />

field)<br />

9. LOFAR & LOIS<br />

• many observing points (spacecrafts, on the Moon etc)


Why we need to know<br />

and forecast space weather?<br />

• Detailed and comprehensive data on<br />

solar-terrestrial relationships, which<br />

drastically affect the Earth’s<br />

ecosystem, are needed.<br />

• reliable space weather forecast can–<br />

in analogy with a reliable terrestrial<br />

weather forecast–mitigate<br />

undesirable consequences of space<br />

weather, including economical ones


<strong>ARTEMIS</strong> <strong>IV</strong> is the<br />

Franco-Hellenic<br />

solar radiospectrograph<br />

operated by the University<br />

of Athens at <strong>Thermopylae</strong><br />

frequency range of 20 to 650 MHz<br />

two receivers operating in parallel.<br />

the Global Spectral Analyser (ASG),<br />

a sweep frequency receiver and<br />

the Acousto-Optic Spectrograph<br />

(SAO), a multichannel acousto-optical receiver.<br />

The sweep frequency analyser (ASG) covers<br />

the full frequency band with a time resolution of 10<br />

spectra/s.<br />

The high sensitivity multi-channel acousto-optical<br />

analyser covers<br />

the 265-450 MHz range, with high frequency and<br />

time resolution (100 spectra/s);<br />

its recordings are used, mostly, for the study of fine<br />

structures<br />

1.2 to 1.6 GB/day


<strong>ARTEMIS</strong> <strong>IV</strong><br />

solar<br />

radiospectrograph<br />

operated by the University<br />

of Athens at <strong>Thermopylae</strong><br />

Latitude 38 49' N,<br />

Longitude 22 41' E<br />

The observations last<br />

nearly 9 hours and 40<br />

minutes daily, which is<br />

4 hours and 50 minutes<br />

before and after local<br />

noon


<strong>ARTEMIS</strong> <strong>IV</strong><br />

Franco-hellenic<br />

Franco hellenic<br />

Solar radio spectrograph<br />

<strong>Thermopylae</strong> (OTE)<br />

Greece<br />

ASG 20-680 680 MHz, 10 spectra/sec<br />

at 128 frequencies<br />

SOA 250-450MHz, 250 450MHz, 100 spectra/sec<br />

at 630 frequencies<br />

1.4GB/day<br />

X. Moussas, C. Caroubalos,<br />

P. Tsitsipis, A. Kontogeorgos,<br />

P. Preka-Papadema Preka Papadema A. Hillaris,<br />

J.-L. L. Bougeret, G. Dumas, Dumas<br />

V. Petoussis, Petoussis,<br />

K. Bouratzis,<br />

C. Alissandrakis


<strong>ARTEMIS</strong> <strong>IV</strong><br />

Parabolic<br />

(7m diameter)<br />

and<br />

log-period antenna<br />

The inverted V<br />

antenna<br />

Bill Ericson’s<br />

design<br />

(initially designed<br />

for LOFAR)


The inverted V<br />

antenna<br />

Bill Erickson’s design<br />

(initially studied for LOFAR)


after<br />

a big solar flare, associated with a CME<br />

Before the flare<br />

magnetic<br />

field<br />

14th July 2000 flare<br />

X-rays Halpha before after


PARABOLIC<br />

ANTENNA<br />

Antennas and cabin<br />

Amplifiers<br />

Filters<br />

Amplifiers<br />

Filters<br />

System<br />

Calibration<br />

Circuit<br />

Antenna<br />

movement<br />

Control circuit<br />

DIPOLE<br />

ANTENNA<br />

20 – 100 MHz<br />

Combiner<br />

100 – 650 MHz<br />

Signal 20 – 650 MHz<br />

Coaxial line<br />

Calibration Start - Stop<br />

Multi pair telephone wire<br />

Position control<br />

Position Information<br />

CABIN<br />

S<br />

A<br />

B<br />

C


October & November 2003 events<br />

2003/10/26<br />

05:57:00<br />

07:33:00<br />

06:54:00<br />

X1.2<br />

2003/10/28<br />

09:51:00<br />

11:24:00<br />

11:10:00<br />

X17


W / m 2<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

G12(C3.2) , onset CME W<br />

26/10/2003<br />

Ha(SF) S17E49(486)<br />

* onset CME NW *<br />

* onset CME W *<br />

Ha(SF) S16E50<br />

II / <strong>IV</strong> (20-1200)<br />

* onset CME E+ *<br />

G12(X1.2) S15E44(486<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

UT<br />

G12(M1.0) N05W33(484)<br />

Ha(SF) S18E29(486)<br />

Ha(SF) S09W44(483) , * onset CME Halo*<br />

II (30-70)<br />

G12(X1.2) N02W38(484<br />

Ha(SF) N04W40<br />

Ha(SF) N02W47<br />

G12(M7.6) N01W38(484)


