14.07.2013 Views

A technique for the determination of areal average rainfall - IAHS

A technique for the determination of areal average rainfall - IAHS

A technique for the determination of areal average rainfall - IAHS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hydrological Sciences-Bulletin-des Sciences Hydrologiques, 23, 4, 12/1978<br />

A <strong>technique</strong> <strong>for</strong> <strong>the</strong> <strong>determination</strong><br />

<strong>of</strong> <strong>areal</strong> <strong>average</strong> <strong>rainfall</strong><br />

PANDE, B. B. LAL and G. AL-MASHIDANI College <strong>of</strong> Engineering,<br />

University <strong>of</strong> Mosul, Mosul, Iraq<br />

Received 6 February 1978, revised 7 August 1978<br />

Abstract. A method was developed <strong>for</strong> allocating an area likely to be shared by a raingauge station.<br />

Average <strong>areal</strong> precipitation was found by weighting <strong>the</strong> <strong>rainfall</strong> at <strong>the</strong> gauging station in terms <strong>of</strong><br />

<strong>the</strong> product <strong>of</strong> distances enclosing it or radiating from it. The method was applied to two real and<br />

two hypo<strong>the</strong>tical basins and <strong>the</strong> results were compared with those obtained by existing <strong>technique</strong>s.<br />

Une méthode pour la détermination de précipitation moyenne pour une zone donnée<br />

Résumé. On a développé une méthode d'allouer une zone où on aménagera probablement une<br />

station de jaugeage. On a trouvé la précipitation moyenne pour la zone en calculant la précipitation<br />

à la station de jaugeage en fonction du produit des distances qui l'enferment ou qui y partent. On<br />

a appliqué la méthode à deux bassins réels et à deux bassins hypothétiques et on a comparé les<br />

résultats avec ceux qu'on a obtenus en utilisant des <strong>technique</strong>s actuelles.<br />

INTRODUCTION<br />

The usual <strong>technique</strong>s <strong>of</strong> determining <strong>average</strong> depth <strong>of</strong> <strong>rainfall</strong> over an area, viz. arithmetic<br />

mean, Thiessen polygon and isohyetal method, are well known. Some new<br />

methods have also been proposed in <strong>the</strong> literature. Akin (1971) developed <strong>the</strong> idea<br />

<strong>of</strong> dividing an area into triangles and wrote computer programs <strong>for</strong> <strong>the</strong> necessary<br />

calculations. Shaw & Lynn (1972) applied ma<strong>the</strong>matical surface fitting <strong>technique</strong>s.<br />

They used bi-cubic spline and multiquadric analysis <strong>technique</strong>s <strong>for</strong> computing <strong>average</strong><br />

<strong>rainfall</strong>. Hutchinson & Walley (1972) applied finite element <strong>technique</strong>s. Their method<br />

also took into account an accurate representation <strong>of</strong> <strong>the</strong> shape and relief <strong>of</strong> <strong>the</strong> basin.<br />

Bethlahmy (1976) developed a two-axis method. The method is simple and fast but<br />

has not been applied to a real basin. Fur<strong>the</strong>rmore <strong>the</strong>re is a considerable bias involved<br />

in determining <strong>the</strong> two axes. Ano<strong>the</strong>r serious limitation <strong>of</strong> <strong>the</strong> methodology is that<br />

a particular raingauge, however far outside <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> basin, will still have<br />

some kind <strong>of</strong> effect in deciding <strong>average</strong> precipitation over <strong>the</strong> basin. Many such o<strong>the</strong>r<br />

methods have been developed and <strong>the</strong> existing ones computerized. Somehow even<br />

with all <strong>the</strong>se developments, a practising hydrologist still depends upon Thiessen polygons.<br />

The present paper suggests a method which is similar to <strong>the</strong> Thiessen method<br />

but easier to apply.<br />

0303-6936/78/1200-0445$02.00 © 1978 Blackwell Scientific Publications 445


446 Pande, B. B. Lai and G. Al-Mashidani<br />

PROPOSED METHOD<br />

The proposed method <strong>for</strong> determining <strong>areal</strong> <strong>average</strong> precipitation is based on three<br />

assumptions which are similar to those <strong>of</strong> Thiessen. (1) A raingauge is significant only<br />

up to <strong>the</strong> mid-distance towards ano<strong>the</strong>r raingauge. (2) A raingauge near <strong>the</strong> centre <strong>of</strong><br />

