14.07.2013 Views

The Plane-Wave Pseudopotential Method - Theory Department of ...

The Plane-Wave Pseudopotential Method - Theory Department of ...

The Plane-Wave Pseudopotential Method - Theory Department of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Plane</strong>-<strong>Wave</strong> <strong>Pseudopotential</strong> <strong>Method</strong><br />

Eckhard Pehlke, Institut für <strong>The</strong>oretische Physik und Astrophysik,<br />

Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.<br />

Starting Point: Electronic structure problem from physics, chemistry,<br />

materials science, geology, biology, ...<br />

which can be solved by total-energy calculations.<br />

Topics <strong>of</strong> this<br />

talk:<br />

(i) how to get rid <strong>of</strong> the "core electrons":<br />

the pseudopotential concept<br />

(ii) the plane-wave basis-set and its advantages<br />

(iii) supercells, Bloch theorem and Brillouin zone<br />

integrals


Treatment <strong>of</strong> electron-electron interaction<br />

Hartree-Fock (HF)<br />

Configuration-Interaction (CI)<br />

Quantum Monte-Carlo (QMC)<br />

Density-Functional <strong>The</strong>ory (DFT)<br />

ÚÒ℄ Ì Ò℄<br />

Ò Ö Ò Ö<br />

Ö Ö <br />

ÑÒ<br />

Ê Ò Ö ÖÆ<br />

Ò Ö<br />

Ú Ö Ò Ö Ö<br />

Ö Ö Ò℄<br />

Ö Ú Ö<br />

Ö Ö Ö Ú Ö Ö Ö<br />

<br />

Ò Ö Ö Ú Ö ÆÒ℄<br />

<br />

ÚÒ℄<br />

ÆÒ Ö<br />

Problem: Approximation to XC functional.


single molecule or<br />

cluster<br />

periodically repeated<br />

supercell, slab-geometry<br />

true half-space geometry,<br />

Green-function methods<br />

Simulation <strong>of</strong> Atomic Geometries<br />

Example: chemisorption site & energy <strong>of</strong> a particular atom on a surface = ?<br />

How to simulate adsorption geometry?<br />

Use Bloch theorem.<br />

Efficient Brillouin zone<br />

integration schemes.


linear combination <strong>of</strong><br />

atomic orbitals (LCAO)<br />

plane waves (PW)<br />

augmented plane waves<br />

(APW)<br />

Basis Set to Expand <strong>Wave</strong>-Functions<br />

and other basis functions<br />

Ö Ö Ô<br />

Æ<br />

<br />

Ö <br />

. . .<br />

<br />

<br />

Ê<br />

¡Ê Ù Ø<br />

Ö Ê <br />

Ö<br />

¡Ö<br />

Ô <br />

ª<br />

simple, unbiased,<br />

independent <strong>of</strong><br />

atomic positions


I. <strong>The</strong> <strong>Pseudopotential</strong> Concept


Core-States and Chemical Bonding?<br />

Validity <strong>of</strong> the Frozen-Core Approximation<br />

U. von Barth, C.D. Gelatt, Phys. Rev. B 21, 2222 (1980).<br />

bcc fcc Mo, transformation energy 0.5 eV/atom<br />

core kinetic energy change <strong>of</strong> 2.7 eV<br />

but: error <strong>of</strong> total energy due to frozen-core approximation is small,<br />

less than 2% <strong>of</strong> structural energy change<br />

reason: frozen-core error <strong>of</strong> the total energy is <strong>of</strong> second order<br />

Æ <br />

Ú £<br />

« Ú « Ö


Al<br />

Z = 13<br />

Remove Core-States from the Spectrum:<br />

Construct a Pseudo-Hamiltonian<br />

3p<br />

3s<br />

2p<br />

2s<br />

1s<br />

occupation, eigenvalue<br />

1 -2.7 eV<br />

2 -7.8 eV<br />

6 -69.8 eV<br />

2 -108 eV<br />

2 -1512 eV<br />

valence<br />

core-<br />

states<br />

Ö Ú « Ö Ú Ô×<br />

«<br />

Ô×<br />

<br />

Ô×<br />

<br />

V. Heine, "<strong>The</strong> <strong>Pseudopotential</strong> Concept", in: Solid State Physics 24, pages 1-36,<br />

Ed. Ehrenreich, Seitz, Turnbull (Academic Press, New York, 1970).<br />

2p<br />

1s<br />

1 -2.7 eV<br />

2 -7.8 eV<br />

pseudo-<br />

Al<br />

Z = 3


Orthogonalized <strong>Plane</strong> <strong>Wave</strong>s (OPW)<br />

How to construct<br />

(ps)<br />

v<br />

in principle ?<br />

(actual proc. -> Martin Fuchs)<br />

Definition <strong>of</strong> OPWs:<br />

Expansion <strong>of</strong> eigenstate in terms <strong>of</strong> OPWs:<br />

