19.07.2013 Views

Met Office Unified Model NIMROD Nowcasting - LCRS

Met Office Unified Model NIMROD Nowcasting - LCRS

Met Office Unified Model NIMROD Nowcasting - LCRS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 Rachel Capon 04/2004 © Crown copyright<br />

<strong>Met</strong> <strong>Office</strong> <strong>Unified</strong> <strong>Model</strong><br />

<strong>NIMROD</strong> <strong>Nowcasting</strong><br />

Rachel Capon<br />

<strong>Met</strong> <strong>Office</strong> JCMM


<strong>Unified</strong> <strong>Model</strong> 5.+, 6.+<br />

– New Dynamics Core<br />

2 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Outline<br />

– Physical Parametrisations<br />

– Limited Area Configuration<br />

Single Column <strong>Unified</strong> <strong>Model</strong><br />

Site Specific Forecast <strong>Model</strong><br />

Nimrod <strong>Nowcasting</strong> System


3 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

New Dynamical Core<br />

OLD formulation<br />

Eulerian 4 th order advection<br />

Split-explicit time integration<br />

Horizontal B grid<br />

Vertical staggering – Lorenz<br />

Sigma pressure coordinate<br />

Quasi-hydrostatic formulation<br />

<strong>Unified</strong> <strong>Model</strong> 5.x<br />

operational since Aug 2002<br />

NEW formulation<br />

Semi-Lagrangian advection<br />

Semi-implicit time integration<br />

Horizontal C grid<br />

Vertical – Charney-Phillips<br />

Hybrid height coordinate<br />

Non-hydrostatic formulation


Fully-compressible deep atmosphere<br />

equns<br />

Du r uvtanφ 1 ∂p<br />

⎛uw ⎞<br />

− −2Ω sinφv+<br />

= − ⎜ + 2Ωcosφw⎟ F<br />

Dt r ρrcosφ λ ⎝ r<br />

⎠ +<br />

∂<br />

2<br />

D r v u tan φ<br />

1 ∂ p ⎛ vw ⎞<br />

+ + 2Ω sin φ u + = − ⎜ ⎟ + F v<br />

Dt r ρ r ∂ φ ⎝ r ⎠<br />

{ D w}<br />

1 ∂p∂Φ Dt ρ ∂ r { ∂ r<br />

r<br />

+ + =<br />

Dr<br />

ρ<br />

+ ρ∇⋅<br />

r u=<br />

0<br />

Dt<br />

≈<br />

4 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

g<br />

2 2 ( u + v )<br />

r<br />

r D Fθ<br />

+ 2Ωcosφu + F<br />

θ<br />

= p = ρRT<br />

Dt<br />

w<br />

u<br />

( ) ( 2<br />

vcosφ<br />

∂ r w)<br />

D ∂ u ∂ v ∂ ∂ 1 ⎛∂u ∂ ⎞ 1<br />

= + + + w , ∇ ⋅ u=<br />

+ +<br />

D cosφ λ φ cosφ⎝<br />

λ φ ⎠<br />

r<br />

r<br />

2<br />

t ∂t r ∂ r∂ ∂r r<br />

⎜<br />

∂ ∂<br />

⎟<br />

r ∂r


5 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

<strong>Unified</strong> <strong>Model</strong> Dynamics<br />

What’s ‘New’<br />

Fully compressible, non-hydrostatic, deep atmosphere.<br />

– Universal application (Climate to microscale)<br />

Semi-Lagrangian, Semi Implicit solution.<br />

Du t+ dt t t+ dt t<br />

= Forcing → u = ud + αForcing + (1 −α)<br />

Forcing d<br />

Dt<br />

ud is value at departure point, found by high<br />

order interpolation.<br />

No stability limit on timestep. No additional<br />

diffusion required.


6 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

<strong>Unified</strong> <strong>Model</strong> Dynamics<br />

What’s ‘New’<br />

Terrain following height based vertical coordinate<br />

– r(i,j,k) specified<br />

Arwakawa C Grid in horizontal (not B)<br />

– No averaging of pressure gradient<br />

– No grid decoupling<br />

– Better geostrophic adjustment for short waves<br />

Charney-Philips Grid in vertical<br />

– No computational modes<br />

– More consistent with thermal wind balance<br />

w,,q<br />

u v<br />

,⌫(p)<br />

– Can have complications in coupling with boundary layer parametrisation<br />

y<br />

x


7 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Physical Parametrisations<br />

Edwards-Slingo Radiation<br />

– (Edwards & Slingo 1996)<br />

Mixed phase precipitation<br />

– (Wilson & Ballard 1999)<br />

– Extending to prognostic cloud fraction (Wilson, Bushell)<br />

– Extending to prognostic cloud water, rain water, ice, snow, graupel (Forbes)<br />

<strong>Met</strong> <strong>Office</strong> Surface Exchange Scheme (MOSES I and II)<br />