<strong>the</strong> area is more significant than one far removed from <strong>the</strong> centre. Those outside <strong>the</strong><br />

basin are not equally significant with respect to <strong>average</strong> <strong>rainfall</strong> over <strong>the</strong> area. (3) The<br />

significance <strong>of</strong> <strong>the</strong> raingauge is affected by <strong>the</strong> shape <strong>of</strong> <strong>the</strong> basin.<br />

With reference to Figs 1 and 2 <strong>the</strong> proposed method is illustrated in a stepwise<br />

manner as follows.<br />

(1) Join <strong>the</strong> adjoining raingauge stations by straight lines and establish <strong>the</strong> mid<br />

points <strong>of</strong> <strong>the</strong>se lines.<br />

(2) (a) If no central station is available, as in Fig. 1 establish <strong>the</strong> approximate<br />

FIG. 1. No central station is available<br />

geometric centre <strong>of</strong> <strong>the</strong> area by estimation, (b) Join <strong>the</strong> established centre point with<br />

points established in Step 1 and extend <strong>the</strong> resulting lines to <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> basin.<br />

(3) (a) If a central station is available as in Fig. 2 join it to <strong>the</strong> various stations<br />

lying around it by straight lines and mark <strong>the</strong> mid points <strong>of</strong> <strong>the</strong> resulting lines, (b) Join<br />

<strong>the</strong>se mid points so as to <strong>for</strong>m a polygon around <strong>the</strong> central station, (c) Draw lines<br />

from <strong>the</strong> mid points <strong>of</strong> <strong>the</strong> sides <strong>of</strong> <strong>the</strong> polygon <strong>of</strong> Step 3b to <strong>the</strong> points established<br />

in Step 1 and extend <strong>the</strong>se lines to <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> basin.<br />

°5<br />

FIG. 2. Central station is available


Determination <strong>of</strong><strong>areal</strong> <strong>average</strong> <strong>rainfall</strong> 447<br />

(4) Each <strong>of</strong> <strong>the</strong> raingauge stations is now enclosed by an area, <strong>the</strong> weight <strong>of</strong> which<br />

can be calculated as follows, (a) The central station weight is calculated as half <strong>the</strong> sum<br />

<strong>of</strong> <strong>the</strong> product <strong>of</strong> adjacent radial lines from <strong>the</strong> central station up to <strong>the</strong> enclosing<br />

polygon or up to <strong>the</strong> basin boundary whichever is less, (b) Weights <strong>for</strong> outer stations<br />

are obtained by <strong>the</strong> product <strong>of</strong> <strong>the</strong> length <strong>of</strong> adjacent lines, e.g. <strong>for</strong> station 2 <strong>of</strong> Fig. 1<br />

<strong>the</strong> weight is computed as Oa2 X Oa3 and <strong>for</strong> station 2 <strong>of</strong> Fig. 2, <strong>the</strong> weight is computed<br />

as 02a2 X 03a3.<br />

The <strong>average</strong> precipitation <strong>of</strong> <strong>the</strong> basin is <strong>the</strong>n calculated by summing <strong>the</strong> weighted<br />

precipitation and dividing this by <strong>the</strong> sum <strong>of</strong> weights. Thus <strong>for</strong> Fig. 1 with no central<br />

station:<br />

n —1<br />

S Pi w i + Pn Wn<br />

' =1<br />

where n — number <strong>of</strong> stations<br />

Pi — value <strong>of</strong> precipitation at station i<br />

wt = weight <strong>for</strong> station i = Oa{ X Oai+1<br />

wn — weight <strong>for</strong> <strong>the</strong> nth station<br />

= Oan X Oa1<br />

and <strong>for</strong> Fig. 2 with a central station<br />

V 1<br />

Pavg<br />

W, + W„<br />

j=l L PiWi+Pn^n+Pc<br />

£ Wi + wn+wc<br />

i=i<br />

where p = precipitation at station / or n or c according to <strong>the</strong> subscript<br />

wt = weight at station i<br />

= OpiX Oi+1ai+1<br />

wn = weight at «th station<br />

= Onan X Oxax<br />

n — total number <strong>of</strong> outer stations (five in <strong>the</strong> present case)<br />

wc = weight at <strong>the</strong> central station<br />

= Vz "£" (pbj X cb]+1) + (cbn X cbx)<br />

APPLICATION OF THE METHOD<br />

The method has been applied to some real and hypo<strong>the</strong>tical basins. Schulz (1973)<br />

considers <strong>the</strong> basin <strong>of</strong> Kings River above Piedra, Cali<strong>for</strong>nia (Fig. 3). Punmia et al.<br />

