17.07.2013 Views

Lecture 1C: Examples of Chemical Equilibrium Calculation

Lecture 1C: Examples of Chemical Equilibrium Calculation

Lecture 1C: Examples of Chemical Equilibrium Calculation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> <strong>1C</strong>: <strong>Examples</strong> <strong>of</strong> <strong>Chemical</strong> <strong>Equilibrium</strong> <strong>Calculation</strong><br />

Reaction System: 2 SO 2 + O2<br />

= 2 SO3<br />

o<br />

o<br />

Conditions: T = 600 C = 873 K<br />

P = 1 atm<br />

Stoichiometric<br />

Feed<br />

No Nitrogen<br />

Calculate equilibrium conversion <strong>of</strong> SO 2 . Conversion <strong>of</strong> 99% is desired.<br />

Species Names<br />

SO<br />

O2<br />

SO<br />

2<br />

3<br />

S = 3<br />

No.<br />

Assume ideal gas mixture.<br />

K = K<br />

K<br />

y<br />

=<br />

y<br />

∏<br />

Now<br />

n<br />

y1<br />

=<br />

n<br />

K y<br />

=<br />

1<br />

tot<br />

⎛<br />

⎜<br />

⎝<br />

P<br />

P<br />

y<br />

j<br />

o<br />

s<br />

⎞<br />

∑<br />

j = 1<br />

⎟<br />

⎠<br />

υ<br />

j<br />

1<br />

2<br />

3<br />

υ = y<br />

2 − 2X<br />

=<br />

3 − X<br />

j<br />

K<br />

y<br />

−2<br />

1<br />

Stoich. Coeff.<br />

∑υ<br />

= −1<br />

⎛<br />

⎜<br />

⎝<br />

y<br />

j<br />

P<br />

P<br />

−1<br />

2<br />

y<br />

2 ( 3 − X )<br />

2 ( 1 − X ) ( 1 − X )<br />

2 ( 3 − X ) ( 3 − X )<br />

4<br />

4 X<br />

2<br />

2<br />

o<br />

⎞<br />

⎟<br />

⎠<br />

y<br />

− 2<br />

−1<br />

−1<br />

−2<br />

3<br />

2<br />

= K<br />

=<br />

1 −<br />

=<br />

3 −<br />

y<br />

X<br />

X<br />

y<br />

y<br />

⎛<br />

⎜<br />

⎝<br />

P<br />

2<br />

3<br />

2<br />

1 y2<br />

P<br />

∆G<br />

o<br />

⎞<br />

⎟<br />

⎠<br />

k cal<br />

mol<br />

f<br />

∆H<br />

− 71.<br />

7<br />

0<br />

− 88.<br />

6<br />

⎛<br />

⎜ y<br />

⎜=<br />

2<br />

⎜ y<br />

⎝<br />

y<br />

( )<br />

( ) 3<br />

2<br />

3 − X<br />

1 − X<br />

where = equilibrium<br />

extent<br />

X X<br />

= e<br />

=<br />

x<br />

3<br />

SO<br />

2<br />

2<br />

SO<br />

3<br />

y<br />

2X<br />

=<br />

3 − X<br />

∑ n<br />

1<br />

O<br />

2<br />

f<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

jo<br />

n<br />

jo<br />

− 70.<br />

9<br />

0<br />

− 94.<br />

4<br />

= 3n<br />

tot<br />

n<br />

j<br />

= n<br />

= ∑ n<br />

2 − 2X<br />

1 − 1X<br />

0 + 2X<br />

j<br />

jo<br />

+ υ X<br />

j<br />

= 3 − x<br />

EECE 503 February, 2009<br />

(A)