W / m 2<br />

0.01<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

Ha(SF) N08E08(488)<br />

28/10/2003<br />

G12(C5.3) N08E08 (488)<br />

G12(C6.7) N03W55(484)<br />

Ha(SF) N08E07(488)<br />

G12(C7.5) S19E15(486)<br />

Ha(SF) N08E07(488)<br />

Ha(SF) N09E08(488)<br />

Ha(SF) N08E07(488)<br />

Ha(SF) N10E07(488)<br />

Ha(SF)N08E07(488)<br />

Ha(1F) N08E06(488)<br />

G12(C7.7) N06W53 (484)<br />

Ha(SF) N08E05(488) , Ha(SF) S11E00(489)<br />

Ha(1F) N03W58(484) , onset CME NW<br />

Ha(SF) N10E04(488)<br />

onset CME SE<br />

Ha(SF) S11W01(489) , Ha(SF) N06W56(484)<br />

Ha(SF) N08E04(488) , Ha(SF) S20E08(486)<br />

Ha(SF) S17E12(486)<br />

G12(C8.7) N08E04(488)<br />

Ha(SF) S17E09(486)<br />

onset CME E, Ha(SF) N08E04(488)<br />

Ha(SF) N08E03(488)<br />

*** onset CME Halo ***<br />

II / <strong>IV</strong> (25-180)<br />

* G12(X17.2) S16E08(486) *<br />

Ha(SF) S06E02(491)<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

UT<br />

Ha(SF) S16E01(486)<br />

Ha(SF) S16W01(486) , Ha(2F)N06W61(484)<br />

Ha(SF) N07W02(488)<br />

Ha(SF) S15E03(486)<br />

Ha(SF) S15E03(486)<br />

Ha(SF) N10W03(488)<br />

Ha(SF) N10W03<br />

Ha(SF) S15E03(486)<br />

Ha(SF) N10W04


W / m 2<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

1E-7<br />

Ha(SF) S20W63(486)<br />

G12(X2.7) N10W83(488) , II / <strong>IV</strong>(20-850), onset CME<br />

Ha(SF) S21W70(486)<br />

Ha(SF) S21W71(486)<br />

G12(X3.9) N08W77(488) , II/<strong>IV</strong>(25-180)<br />

onset CME NW<br />

Ha(SF) N09W79(488)<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

UT<br />

G12(M3.9) S15W79(486)<br />

Ha(SF) S15W79(486)<br />

3/11/2003<br />

onset CME SE<br />

onset CME SW<br />

G10(C4.4)<br />

G12(C5.4)<br />

G12(C3.1)


T h e 2 6 O c t o b e r 2 0 0 3<br />

M A J O R S O L A R R A D I O B U R S T F R O M 0 6 : 0 0 T O 0 8 : 0 0 U T C<br />

2 0<br />

1 0 0<br />

2 0 0<br />

3 0 0<br />

4 0 0<br />

5 0 0<br />

6 0 0<br />

T h e b u r s t s ig n a l<br />

0 6 : 0 0 0 6 : 2 0 0 6 : 4 0 0 7 : 0 0 0 7 : 2 0 0 7 : 4 0<br />

T h e rad io ev e n t u s it is reco rd ed<br />

2 0<br />

1 0 0<br />

2 0 0<br />

3 0 0<br />

4 0 0<br />

5 0 0<br />

6 0 0<br />

T h e b u r s t L o g ( S ) s ig n a l<br />

0 6 : 0 0 0 6 : 2 0 0 6 : 4 0 0 7 : 0 0 0 7 : 2 0 0 7 : 4 0<br />

T h e lo g ( s . f . u . ) f o r t h e e v e n t 1 s . f . u . = 1 0 -2 2 W m -2 H z -1


20<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

x 10 -10<br />

26 Oct 2004, final log(S) signal without background<br />

06:00 06:20 06:40 07:00 07:20 07:40<br />

0<br />

06 :00 06 :20 06:4 0 07:00 07:20 07:40 08:00<br />

-15<br />

-16<br />

-17<br />

-18<br />

-19<br />

-20<br />

-21<br />

-22


20<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

28 Oct 2004, final log(S) signal without background<br />

10:02 10:03 10:04 10:05 10:06 10:07 10:08 10:09 10:10<br />

1.6 x 10 -9 The total signal flux density without background<br />

1.4<br />

1.2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

0<br />

10:02 10:03 10:04 10:05 10:06 10:07 10:08 10:09 10:10<br />

-15<br />

-16<br />

-17<br />

-18<br />

-19<br />

-20<br />

-21


20<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

3 Nov 2004, final log(S) signal without background<br />

09:48 09:50 09:52 09:54 09:56 09:58<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 10 -11 The total signal flux density without background<br />