(1969) consider <strong>the</strong> Canvery River basin in India (Fig. 4). The present <strong>technique</strong> was<br />

applied to <strong>the</strong>se basins and <strong>the</strong> results were compared with <strong>the</strong> arithmetic mean,<br />

<strong>the</strong> Thiessen and <strong>the</strong> isohyetal methods as shown in Table 1. Details <strong>of</strong> computations<br />

are shown in Tables 3 and 4.<br />

Nemec (1973) considers a hypo<strong>the</strong>tical basin with all raingauges lying beyond its<br />

boundary as shown in Fig. 5. Bethlahmy (1976) also considers a hypo<strong>the</strong>tical basin


448 Pande, B. B. Led and G. Al-Mashidani<br />

Name <strong>of</strong><br />

basin<br />

G (2495)<br />

L (37.41 )


Name <strong>of</strong><br />

basin<br />

Nemec's basin<br />

Bethlahmy's basin<br />

Storm 1<br />

Storm 2<br />

Storm 3<br />

Storm 4<br />

Storm 5<br />

Determination <strong>of</strong> area! <strong>average</strong> <strong>rainfall</strong><br />

61 5mm<br />

FIG. 5. Nemec's hypo<strong>the</strong>tical basin.<br />

FIG. 6. Bethlahmy's hypo<strong>the</strong>tical basin.<br />

TABLE 2. Comparison <strong>of</strong> results <strong>for</strong> two hypo<strong>the</strong>tical basins<br />

Arithmetic<br />

mean<br />

(cm)<br />

66.8<br />

2.00<br />

2.00<br />

2.00<br />

2.00<br />

2.00<br />

Thiessen<br />

method<br />

(cm)<br />

66.0<br />

2.86<br />

2.01<br />

155<br />

1,76<br />

1.43<br />

Isohyetal<br />

method<br />

(cm)<br />

2.51<br />

1.84<br />

1.80<br />

1.76<br />

1.46<br />

Two-axis<br />

method<br />

(cm)<br />

2.38<br />

2.14<br />

1.81<br />

1.87<br />

1.80<br />

Present<br />

method<br />

(cm)<br />

66.9<br />

2.50<br />

1.90<br />

1.65<br />

1.62<br />

2.04


450 Pande, B. B. Lai and G. Al-Mashidani<br />

Name <strong>of</strong><br />

station<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

M<br />

J<br />

K<br />

L<br />

H<br />

I<br />

TABLE 3. Details <strong>of</strong> <strong>the</strong> calculations <strong>for</strong> <strong>the</strong> basin <strong>of</strong> Kings River above Piedra (Fig. 3)<br />

Total<br />

Rainfall<br />

(in)<br />

8.67<br />

17.81<br />

18.25<br />

17.67<br />

21.74<br />

23.71<br />

24.95<br />

15.05<br />

33.19<br />

35.53<br />

37.41<br />

34.28<br />

29.29<br />

Details <strong>of</strong> w;<br />

0.2 X 2.2<br />

2.2 X 1.15<br />

1.15 X 1.75<br />

Vi (Sum <strong>of</strong> <strong>the</strong> product <strong>of</strong><br />

radial distances from D)<br />

1.2 X 0.5 + 2.05 X 1.55<br />

3.25 X 1.2 + 2.1 X 2.05<br />

1.75 X 3.25<br />

0.2 X 0.65<br />

2.45 X 1.55<br />

0.85 X 2.45<br />

0.85 X 0.6<br />

0.6 X 2.1<br />

VÏ (Sum <strong>of</strong> <strong>the</strong> product <strong>of</strong><br />