– (Cox, Essery, Betts)<br />

Non-local Boundary Layer<br />

– (Lock et al 2000)<br />

New GWD scheme + GLOBE orography, smoothed (Raymond<br />

filter)<br />

Mass flux convection scheme with CAPE closure, downdraft and<br />

momentum transport, separate shallow cumulus<br />

– (Gregory and Rowntree, Kershaw, Grant)


8 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Microphysical parametrisation<br />

Complexity vs. Efficiency<br />

Operational <strong>Unified</strong> <strong>Model</strong><br />

Wilson and Ballard (1999)<br />

“Cloud Resolving” <strong>Model</strong>s<br />

Enhanced Microphysics


Treats heterogeneous surfaces<br />

using ‘blending height’ techniques<br />

and tiles.<br />

Surface exchange from each surface<br />

type treated separately<br />

Nine surface types,<br />

– Broad Leaf Trees<br />

– Needle Leaf Trees<br />

– C3 Grass<br />

– C4 Grass<br />

– Shrub<br />

– Urban<br />

– Water<br />

– Soil<br />

– Ice<br />

Each tile has fixed characteristics.<br />

4 layer soil temperature and<br />

moisture.<br />

9 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

MOSES II<br />

Blending Height<br />

Surface


10 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Tiles surface exchange<br />

Each tile has a full surface<br />

energy balance.<br />

This includes a radiatively<br />

coupled ‘canopy’. In the<br />

urban case this has high<br />

thermal inertia to simulate<br />

wall effects.<br />

Work in progress<br />

(Harman, Belcher, Best)<br />

to improve urban<br />

representaion.<br />

R N<br />

H λE ε s σ T s 4<br />

ε g σ T g 4<br />

G<br />

ε s σ T s 4


11 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Boundary Layer Scheme<br />

First order, moist<br />

Allows for non-local mixing in unstable regimes (top<br />

down/bottom up)<br />

Scheme diagnoses 6 different mixing regimes in<br />

order to represent stable, well mixed and cumulus<br />

and stratocumulus processes<br />

Scheme includes boundary layer top entrainment<br />

parametrisation. Especially well suited for stratocumulus.<br />

Improved interaction with the convection scheme<br />

New non-local stable scheme


12 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

NWP <strong>Model</strong> Domains<br />

Research Configuration<br />

Horizontal Vertical (lowest km)


13 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

NWP <strong>Model</strong> Orography<br />

12 km 4 km 1 km


14 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Single Column <strong>Unified</strong> <strong>Model</strong><br />

1D column version with full physics<br />

Choice of forcing<br />

– Observational<br />

– Statistical<br />

– Fixed


15 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Site Specific Forecast <strong>Model</strong><br />

1D (semi-)automated model based on<br />

UM “physics” - full column<br />

Greatly increased resolution in BL & soil<br />

“Dynamics”=“Forcing data”: grad p,<br />

advection, etc.<br />

Simple forcing correction for orography<br />

MOSES with tile surface exchange for<br />

separate treatment of land use types<br />

Radiative canopy coupled to surface<br />

exchange<br />

Upwind satellite derived land-use<br />

determines drag & surface fluxes of<br />

heat, moisture<br />

Surface landuse weighting via a stability<br />

dependent Source Area <strong>Model</strong>


16 Rachel Capon 04/2004 © Crown copyright<br />

<strong>NIMROD</strong> <strong>Nowcasting</strong> System<br />

Rod Brown, Stephen Moseley<br />

Input<br />

– radar + satellite data<br />

– SYNOPS<br />

– Mesoscale model forecasts<br />

– Sferics<br />

Output includes<br />

Visibility, T, Td, total water, liquid water<br />

temp, fog probability (200m, 1km, 5km),<br />

relative humidity


<strong>Model</strong> T<br />

and T d<br />

<strong>Model</strong> Aerosol<br />

concentration<br />

17 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Visibility Analysis<br />

Visibility<br />

Analysis<br />

Satellite data<br />

Synops


18 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Visibility Forecast<br />

Initial analysis from satellite data and SYNOPs<br />

Trends in liquid water temperature and total mixing<br />

ratio from the Mesoscale model are applied to the<br />

analysis to produce an extrapolation forecast<br />

Forecast values are merged with the model and<br />

persistence values<br />

Visibility is diagnosed using the model aerosol<br />

concentration


19 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Visibility Analysis


T+3 Forecast<br />

20 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

Analysis


10 Appendix: Figures<br />

21 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright


Temperature and Dew Point Forecasts<br />

22 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright


Probabilistic Visibility Forecast<br />

qt median<br />

23 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright<br />

qt<br />

qt threshold<br />

The probability of the<br />

visibility being less than<br />

200 m, 1 km, 5 km is<br />

also forecast<br />

A triangular distribution<br />

of qt is assumed about<br />

the forecast (median)<br />

value


T+1 F/C Probability of Visibility < 5 km<br />

24 Rachel Capon COST 722 Paris 25/06/2004 © Crown copyright

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!