From (A)<br />

x<br />

( )<br />

( ) ⎟ 2<br />

3 − x ⎛ P ⎞<br />

= K<br />

⎜<br />

3 873<br />

1 − x P<br />

Calculate K 298 at 298 K<br />

∆ o<br />

K<br />

G r<br />

298<br />

=<br />

= e<br />

⎝<br />

o<br />

⎠<br />

( − ) × ( − 71.<br />

7)<br />

+ ( −1)<br />

× ( 0)<br />

+ 2 × ( − 88.<br />

6)<br />

2 = − 33<br />

o<br />

∆Gr<br />

−<br />

RT<br />

o<br />

= e<br />

Calculate ∆ H r , K873<br />

∆<br />

H o<br />

r<br />

=<br />

−33,<br />

800<br />

−<br />

1.<br />

987 × 298<br />

= e<br />

57.<br />

08<br />

= 6 . 17 × 10<br />

( − ) × ( − 70.<br />

9)<br />

+ ( 1)<br />

× ( 0)<br />

+ 2 × ( − 94.<br />

4)<br />

2 = − 47<br />

24<br />

2<br />

. 0<br />

. 8<br />

k cal<br />

mol<br />

k cal<br />

mol<br />

Assume for simplicity (in order to find a first estimate for equilibrium conditions) that<br />

o<br />

∆ H ≈ const ≈ ∆H<br />

r<br />

Then<br />

d ln<br />

K ∆ H<br />

=<br />

dT RT<br />

⎛ K<br />

l n<br />

⎜<br />

⎝ K<br />

K<br />

T<br />

T<br />

298<br />

= K<br />

o<br />

r<br />

2<br />

⎞ ∆H<br />

⎟ =<br />

⎠ R<br />

298<br />

e<br />

r<br />

; and at T = T = 298,<br />

K = K<br />

o<br />

r<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

298<br />

o<br />

∆H<br />

r ⎛ 1 1 ⎞<br />

⎜ − ⎟<br />

R ⎝ 298 T ⎠<br />

1<br />

−<br />

T<br />

47,<br />

000 ⎛ 1<br />

1.<br />

987 ⎝ 298<br />

57.<br />

08<br />

K 873 = e − ⎜ − ⎟ =<br />

K 873 = 121.<br />

78<br />

⎞<br />

⎟<br />

⎠<br />

o<br />

1 ⎞<br />

873 ⎠<br />

e<br />

4.<br />

80<br />

Note the dramatic drop in K with temperature due to the exothermocity <strong>of</strong> the reaction<br />

( ∆H r < 0)<br />

. While equilibrium would have been all the way to the right at 298 K we cannot<br />

operate at such conditions because the rate is too low.<br />

298<br />

(B)


Let us see what are the equilibrium limitations at 873 K.<br />

Solve by trial and error equation (B) for equilibrium extent X.<br />

2 ( 3 − X )<br />

3 ( 1 − X )<br />

X ⎛ o<br />

= K 873<br />

⎜<br />

⎝<br />

P<br />

P<br />

⎞<br />

⎟<br />

⎠<br />

−1<br />

P<br />

where K 873 = 121.<br />

78;<br />

= 1<br />

P<br />

Rearrange to use Newton-Raphson procedure<br />

o<br />

( ) ( ) ( ) 3<br />

2<br />

x = 0 = X 3 − X − 121.<br />

78 1 − X<br />

( ) ( ) ( ) 2<br />

2<br />

φ x = 2X 3 − X − X + 3 × 121.<br />

78 1 X<br />

n = X n<br />

φ ( X n )<br />

D φ ( X )<br />

φ<br />

D −<br />

X<br />

+ 1 (C)<br />

n<br />

Using a starting guess <strong>of</strong> X = 0.<br />

5 the Newton Raphson algorithm (C) yields:<br />

Iteration No n = 0<br />

Extent 0.5<br />

X = X e = 0.<br />

777<br />

( mol)<br />

1<br />

0.656<br />

Conversion <strong>of</strong> SO 2 is:<br />

nSO<br />

− n<br />

2,<br />

0 SO2<br />

2 −<br />

xSO<br />

=<br />

=<br />

2 nSO2<br />

0<br />

x = 0.<br />

777

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!