Secular equation:<br />

Re-interpretation:<br />

Pseudo-wavefunction:<br />

OPW-Pseupopotential:<br />

ÇÈ Ï ÈÏ <br />

with<br />

Al<br />

3p<br />

3s<br />

2p<br />

2s<br />

1s<br />

ÈÏ <br />

<br />

<br />

ÇÈ Ï À ÇÈ Ï <br />

Ø<br />

<br />

Ô×<br />

Ø ÈÏ À Ö Ú « Ö Ú Ô×<br />

«<br />

Ô×<br />

<br />

1 -2.7 eV<br />

2 -7.8 eV<br />

6 -69.8 eV<br />

2 -108 eV<br />

2 -1512 eV<br />

valence<br />

core-<br />

states<br />

ÇÈ Ï <br />

<br />

ÈÏ <br />

ÈÏ <br />

Ú Ô× ÇÈÏ Ú <br />

2p<br />

1s<br />

1 -2.7 eV<br />

2 -7.8 eV<br />

Ô×<br />

<br />

pseudo-<br />

Al<br />

Ô×


<strong>Pseudopotential</strong>s and Pseudo-wavefunctions<br />

<strong>Pseudopotential</strong>s are s<strong>of</strong>ter<br />

than all-electron potentials.<br />

(<strong>Pseudopotential</strong>s do not<br />

have core-eigenstates.)<br />

Cancellation <strong>The</strong>orem:<br />

If the pseudizing radius is taken<br />

as about the core radius, then<br />

v (ps) is small in the core region.<br />

Ú Ô× ÇÈÏ ¨ Ú ¨<br />

Ú¨<br />

V. Heine, Solid State Physics 24, 1 (1970).<br />

u(r)<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

−0.1<br />

−0.3<br />

Al<br />

pseudo<br />

wavefunction<br />

1s r c =1.242<br />

3s<br />

0.15bohr<br />

all−electron wavefunction<br />

0 2 4 6<br />

r (bohr)<br />

Pseudo-wavefunction is node-less.<br />

<strong>Plane</strong>-wave basis-set feasible.<br />

Justification <strong>of</strong> NFE model.<br />

created with<br />

fhi98PP


Computation <strong>of</strong> Total-Energy Differences<br />

all-electron atom:<br />

(Z = 32)<br />

pseudo-atom:<br />

(Z’ = 4)<br />

E = -2096 H<br />

E<br />

typical structural<br />

total-energy difference:<br />

(dimer buckling,...)<br />

total<br />

Ge atom<br />

slab, ~ 50 Ge atoms<br />

~ 10 5 H<br />

2<br />

total = -3.8 H ~ 10 H<br />

few 100 meV<br />

~ 10 -2 H


II. <strong>The</strong> <strong>Plane</strong>-<strong>Wave</strong> Expansion <strong>of</strong> the<br />

Total Energy<br />

J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C 12, 4409 (1979).<br />

M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler, CPC 107, 187 (1997).


<strong>Plane</strong>-<strong>Wave</strong> Expansion <strong>of</strong> Kohn-Sham-<strong>Wave</strong>functions<br />

Translationally invariant system (supercell) --> Bloch theorem (k: Blochvector)<br />

Ö Ê ¡Ê Ö<br />

<strong>Plane</strong>-wave expansion <strong>of</strong> Kohn-Sham states (G: reciprocal lattice vectors)<br />

Ö <br />

Electron density follows from sum over all occupied states:<br />

Kohn-Sham equation in reciprocal space:<br />

<br />

Ò Ö <br />

Ó<br />

<br />

<br />

<br />

<br />

ª <br />

Ö <br />

¡Ö<br />

<br />

Ô<br />

ª<br />

<br />

ª<br />

(for semiconductors)<br />

Æ Ú «


Hohenberg-Kohn Functional in Momentum Space<br />

Total-energy functional:<br />

ØÓØÐ Ê ℄ ÌË Ô×ÐÓ Ô×ÒÓÒ ÐÓ À ÁÓÒ ÁÓÒ<br />

Obtain individually convergent energy terms by adding or subtracting superposition<br />

