17.07.2013 Views

Optical Frequency Comb Generation from a Monolithic ... - K-LAB

Optical Frequency Comb Generation from a Monolithic ... - K-LAB

Optical Frequency Comb Generation from a Monolithic ... - K-LAB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Optical</strong> <strong>Frequency</strong> <strong>Comb</strong> <strong>Generation</strong> <strong>from</strong><br />

a <strong>Monolithic</strong> Microresonator<br />

Pascal Del‘Haye, Albert Schliesser, Olivier Arcizet, Tobias Wilken, Ronald Holzwarth<br />

and Tobias Kippenberg<br />

Max-Planck-Institute for Quantum Optics, Germany<br />

Frontiers in Optics 2007/Laser Science XXIII<br />

September 2007


<strong>Frequency</strong> <strong>Comb</strong>s<br />

Kerr lens mode-locked laser:<br />

chirped mirror<br />

f n<br />

=<br />

CE<br />

S. T. Cundiff. Phase stabilization of ultrashort optical pulses. Journal Of Physics D-Applied Physics, 35(8):R43–R59, April 2002.<br />

2<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

f<br />

pump<br />

Pulse train in time domain<br />

Equidistant lines in frequency<br />

domain.<br />

+ n⋅<br />

Hz<br />

f<br />

rep<br />

Ti:Al 2 O 3<br />

Aperture<br />

n = Integer number<br />

outcoupling mirror<br />

cavity roundtrip time τ<br />

= 1/<br />

frep<br />

pulse train<br />

2π ⋅ frep<br />

=


Toroid Microcavities on-a-Chip<br />

• <strong>Optical</strong> whispering gallery modes with very<br />

long photon lifetimes:<br />

Q>10 8 can be obtained<br />

Photon lifetimes of several 100 ns<br />

Finesse in excess of 1,000,000<br />

• Small mode volume<br />

• Silicon compatible<br />

Built on a silicon wafer<br />

Integration with other function<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Vahala Group<br />

Armani, Kippenberg, Spillane, Vahala, Nature 421, 925-928 (2003).<br />

3


Toroidal Microcavities<br />

Fabrication using standard microfabrication techniques<br />

silica<br />

silicon<br />

(a) (b) (c)<br />

2 μm silica layer<br />

on silicon wafer<br />

CO 2 laser beam<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Silica pads on silicon wafer after<br />

lithography, HF-etching<br />

CO 2 laser assisted reflow<br />

Wavelength λ=10.6 μm<br />

absorbed by silica,<br />

silicon transparent<br />

Free standing silica discs after<br />

XeF 2 dry etching<br />

Ultra-high-Q: Q=ωτ up to 6x10 8<br />

4


Tapered Fiber Coupling<br />

Taper-microcavity junction exhibits<br />

extremely high ideality (coupling losses<br />


Parametric Oscillations<br />

Degenerate fourwave<br />

mixing:<br />

ω p<br />

ω p<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

ω s<br />

ω i<br />

Annihilation of two pump photons ω p and emission of signal and<br />

idler photon (ω s and ω i). Threshold powers ~100 μW<br />

1) Kippenberg, T. J.; Spillane, S. M. & Vahala, K. J., Physical Review Letters, 2004, 93, 083904<br />

2) Savchenkov, Matsko, Strekalov, Mahageg, Ilchenko, Maleki, PRL, 2004, 93, 243905<br />

ω i<br />

The process can cascade with nondegenerate<br />

four-wave mixing:<br />

ω p<br />

ω s<br />

ωi<br />

ω p<br />

ω s<br />

ω i ’<br />

Silica Resonator (1)<br />

CaF 2 Resonator (2)<br />

6


Generating <strong>Comb</strong>s<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