radial distances from I)<br />

Wi<br />

0.44<br />

2.53<br />

2.0125<br />

14.55<br />

3.7775<br />

8.205<br />

5.6875<br />

0.13<br />

3.7975<br />

2.0825<br />

0.51<br />

1.26<br />

14.21<br />

59.19375<br />

Pi w i<br />

3.814<br />

45.059<br />

36.7281<br />

257.01<br />

82.1228<br />

194.54<br />

141.9031<br />

1.9565<br />

126.039<br />

73.99<br />

19.0791<br />

43.1928<br />

416.3939<br />

1441.8286<br />

Sum <strong>of</strong> <strong>the</strong> product <strong>of</strong> radial distances from D<br />

= 1.4 X 2.4 + 1.4 X 1.2 + 1.2 X 1.6 + 1.6 X 1.7 + 1.7 X 3.0 + 3.0 X 2.65 + 2.65 X 2.4<br />

Sum <strong>of</strong> <strong>the</strong> product <strong>of</strong> radial distances from I<br />

= 1.8 X 2.35 + 2.35 X 1.75 + 1.75 X 2.3 + 2.3 X 2.55 + 2.55 X 2.2 + 2.2 X 1.8<br />

ZPiWj 1441.8286<br />

Pave = = • = 24.36 inches<br />

2 w< 59.19375<br />

(Fig. 6) and applied his method to five hypo<strong>the</strong>tical storms over it. The present <strong>technique</strong><br />

has also been applied to <strong>the</strong>se problems and <strong>the</strong> results are compared in Table<br />

2. Details <strong>of</strong> computations are given in Tables 5 and 6.<br />

DISCUSSION<br />

A study <strong>of</strong> Tables 1 and 2 shows that in general <strong>the</strong> results obtained by <strong>the</strong> present<br />

method are close to those obtained using <strong>the</strong> isohyetal method. As such one can<br />

presume that <strong>the</strong> method gives reasonable results. Besides, since <strong>the</strong> actual <strong>determination</strong><br />

<strong>of</strong> a particular area is in terms <strong>of</strong> <strong>the</strong> products <strong>of</strong> distances <strong>the</strong> present method is<br />

faster than <strong>the</strong> Thiessen method and can be computerized more easily.<br />

The method works when more than two stations are present in <strong>the</strong> locality. If,<br />

however, only two stations are present <strong>the</strong>n <strong>the</strong> method fails. Under such circumstances<br />

it is suggested that a third hypo<strong>the</strong>tical station may be located in <strong>the</strong> area so as to<br />

<strong>for</strong>m an equilateral triangle with <strong>the</strong> existing stations and having a <strong>rainfall</strong> value equal<br />

to <strong>the</strong> arithmetic <strong>average</strong> <strong>of</strong> <strong>the</strong> existing two. With three stations in <strong>the</strong> area <strong>the</strong><br />

method can be applied in <strong>the</strong> usual manner.


Station<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

Determination <strong>of</strong><strong>areal</strong> <strong>average</strong> <strong>rainfall</strong> 451<br />

TABLE 4. Details <strong>of</strong> <strong>the</strong> calculations <strong>for</strong> <strong>the</strong> basin <strong>of</strong> <strong>the</strong> Canveiy River (Fig. 4)<br />

Total<br />

Rainfall<br />

(cm)<br />

58<br />

63<br />

71<br />

69<br />

86<br />

81<br />

84<br />

56<br />

53<br />

69<br />

61<br />

79<br />

Details <strong>of</strong> w,-<br />

2.3 X 1.3<br />

1.3 X 0.2<br />

0.2 X 2.2<br />

2.2 X 2.6<br />

2.6 X 1.7<br />

1.7 X 1.2<br />

1.2 X 1.8 + 3.25 X 1.75<br />

3.25 X 1.9<br />

1.9 X 1.4<br />

1.8 X 2.7 + 1.4 X 1.75<br />

2.3 X 2.7<br />

Vi (Sum <strong>of</strong> product <strong>of</strong> radial<br />

distance from Station 12)<br />

Sum <strong>of</strong> <strong>the</strong> product <strong>of</strong> radial distance from Station 12<br />