<strong>of</strong> Gaussian charges at the atomic positions:<br />

Ò Ù×× Ö <br />

Ê<br />

Define valence charge difference wrt. above Gaussian charge density:<br />

<br />

Ö Ù××<br />

Ò Ö Ò Ö Ò Ù×× Ö<br />

Ö Ê Ö Ù××<br />

<strong>The</strong> total energy can thus be written as the sum <strong>of</strong> individually well defined energies<br />

ØÓØÐ ÌË<br />

Ô×ÐÓ Ô×ÒÓÒ ÐÓ ÀÒ℄ <br />

ÁÓÒ ÁÓÒ ×Ð


Hohenberg-Kohn Functional in Momentum Space<br />

(continued)<br />

Ó <br />

kinetic energy:<br />

local pseudopotential energy:<br />

(only one kind <strong>of</strong> atoms)<br />

Ö<br />

with <br />

structure factor<br />

¡<br />

and<br />

Ú Ö Ú Ô×ÓÒ<br />

non-local pseudopotential energy<br />

Hartree energy:<br />

exchange-correlation<br />

energy:<br />

Ion-Ion Coulomb interaction:<br />

Gaussian self energy:<br />

Ì Ë <br />

<br />

ª <br />

<br />

ª<br />

Ô×ÐÓ<br />

<br />

<br />

ª <br />

<br />

Ë Ú Ò<br />

Ù××Ø<br />

Ò Ö<br />

<br />

Ö Ö Ö Ë <br />

ÀÒ℄ ª <br />

<br />

<br />

Ò <br />

Ä<br />

Ò Ò ÓÖ ℄ <br />

×Ð <br />

<br />

ª<br />

ÁÓÒ ÁÓÒ <br />

<br />

Ô <br />

Ê Ê<br />

<br />

Ö Ò Ö Ò ÓÖ Ö ¯ ÓÑ<br />

Ò Ö Ò ÓÖ Ö<br />

<br />

ÖÙ××<br />

<br />

Ê<br />

Ö Ê<br />

Õ ÖÙ×× Ö Ù××


Kinetic Energy Cut-Off and Basis-Set Convergence<br />

Size <strong>of</strong> plane-wave basis-set limited<br />

by the kinetic-energy cut-<strong>of</strong>f energy:<br />

(Note: Conventionally, cut-<strong>of</strong>f energy<br />

is given in Ry, then factor "2" is<br />

obsolete.)<br />

Efficient calculation <strong>of</strong> convolutions:<br />

<br />

Ö Ò<br />

Ô ÙØ<br />

Ú ÐÓ <br />

FFT FFT<br />

-1<br />

mult.<br />

Ú ÐÓ Ö Ò Ö Ò<br />

Real space mesh fixed by sampling<br />

theorem.<br />

Basis-set convergence <strong>of</strong> total energy:<br />

−2.047<br />

−2.057<br />

−2.067<br />

kin<br />

E 5 Ry<br />

cut<br />

7 Ry<br />

9 Ry<br />

11 Ry<br />

13 Ry<br />

15 Ry<br />

Al<br />

−2.077<br />

7.0 7.2 7.4 7.6 7.8 8.0<br />

lattice constant [bohr]


Advantages <strong>of</strong> <strong>Plane</strong>-<strong>Wave</strong> Basis-Set<br />

(1) basis set is independent <strong>of</strong> atom positions and species, unbiased<br />

(2) forces acting on atoms are equal to Hellmann-Feynman forces,<br />

no basis-set corrections to the forces (no Pulay forces)<br />

(3) efficient calculation <strong>of</strong> convolutions,<br />

use FFT to switch between real space mesh and reciprocal space<br />

(4) systematic improvement (decrease) <strong>of</strong> total energy with increasing<br />

size <strong>of</strong> the basis set (increasing cut-<strong>of</strong>f energy):<br />

can control basis-set convergence<br />

Remark: When the volume <strong>of</strong> the supercell is varied, the number <strong>of</strong> planewave<br />

component varies discontinuously. Basis-set corrections are available<br />

(G.P. Francis, M.C. Payne, J. Phys. Cond. Matt. 2, 4395 (1990).)


III. Brillouin Zone Integration and<br />

Special k-Point Sets<br />

(i) General Considerations<br />

(ii) Semiconductors & Insulators<br />

(iii) Metals<br />

D.J. Chadi, M.L.Cohen, Phys. Rev. B 8, 5747 (1973).<br />

H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).<br />

R.A. Evarestov, V.P. Smirnov, phys. stat. sol. (b) 119, 9 (1983).