(silica)<br />

Modespacing = 1 THz, 70 μm-diameter cavity<br />

70 μm<br />

More than 130 lines, pump power 500 mW<br />

177-μm-diameter cavity<br />

- Up to 500 nm spanning combs observed.<br />

- Conversion efficiencies of more than 80 % can be achieved!<br />

P.Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, K. Vahala, R. Holzwarth, T. J. Kippenberg (arXiv:0708.0611)<br />

7


Cold Microcavity Modes<br />

The microcavity modes are not expected to be a priori equidistant due to dispersion.<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

ω FSR1<br />

ω FSR2<br />

Δω FSR = ω FSR2 - ω FSR1<br />

SPM<br />

XPM XPM<br />

Solutions:<br />

- Nonlinear: Modes can be pulled equidistant by self-phase modulation and cross-phase modulation. 1)<br />

- Linear: Dispersion compensation<br />

1) Kippenberg, T. J.; Spillane, S. M. & Vahala, K. J., Physical Review Letters, 2004, 93, 083904<br />

ω<br />

ω<br />

8


Microcavity Dispersion<br />

Dispersion contributions:<br />

Waveguide Dispersion Δω FSR < 0:<br />

Material Dispersion Δω FSR > 0 for λ > 1300 nm:<br />

For wavelengths > 1300 nm, material and waveguide dispersion can be compensated!<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

9


Dispersion Measurement<br />

Utilizing a fiber laser frequency comb to measure the FSR of a microcavity.<br />

Distance between cold microcavity modes:<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

f offset<br />

Δf<br />

= f + n ⋅<br />

offset<br />

n = Number of fiber comb lines between two microcavity resonances<br />

f<br />

rep<br />

10


Dispersion Measurement<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

ω FSR1<br />

ω FSR2<br />

1577 nm<br />

ω FSR3<br />

1516 nm<br />

ω FSR4<br />

Accumulated dispersion in a 70 μm diameter microcavity<br />

over a wavelength range of 61 nm [1577nm…1516nm]<br />

ω<br />

Dispersion of a cold toroidal<br />

microcavity: ~3 MHz/FSR<br />

11


Microcavity combs?<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Are the lines equidistant?!<br />

12


<strong>Frequency</strong> combs for metrology<br />

<strong>Frequency</strong> comb lines<br />

with known frequencies<br />

(Mode spacing ~ 100 MHz)<br />

Hz<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Unknown optical frequency<br />

ν N-2<br />

ν N-1<br />

ν 0<br />

ν N<br />

Radio frequency beat note with νB = νN - ν0 The beat note frequency can be measured with radio<br />

frequency counters.<br />

ν N+1<br />

ν<br />

13


Equidistance of <strong>Comb</strong> Lines<br />

Superimposing two frequency combs...<br />

Multi-Heterodyne 1) Measurement:<br />

ω beat1<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

ω beat2<br />

Fiber Laser <strong>Comb</strong><br />

1 THz<br />

ω beat3<br />

ω beat1 ω beat2 ω beat3<br />

100 MHz<br />

optical frequency (THz)<br />

radio frequency (MHz)<br />

Kerr <strong>Comb</strong><br />

RF beat notes<br />

Fiber Laser<br />

<strong>Comb</strong> Line<br />

(100 MHz spacing)<br />

Kerr <strong>Comb</strong> Line<br />

(1 THz spacing)<br />

Beat Note<br />

An equidistant beat note spectrum can be generated by<br />

superimposing two equidistant combs.<br />

Photodiode<br />

1) Schliesser, Brehm, Keilmann, van der Weide, Optics Express, 13, 1929 (2005)<br />

14


Equidistance of <strong>Comb</strong> Lines<br />

<strong>Optical</strong> Domain Radio <strong>Frequency</strong> Domain<br />

Beat note spectrum:<br />

Fiber Laser <strong>Comb</strong><br />

⊗<br />

Kerr <strong>Comb</strong><br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

=<br />

Kerr lines are proved to be<br />

equidistant to a level of<br />

2 kHz<br />

200 THz<br />

=<br />

1 x 10 -13<br />

First demonstration of frequency comb generation in a monolithic microcavity!<br />

