16.10.2012 Views

High Voltage Automotive EMC Component Measurements Using and

High Voltage Automotive EMC Component Measurements Using and

High Voltage Automotive EMC Component Measurements Using and

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong> <strong>Voltage</strong> <strong>Automotive</strong> <strong>EMC</strong><br />

<strong>Component</strong> <strong>Measurements</strong> <strong>Using</strong> an<br />

Artificial Network<br />

October 18, 2007<br />

Jody J. Nelson (Daimler AG)<br />

William Goodwin, Mark Steffka, William Ivan (GM)<br />

Markus Kopp (Ansoft)


<strong>High</strong> <strong>Voltage</strong> Artificial Network Summary<br />

�� Based on experimental <strong>and</strong> simulation results:<br />

�� It is not recommended to use an AN as defined by<br />

CISPR for HV conducted emissions voltage<br />

validation.<br />

�� It is not recommended to use an AN as defined by<br />

CISPR during current probe measurements on HV<br />

lines.<br />

�� HV AN can be useful for development <strong>and</strong> simulations.<br />

�� A new AN for HV applications should be defined if HV<br />

conducted emissions voltage validation is required.<br />

2


Functions of an Artificial Network<br />

1. Provide a defined<br />

impedance over a<br />

given frequency range<br />

at the power terminals<br />

of the equipment under<br />

test (EUT)<br />

2. Allow for the disturbed<br />

voltage to be measured<br />

3. Isolate the EUT from<br />

undesired power supply<br />

disturbances<br />

CISPR 16-1: “Specification for radio disturbance <strong>and</strong> immunity<br />

measuring apparatus <strong>and</strong> methods – Part 1: Radio disturbance <strong>and</strong><br />

immunity measuring apparatus”, Second edition 1999-10, IEC.<br />

CISPR 25: 0.1 to 100 MHz<br />

3


Early Studies of Artificial Networks<br />

Presented in 1983 IEEE Transactions Paper:<br />

• Impedance measurements of the electrical<br />

network for 6 different vehicles.<br />

• At most 8 electrical components were on<br />

vehicles: horn & light control circuits, ignition<br />

coil, alternator, windshield washer & wiper<br />

motors, EFI, <strong>and</strong> radio<br />

Example measurements of one vehicle.<br />

S. Yamamoto <strong>and</strong> O. Ozeki, “RF Conducted Noise<br />

<strong>Measurements</strong> of <strong>Automotive</strong> Electrical <strong>and</strong><br />

Electronic Devices <strong>Using</strong> Artificial Network,” IEEE<br />

Trans. Veh. Technol., vol. VT-32, no. 4, pp. 247–<br />

253, Nov. 1983.<br />

4


Early Studies of Artificial Networks – Cont.<br />

Experimental Results:<br />

• Battery cables were < 0.3 Ω.<br />

• From 150 kHz to several MHz, the inductance<br />

range from 1.1 – 6.4 µH<br />

• From several MHz to 60 MHz the inductive<br />

<strong>and</strong> capacitive impedance ranged from 20 to<br />

740 Ω<br />

Based on empirical<br />

measurements an AN was<br />

developed from 150 kHz to 60<br />

MHz with a 2.85 µH inductor<br />

<strong>and</strong> 10 µF capacitor.<br />

5


Comparison – AN 1983 vs. AN Today<br />

CISPR 25: Characteristic impedance<br />

Capacitance<br />

Inductance<br />

DC Blocking<br />

Resistance<br />

Frequency<br />

1983<br />

10 µF<br />

2.85 µH<br />

2 µF<br />

0.1 Ω<br />

0.15 – 60<br />

MHz<br />

Today<br />

1 µF<br />

5 µH<br />

0.1 µF<br />

0 Ω<br />

0.1 –<br />

100<br />

MHz<br />

6


Early Studies <strong>Using</strong> HV Artificial Networks<br />

A number of papers exist using an AN for higher than 12 V automotive applications,<br />

but none question its functionality:<br />

Refer to paper for references.<br />

7


Typical <strong>Automotive</strong> AN Setup Comparison<br />

St<strong>and</strong>ard 12 V <strong>Automotive</strong> AN Setup Example HV <strong>Automotive</strong> AN Setup<br />