Make use <strong>of</strong> supercells and exploit translational invariance; apply Bloch theorem.<br />

Ò Ö <br />

<strong>The</strong> Brillouin Zone Integration<br />

Charge density and other quantities are represented by Brillouin-zone integrals:<br />

Ò Ö <br />

Ó <br />

<br />

Ó<br />

<br />

ª <br />

ÆÔØ Ò<br />

Ö <br />

<br />

ª<br />

ÛÒ Ò Ö <br />

(for semiconductors / insulators)<br />

Smooth integrand => approximate integral by a weighted sum over special points:<br />

This is the "trick" by which we get rid <strong>of</strong> the many degrees <strong>of</strong> freedom from the<br />

crystal electrons!


Special Points for Efficient Brillouin-Zone Integration<br />

Calculate integrals <strong>of</strong> the type<br />

Æ<br />

<br />

<br />

<br />

ª <br />

<br />

<br />

ª<br />

<br />

f(k) periodic in reciprocal space, ,<br />

<br />

<br />

Ñ<br />

Ñ Ñ <br />

with Ñ <br />

and<br />

<br />

« <br />

¡ «ÊÑ <br />

Û Ñ ÆÑ ÓÖ Ñ Å<br />

Æ<br />

<br />

Û ÑÅ<br />

Ñ<br />

Æ<br />

<br />

with<br />

f(k) symmetric with respect to all point group symmetries.<br />

Expand f(k) into a FOURIER series:<br />

Choose special points k<br />

i<br />

(i=1, ..., N) and weights w such that<br />

i<br />

Û Ñ <br />

<br />

for M as large as possible. <strong>The</strong> real-space vectors R<br />

m<br />

are assumed to be ordered<br />

according to their length.<br />

<strong>The</strong>n:<br />

error <strong>of</strong> BZ integration scheme


( )<br />

Special k-Points for 2D Square Lattice<br />

Let point group be C (not C4v<br />

).<br />

4<br />

k i<br />

7 1<br />

( ) 20 20<br />

__ __<br />

( 20 20)<br />

__ __<br />

( 20 20)<br />

9 7<br />

__ __<br />

( 20 20)<br />

__ __<br />

( 20 20)<br />

__ __<br />

_1<br />

( )<br />

1 3 3 9 5 5<br />

_1 _1 _1 _1 _1<br />

( ) ( )<br />

6 6 3 3 6 2 0<br />

0<br />

_1<br />

( ) _1<br />

( ) _<br />

( ) _<br />

_1 _1<br />

4 4<br />

_1 _1 ( 0<br />

_1 ) ( )<br />

4 2 4<br />

_1<br />

_2<br />

( 0 0)<br />

( ) 5 5<br />

_1 3_ 3 _1 3 3_<br />

8 8 8 8 8 8 8 8<br />

( )<br />

( )<br />

_1 _1<br />

( ) 2 3<br />

Lattice vector a<br />

1<br />

= aex , a<br />

2<br />

= aey _1 _1<br />

2 2<br />

_ _<br />

1 4<br />

5 5<br />

_1<br />

4<br />

_1<br />

4<br />

_1<br />

4<br />

_1<br />

4<br />

_2 2_ 2_ _1 2_<br />

9 9 9 9 9<br />

_1<br />

5<br />

w i<br />

1 1<br />

R.A. Evarestov, V.P. Smirnov, phys. stat. sol. (b) 119, 9 (1983).<br />

_1<br />

5<br />

_1<br />

5<br />

_1<br />

5<br />

_1<br />

5<br />

N M<br />

2<br />

2<br />

4<br />

3<br />

6<br />

4<br />

5 15<br />

5<br />

12<br />

16


Equally spaced k-point mesh in reciprocal space:<br />

Ù £ Ù £ Ù £ Ð Ð Ð<br />

and<br />

Monkhorst-Pack Special k-Points<br />

Ù <br />

Û <br />

Ð<br />

Ð<br />

Restrict k-point set to points in the irreducible part <strong>of</strong> the Brillouin zone.<br />

Weight <strong>of</strong> each point ~ number <strong>of</strong> points in the star <strong>of</strong> the respective wave vector:<br />

Weights:<br />

×ØÖ <br />

Ð Ð Ð<br />

H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).<br />

.