15


Counting the sidebands<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

<strong>Frequency</strong> Counter<br />

16


Counting the sidebands<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

σ<br />

A<br />

Accuracy relative to the optical<br />

carrier:<br />

5.5 mHz / 200 THz = 3 · 10 -17<br />

=<br />

⋅<br />

1<br />

2(<br />

N −1)<br />

∑ − N 1<br />

i=<br />

1<br />

( y<br />

+ − i 1<br />

y<br />

i<br />

)<br />

2<br />

Allan deviation:<br />

Measure of the relative accuracy<br />

that can be obtained with a certain<br />

gate time.<br />

P.Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, K. Vahala, R. Holzwarth, T. J. Kippenberg (arXiv:0708.0611)<br />

17


Thermal drift of the modespacing<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Kerr comb modes<br />

Stabilized reference<br />

comb modes<br />

ω<br />

18


Kerr <strong>Comb</strong> Actuators<br />

Two control variables to define all lines of a frequency comb:<br />

Modelocked Laser:<br />

Carrier envelope offset frequency f CEO<br />

Repetition rate f rep<br />

Pump frequency<br />

control<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Pump power<br />

control<br />

pump<br />

beat<br />

Microcavity comb:<br />

Pump frequency f P<br />

Mode spacing Δν<br />

Controlled by pump power<br />

sideband<br />

beat<br />

19


Stability of the Kerr <strong>Comb</strong> Lock<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Gatetime 1s<br />

Modespacing<br />

Locked with<br />

microcavity<br />

pump power<br />

Pump <strong>Frequency</strong><br />

Standard lock of<br />

a diode laser to a<br />

reference laser<br />

20


Conclusion<br />

Summary<br />

• <strong>Frequency</strong> combs spanning 500 nm have<br />

been generated<br />

• Equidistance has been proved to a level<br />

of 7.3x10 -18<br />

• Locking has been demonstrated<br />

Advantages<br />

• <strong>Monolithic</strong> on-chip design<br />

• High power per comb line<br />

(1 mW/combline can be easily achieved)<br />

• High repetition rate (>100 GHz)<br />

Single comb lines accessible<br />

Future Research<br />

• Increase cavity diameter for mode<br />

spacings in the microwave domain<br />

• Generate octave spanning spectra<br />

• Time domain behaviour?!<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Future Applications<br />

• Pulse shaping<br />

• Spectrometer calibration<br />

• Multi-channel<br />

telecommunication<br />

21


Funding<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Max Planck Generalverwaltung via an<br />

Independent Max Planck Junior Research Group<br />

MPQ<br />

Marie Curie Reintegration Grant (IRG)<br />

Marie Curie Excellence Grant (EXT)<br />

NIM Initiative<br />

Nano-Science European Research Area<br />

22


Acknowledgments<br />

Tobias Kippenberg<br />

Group Leader<br />

Georg Anetsberger<br />

(Diplom)<br />

Mechanical Dissipation<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

Olivier Arcizet<br />

(Postdoc)<br />

Remi Riviere<br />

(PhD)<br />

Cooling Project<br />

Jens Dobrindt<br />

(Diplom)<br />

Cooling Theory<br />

Albert Schliesser<br />

(PhD)<br />

Cavity Cooling, combs<br />

Xiaoqing Zhou<br />

(PhD)<br />

Coulomb Cooling<br />

Remi Riviere<br />

(PhD)<br />

Cavity Cooling<br />

Yang Yang<br />

(PhD)<br />

Coulomb Cooling<br />

Thank you for your attention!<br />

Bastian Schroeter<br />

(Diplom)<br />

Biochemical Sensing<br />

www.mpq.mpg.de/k-lab<br />

23


End<br />

P. Del‘Haye – Kerr <strong>Comb</strong>s – FIO 2007<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!