Ground Plane<br />

12 V<br />

1 uF<br />

1 uF<br />

5 uH<br />

5 uH<br />

0.1 uF<br />

1 kOhm<br />

1 kOhm<br />

0.1 uF<br />

EUT<br />

• Measures DM voltage:<br />

150 kHz < V out < 100-200 MHz<br />

• 1 µF on return generally shorted<br />

• AN defined to represent system<br />

impedances<br />

• Generally no shielding<br />

<strong>High</strong> <strong>Voltage</strong><br />

Ground Plane<br />

1 uF<br />

1 uF<br />

5 uH<br />

5 uH<br />

0.1 uF<br />

1 kOhm<br />

1 kOhm<br />

0.1 uF<br />

EUT<br />

Ground Plane<br />

• Measures CM voltage, generally<br />

between inner conductor <strong>and</strong> shield<br />

• 1 µF generally much larger than<br />

HV cable shield capacitance<br />

• 5 µH generally much larger than<br />

coaxial cable inductance<br />

• Shielding termination not defined<br />

8


Common Hybrid Electric Vehicle Layout<br />

2004 Toyota Prius HV Layout<br />

1 2004 Toyota Prius Emergency Response Guide<br />

1


Consequences of HV Shielded Cables<br />

• Shield current is dependant upon the amount of<br />

intercable coupling <strong>and</strong> electrical terminations of<br />

shield at the ends of the cable.<br />

• Utilization of different geometries for cables will<br />

also affect current path characteristics; shield<br />

diameter vs. inner conductor diameter, different<br />

dielectrics of isolation material


Impedance [Ω]<br />

Phase [°]<br />

HV Shielded Cable Example<br />

5 m long HV shielded cables measured with Network Analyzer <strong>and</strong> first<br />

resonance calculated with transmission line equations.<br />

10 2<br />

10 0<br />

50<br />

0<br />

-50<br />

Measurement<br />

10 0<br />

Transmission Line Calculation<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

10 1<br />

10 2<br />

10 2<br />

Per unit calculations for a coaxial<br />

transmission line:<br />

μ0<br />

⎛ D ⎞<br />

l = ln⎜<br />

⎟<br />

2 ⋅π<br />

⎝ d ⎠<br />

700 mΩ<br />

Factor of 500<br />

0.19 μH<br />

2⋅ π ⋅ εr<br />

⋅ε<br />

0<br />

c =<br />

⎛ D ⎞<br />

ln⎜<br />

⎟<br />

⎝ d ⎠<br />

2.0 nF<br />

Factor of 26<br />

11


Ansoft HFSS HV Cable Simulation<br />

If it is desired to<br />

simulate the system to<br />

several MHz, a better<br />

cable model than<br />

transmission line is<br />

required.<br />

HFSS simulation, based<br />

on Finite Element<br />

Method (FEM) with<br />

adaptive meshing, was<br />

used to create HV<br />

shielded cable<br />

simulation model.<br />

Impedance [Ω]<br />

Phase [°]<br />

10 2<br />

10 0<br />

50<br />

0<br />

-50<br />

10 0<br />

Measurement<br />

HFSS Simulation<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

10 1<br />

10 2<br />

10 2<br />

12


HV Cable Simulation – E & H-Fields<br />

HFSS simulation calculates the simulated near fields within the boundaries of<br />

the HV coaxial shielded cable.<br />

Model was created assuming a perfectly shielded coaxial cable - No fields<br />

outside of shield<br />

E-Field H-Field<br />

13


HV Cable Simulation – Wave Impedance<br />

Ansoft Corporation HFSSDesign3<br />

Characteristic Cable Impedance (ohms)<br />

15.00<br />

14.50<br />

14.00<br />

13.50<br />

13.00<br />

η = 13.2 Ω<br />

Cable Impedance<br />

3D Simulation Model<br />

Curve Inf o<br />

Setup1 : Sw eep1<br />

0.00 20.00 40.00 60.00 80.00 100.00 120.00<br />

Freq [MHz]<br />

14


HFSS Simulation to Simplorer Model<br />

HV Batt HV<br />

Shielded<br />

DC<br />

Cables<br />

E5<br />

EMF := 150 V<br />

EMF := 150 V<br />

E6<br />

C30<br />

C31<br />

HVCableWCG9MBKv1_lfws<br />

HVCableWCG9MBKv1_lfws<br />

C41<br />

C42<br />

HV AN<br />

L19<br />

L18<br />

C43<br />

R12<br />

R13<br />

C44<br />

HFSS simulation<br />

converted to 4port<br />

Simplorer<br />

model<br />

Peak [dBμA]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

10 -2<br />

10 -1<br />

Frequency [MHz]<br />

<strong>High</strong>er frequency<br />

content realizable<br />

with HFSS model<br />

1 st resonance of<br />

cable seen<br />

Peak [dBμA]<br />

Unshielded Cable<br />

HFSS Shielded Cable<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

10 0<br />

10 0<br />

Improvement<br />

due to<br />

impedance of<br />

shielded cable<br />

realized;<br />

shielding<br />

effectiveness not<br />

part of simulation<br />

10 1<br />

Frequency [MHz]<br />

HFSS Shielded Cable<br />

Unshielded Cable


Benefits of Simulation for this Work<br />

Complex physics of this need to be understood, such<br />

as the frequency dependent characteristics unique to<br />

this type of problem.<br />

Simulation could be used to provide insight into the<br />

physical behavior without affecting system operation<br />

due to testing with st<strong>and</strong>ard methods.