k y<br />

1.6<br />

0.6<br />

−0.4<br />

Special k-Points for 2D Hexagonal Lattice<br />

−1.4<br />

−1.6 −0.6 0.4 1.4<br />

kx b<br />

attention: even q (q=4)<br />

incomplete k-point mesh<br />

2<br />

b<br />

1<br />

k y<br />

1.6<br />

0.6<br />

−0.4<br />

b 2<br />

−1.4<br />

−1.6 −0.6 0.4 1.4<br />

kx q=5 (MP)<br />

J.D. Pack, H.J. Monkhorst,<br />

PRB 16, 1748 (1977).<br />

b<br />

1


Why Few k-Points Already Work Fine for Semiconductors<br />

Semiconductors and insulators: always integrate over complete bands!<br />

Ò Ö <br />

Ó <br />

<br />

ª <br />

Ö <br />

Introduce Wannier-functions for the j-th band:<br />

True charge density from the j-th band:<br />

Ò Ö <br />

Æ Û<br />

<br />

Ò Ö Ò Ö ÆÊ<br />

<br />

Ê<br />

<br />

« <br />

« Ö ÆÊ<br />

<br />

Ê Ê Ê Å<br />

Æ<br />

<br />

<br />

ª<br />

Ò Ö ÆÊ<br />

Û Ê Ê <br />

Ö Ô ÆÊ<br />

Approximate charge density (from sum over special k-points):<br />

<br />

R.A. Evarestov, V.P. Smirnov, phys. stat. sol. (b) 119, 9 (1983).<br />

Ê<br />

Ê<br />

Æ<br />

<br />

Ê<br />

<br />

<br />

Ê<br />

Û Ö Ê <br />

Û £<br />

Ö Ê Û Ö Ê<br />

¡Ê Û Ö Ê<br />

Û Ê Ê Û £<br />

Ö Ê Û Ö Ê<br />

Error <strong>of</strong> integration scheme = overlap <strong>of</strong> Wannier functions with distance > C .<br />

Even faster convergence (due to the more localized atomic orbitals) for total<br />

charge density.<br />

M


"Smearing" <strong>of</strong> Fermi surface in order to improve<br />

convergence with number <strong>of</strong> k-points, e.g. by<br />

choosing an artificially high electron temperature<br />

(0.1 eV).<br />

Ì ­Ì <br />

Ì ­Ì <br />

... And Why Metals Need Much More k-Points<br />

Metals: partially filled bands; k-points have to sample the shape <strong>of</strong> the Fermi surface.<br />

Ò Ö <br />

<br />

<br />

ª <br />

<br />

<br />

Ì<br />

Extrapolate to zero temperature by averaging the<br />

free energy A and the inner energy E:<br />

Ì Ì <br />

Respective corrections to the forces.<br />

Ö <br />

lattice constant c [bohr]<br />

7.637 7.642 7.647 7.652 7.657<br />

F. Wagner, Th. Laloyaux, M. Scheffler, Phys. Rev. B 57, 2102 (1998).<br />

For some quantities and materials "smearing" can lead to<br />

serious problems. M.J. Mehl, Phys. Rev. B 61, 1654 (2000).<br />

<br />

ª<br />

kT el = 0.25 eV<br />

kT el = 0.5 eV<br />

kT el = 0.1 eV<br />

Al<br />

0 100 200 300<br />

# k−points in IBZ<br />

M. Lindenblatt, E.P.


Summary: <strong>The</strong> <strong>Plane</strong>-<strong>Wave</strong> <strong>Pseudopotential</strong> <strong>Method</strong><br />

(1) Born-Oppenheimer approximation<br />

(2) apply density-functional theory (DFT) to calculate the electronic structure;<br />

approximation for the exchange-correlation energy-functional (LDA, GGA, ...)<br />

approximate treatment <strong>of</strong> spin effects (LSDA, ...)<br />

(3) construct pseudopotentials: get rid <strong>of</strong> core electrons<br />

frozen-core approximation<br />

non-linear core-valence exchange-correlation<br />

transferability <strong>of</strong> the pseudopotential<br />

(4) specify atomic geometry, e.g. slab and periodically repeated supercells<br />

convergence with cell size (cluster size)<br />

(5) plane-wave basis-set: unbiased, no basis-set corrections to the forces,<br />

switch between real space and reciprocal space via FFT<br />

convergence <strong>of</strong> total-energy differences with kinetic-energy cut-<strong>of</strong>f<br />

(6) Brillouin-zone integrals approximated by sums over special k-points<br />

check the convergence with number <strong>of</strong> k-points and Fermi-surface smearing<br />

(different for semiconductors/insulators and metals!)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!