Station<br />

Wf<br />

2.99<br />

0.26<br />

0.44<br />

5.72<br />

4.42<br />

2.04<br />

7.848<br />

6.175<br />

2.66<br />

7.31<br />

6.21<br />

14.106<br />

60.1785<br />

Pi w i<br />

173.42<br />

16.38<br />

31.24<br />

394.68<br />

380.12<br />

165.24<br />

659.19<br />

345.80<br />

140.98<br />

504.39<br />

378.81<br />

1114.4184<br />

4304.668<br />

= 2.0 X 1.225 + 1.225 X 2.075 + 2.075 X 1.575 + 1.575 X 1.6 + 1.6 X 1.775 + 1.775 X<br />

X 1.7 + 1.7 X 2.075 + 2.075 X 1.975 + 1.975 X 2.0<br />

XPiWf 4304.668<br />

S Wl 60.1785<br />

= 71.53 mm<br />

TABLE 5. Details <strong>of</strong> <strong>the</strong> calculations <strong>for</strong> Nemec's hypo<strong>the</strong>tical basin (Fig. 5)<br />

Total<br />

CONCLUSION<br />

Rainfall<br />

(mm) Details <strong>of</strong> w,- Pi w i<br />

615<br />

675<br />

650<br />

720<br />

690<br />

S Pi wt<br />

1.1 X 2.05<br />

2.05 X 1.1<br />

1.1 X 1.1<br />

1.1 X 1.75<br />

1.75 X 1.1<br />

6409.7<br />

2 Wi 9.57<br />

= 669.77 mm<br />

2.255<br />

2.255<br />

1.21<br />

1.925<br />

1.925<br />

9.57<br />

1386.825<br />

1522.125<br />

786.50<br />

1386.00<br />

1328.25<br />

6409.7<br />

The present method <strong>of</strong> determining <strong>average</strong> <strong>rainfall</strong> is based on reasonable assumptions.<br />

If <strong>the</strong> weight to be given to a particular station is estimated in terms <strong>of</strong> <strong>the</strong> product<br />

<strong>of</strong> distances instead <strong>of</strong> actually measuring <strong>the</strong> area, <strong>the</strong> method becomes faster, and<br />

gives reasonable results.


Pande, B. B. Lai and G. Al-Mashidani<br />

E<br />

o<br />

€<br />

s<br />

£.<br />

£<br />

5_<br />

a!<br />

in<br />

(N<br />

.445<br />

in<br />

T-H m O *=t<br />

O t- Tj- 00<br />

O ^f <br />

rn fN T-H o<br />

-t H ro N<br />

ON<br />

C4<br />

••<br />

in


REFERENCES<br />

Determination <strong>of</strong><strong>areal</strong> <strong>average</strong> <strong>rainfall</strong> 453<br />

Akin, I.E. (1971) Calculation <strong>of</strong> <strong>the</strong> mean <strong>areal</strong> depth <strong>of</strong> precipitation./. Hydrol. 12,363-376.<br />

Bethlahmy, N. (1976) The two axis method: a new method to calculate <strong>average</strong> precipitation<br />

over a basin. Hydrol. Sci. Bull. 21, No. 3, 379-385.<br />

Hutchinson, P. & Walley, W.J. (1972) Calculation <strong>of</strong> <strong>areal</strong> <strong>rainfall</strong> using finite element <strong>technique</strong>s<br />

with altitudinal corrections. Hydrol. Sci. Butt. 17, No. 3,259-272.<br />

Nemec, J. (1973) Engineering Hydrology: T.M.H. Edition. Tata McGraw-Hill Publishing Company,<br />

New Delhi.<br />

Punmia, B.C., Pande & Lai, B.B. (1969) Irrigation and Water Power Engineering. M/s Standard<br />

Publishers & Distributors, 1705 B Nai Sarak, New Delhi, 6.<br />

Schulz, E.F. (1973) Problems in Applied Hydrology. Water Resources Publications, P.O. Box 303,<br />

Fort Collins, Colorado, U.S.A.<br />

Shaw, E.M. & Lynn, P.P. (1972) Areal <strong>rainfall</strong> evaluation using two surface fitting <strong>technique</strong>s.<br />

Hydrol. Sci. Bull. 17, No. 4,419^»33.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!