HV AN Experimental Test Setup<br />

An experimental test setup was created to<br />

demonstrate the effects of the HV AN<br />

• Mounted on real vehicle chassis<br />

• Routing similar to actual HEV<br />

• Maintained CISPR setup requirements<br />

• All tests performed at 500 rpm, 5 N·m<br />

• Current probe measurements taken 50<br />

mm from EUT (CM)<br />

• <strong>Voltage</strong> measurements measured from<br />

output of HV AN<br />

To E-machine Load<br />

Current Probe 50 mm from EUT<br />

Power Inverter<br />

(EUT)<br />

Ground Plane<br />

300<br />

mm<br />

Ground Plane<br />

HV AN<br />

HV AN<br />

1750<br />

mm<br />

HV DC Battery<br />

17


HV AN Test Configurations*<br />

HV AN<br />

HV Battery 10 cm 10 cm<br />

10 cm<br />

Ground Plane<br />

HV AN<br />

Test 1<br />

HV AN<br />

HV Battery 10 cm 10 cm<br />

10 cm<br />

HV AN<br />

Test 2<br />

HV AN<br />

HV Battery 10 cm<br />

HV AN<br />

Test 3<br />

HV EUT<br />

HV EUT<br />

HV EUT<br />

HV Battery<br />

HV Battery<br />

HV Battery 10 cm<br />

Ground Plane<br />

HV AN<br />

HV AN<br />

Test 4<br />

Test 5<br />

Test 6<br />

HV EUT<br />

HV EUT<br />

HV EUT<br />

*HV Battery <strong>and</strong> HV EUT grounded in all tests.<br />

18


HV AN Test Configurations Example<br />

Test 1


HV AN Test Configurations Example<br />

Test 2 & 3


HV AN Test Configurations Example<br />

Test 1, 2, & 3 Test 4


Current Probe vs. HV AN <strong>Voltage</strong><br />

Current probe<br />

(+34 dB shift)<br />

<strong>and</strong> HV AN<br />

produce similar<br />

waveforms<br />

Peak [dBμ]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Test 4 (Unshielded Cables)<br />