09:50 09:52 09:54 09:56 09:58<br />

3 Nov 2004, integration time 0.5sec<br />

-16<br />

-17<br />

-18<br />

-19<br />

-20<br />

-21


Examples of ASG Dynamic Spectra<br />

Top to Bottom<br />

11 July 2000, 14 July 2000, 14 July 2000


Examples of ASG Dynamic Spectra<br />

Top to Bottom<br />

27 March 2000, 15 April 2000, 12 April 2000


<strong>ARTEMIS</strong> <strong>IV</strong><br />

SAO 28 October 2003


250 MHz<br />

450 MHz<br />

<strong>ARTEMIS</strong> <strong>IV</strong>, SAO spectra<br />

We measure the slope (df/dt) of every burst and we<br />

caclulate the speed of the electron beam which creates this<br />

fiber burst (based on a model for the solar corona density).<br />

We calculate the production rate of beams per minute, both<br />

for beams leaving the Sun and returning back to the Sun<br />

14th July 2000 flare and CME


Flare 14 th July 2000<br />

1 hour of observations, 360000 spectra


Solar radio bursts<br />

Flares and CMEs<br />

Fiber bursts


Fiber bursts


Fine structure with LOIS also


F(V)<br />

100<br />

10<br />

1<br />

velocity distributions<br />

of electron beams<br />

leaving the Sun<br />

(upper distribution)<br />

and beams<br />

returning back<br />

(lower distribution)<br />

14th July 2000<br />

<strong>ARTEMIS</strong> <strong>IV</strong><br />

0 5000 10000 15000 20000 25000 30000 35000 40000<br />

V in km/sec


F(V)<br />

15<br />

10<br />

5<br />

0<br />

<strong>ARTEMIS</strong> <strong>IV</strong> spectroheliograph<br />

outbound beams<br />

inbound beams<br />

0 5000 10000 15000 20000 25000 30000<br />

velocity of electron beams in km/sec


velocities of beams in km/sec<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

velocities of beams in km/sec<br />

estimated with <strong>ARTEMIS</strong> <strong>IV</strong> data<br />

10:49 11:39 12:29 13:19 14:09 14:59<br />

time 14th July 2000


Velocity of outbound and inbound<br />

electron beams in km/sec<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

<strong>ARTEMIS</strong> <strong>IV</strong> spetroheliographe<br />

<strong>Thermopylae</strong>, Greece<br />

average velocity<br />

of outbound and inbound electron beams<br />

assumed to produce the fibers<br />

leaving the Sun or returning back<br />

the four lines represent two models<br />

for both outbound and inbound beams<br />

9:56 10:16 10:36 10:56 11:16 11:36<br />

time UT 17th April 2002


Based on Karlicky-Tlamicha-Newkirk for the coronal density


F(fiber bursts/minute) and ratio<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<strong>ARTEMIS</strong> <strong>IV</strong>, <strong>Thermopylae</strong><br />

electron beams towards the earth<br />

electron beams towards the Sun<br />

10:49 11:39 12:29 13:19 14:09 14:59<br />

time 14th July 2000<br />

ratio of number of beams away<br />

and towards the Sun<br />

when the ratio > 1<br />

indication of<br />

reconnection ?


F(fibers/minute)<br />

150<br />

100<br />

50<br />

0<br />

<strong>ARTEMIS</strong> <strong>IV</strong> spetroheliographe, <strong>Thermopylae</strong>, Greece<br />

negative slope fibers<br />

outbound electron beams<br />

positive slope fibers<br />

inbound electron beams<br />

9:56 10:16 10:36 10:56 11:16 11:36<br />

time UT 17th April 2002


<strong>ARTEMIS</strong> <strong>IV</strong><br />

ASG 28-10-2003


<strong>ARTEMIS</strong> <strong>IV</strong><br />

SAO 28-10-2003


<strong>ARTEMIS</strong> <strong>IV</strong><br />

ASG 23-10-2003


20 MHz<br />

650 MHz


X3.9<br />

2003/11/03<br />

start 09:43:00<br />

max 09:55:00<br />

end 10:19:00


20 MHz 3 Nov 2004<br />

650 MHz


STEREO/WAVES &<br />

<strong>ARTEMIS</strong>


Fast Estimation of slopes<br />

The Algorithm<br />

•Applied to dynamic solar radio spectra obtained by <strong>ARTEMIS</strong>


Directional filtering -1<br />

• A high-pass filter is applied to the<br />

horizontal direction. As a result<br />

continuous emission is rejected and<br />

fine structure is revealed


Directional filtering –2<br />

• The same high pass filter is applied to the vertical direction. As a<br />

result vertical or quasi-vertical structures as pulsations are rejected<br />

and intermediate drift bursts are revealed


FFT<br />

• 2-D FFT is<br />

applied to<br />

filtered images.<br />

Quasi – linear<br />

structures in<br />

dynamic spectra<br />

produce quasi -<br />

linear structures<br />

in Fourier space


Coordinates transform<br />

and Integration<br />

• Fourier space is<br />

sampled using bilinear<br />

interpolation and<br />

Angular power density<br />

is taken by integration<br />

along each radius


Slope Spectrum<br />

• Slope spectrum is<br />

the result of the<br />

algorithm. Two<br />

distinct peaks mean<br />

existence of two<br />

distinct groups of<br />

fibers


Based on Karlicky-Tlamicha-Newkirk for the coronal density

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!