10 0<br />

Frequency [MHz]<br />

Test 4 - Current Probe<br />

Test 4 - <strong>Voltage</strong><br />

10 1<br />

Created by<br />

power switch<br />

slew rate of<br />

approximately<br />

1500 V/µs<br />

22


Current Probe – HV AN Influence<br />

Increased<br />

noise due to<br />

AN 1 µF<br />

capacitance<br />

connection to<br />

ground plane<br />

which<br />

completes CM<br />

path from<br />

inverters<br />

through motor<br />

stray<br />

capacitance<br />

Test 4 (Unshielded with AN) vs. Test 5 (Unshielded without AN)<br />

Peak [dBμA]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

Ambient<br />

Test 5<br />

Test 4<br />

Limit<br />

Noise path is<br />

through HV<br />

battery Ycapacitance<br />

(stray or<br />

intentional)<br />

Reduction due<br />

to additional<br />

capacitance on<br />

HV battery side,<br />

AN with ground<br />

connection, or<br />

shielding.<br />

23


HV Batt<br />

E9<br />

EMF := 150 V<br />

EMF := 150 V<br />

C58<br />

E10<br />

Simulation of 1 µF Effects<br />

Test 4<br />

C59<br />

HV<br />

Shielded<br />

DC<br />

Cables<br />

L24<br />

L25<br />

C69<br />

C70<br />

HV AN<br />

L27<br />

L26<br />

R20<br />

R21<br />

C71<br />

C72<br />

A<br />

A<br />

C61<br />

A<br />

A<br />

1 Inverter<br />

Simulation of I CM<br />

C62<br />

C60<br />

IGBT25<br />

IGBT26 IGBT27<br />

D25 D26 D27<br />

C63<br />

C64<br />

IGBT28 IGBT29 IGBT30<br />

D28 D29 D30<br />

C66 C67<br />

C65<br />

Peak [dBμA]<br />

C68<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

+<br />

V<br />

HV<br />

Shielded<br />

3-phase<br />

Cables<br />

A<br />

A<br />

A<br />

Electric Machine<br />

Inside Transmission<br />

-20<br />

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2<br />

Frequency [MHz]<br />

68u H<br />

L21<br />

L22<br />

L23 68u H<br />

R17<br />

R18<br />

R19<br />

Test 5<br />

Test 4<br />

C57


Current Probe – HV AN Influence<br />

Same as<br />

previous,<br />

increased noise<br />

due to AN 1 µF<br />

capacitance<br />

connection to<br />

ground plane<br />

(through<br />

shielding<br />

connections to<br />

HV battery <strong>and</strong><br />

HV DUT which<br />

are grounded)<br />

Test 2 (Shielded with AN) vs. Test 6 (Shielded without AN)<br />

Peak [dBμA]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

Ambient<br />

Test 2<br />

Test 6<br />

Limit<br />

Noise appears<br />

due to non-ideal<br />

shielding<br />

terminations<br />

25


Peak [dBμA]<br />

HV Battery Shield<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

Test 2 (With Batt Cable Shield) vs. Test 3 (Without Batt Cable Shield)<br />

Current Probe HV AN <strong>Voltage</strong><br />

10 0<br />

Frequency [MHz]<br />

Same since path between motor<br />

stray capacitance is same<br />

10 1<br />

Test 3<br />

Test 2<br />

Limit<br />

Peak [dBμV]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

Ambient<br />

Test 3<br />

Test 2<br />

Attenuation due to cable shield <strong>and</strong> Y-capacitance<br />

between HV battery <strong>and</strong> AN<br />

Limit<br />

26


Peak [dBμV]<br />

HV AN <strong>and</strong> Shielding Influence<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Test 4 (No Shield, AN GND) vs. Test 1 (Full Shield, AN GND)<br />

Test 4 (No Shield, AN GND) vs. Test 3 (Partial Shield, AN ISO)<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

Ambient<br />

Test 4<br />

Test 1<br />

Limit<br />

Attenuation due to cable shield<br />

between HV battery <strong>and</strong> AN<br />

Peak [dBμV]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

10 0<br />

Frequency [MHz]<br />

10 1<br />

Ambient<br />

Test 3<br />

Test 4<br />

Limit<br />

Noise reduction due to grounding of<br />

AN which provides additional Ycapacitance<br />

to HV battery side<br />

27


Summary of Experimental HV AN Tests<br />

• “Grounded” HV AN affects results:<br />

• The 1 µF capacitor creates a current loop from electric machine<br />

stray capacitance<br />

• The 1 µF capacitor creates a current loop from HV battery Ycapacitance<br />

• Cable shields <strong>and</strong> their connections impact the results<br />

• AN inductance has smaller impact than the AN capacitance<br />

• Most comparable to real vehicle configuration (Test 6 with shielded<br />

cables) is configuration with AN isolated <strong>and</strong> shielding on both sides<br />

(Test 2); however, shielding terminations are critical for higher<br />

frequency <strong>and</strong> 1 µF negatively impacts lower frequency b<strong>and</strong>.<br />

28


Comments for New HV AN<br />

1. Provide a defined<br />

impedance over a<br />

given frequency range<br />

at the power terminals<br />

of the equipment under<br />

test (EUT)<br />

2. Allow for the disturbed<br />

voltage to be measured<br />

3. Isolate the EUT from<br />

undesired power supply<br />

disturbances<br />

• Impedance of shielded cable <strong>and</strong><br />

HV battery should be considered.<br />

• Shielding connections should be<br />

same as for vehicle.<br />

• Need to protect test equipment<br />

from potentially high CM voltage<br />

pulses. Depending on configuration,<br />

can be 100’s of Volts DC.<br />

• Use actual battery or build HV<br />

battery pack from series Lead-acid<br />

batteries. Then isolating power<br />

supply is not required.<br />

29


Items for Future Study<br />

Consists of both testing <strong>and</strong> simulation:<br />

• Construct matrix of different shield termination<br />

methods <strong>and</strong> impact upon CE measurements.<br />

• Measure common mode current on external surface<br />

of shield due to non-ideal shield coverage.<br />

• Analysis of effects due to complex impedance of<br />

sources <strong>and</strong> loads.


Conclusion of Study<br />

�� Based on experimental <strong>and</strong> simulation results:<br />

�� It is not recommended to use an AN as defined by<br />

CISPR for HV conducted emissions voltage<br />

validation.<br />

�� It is not recommended to use an AN as defined by<br />

CISPR during current probe measurements on HV<br />

lines.<br />

�� HV AN can be useful for development <strong>and</strong> simulations.<br />

�� A new AN for HV applications should be defined if HV<br />

conducted emissions voltage validation is required.<br />

31


Final Remarks: New Systems – New<br />

Questions !<br />

Can measurement of CE be used for these<br />

types of systems?<br />

Are there other <strong>EMC</strong> test methods that need to<br />

be reviewed for HV systems of the new<br />

generation of vehicles?<br />

Should a new st<strong>and</strong>ard be created for HV CE<br />

measurement methods <strong>and</strong> required<br />

performance levels?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!