16.10.2012 Views

Highly Efficient Design of Microwave Circuits Using Coupled EM ...

Highly Efficient Design of Microwave Circuits Using Coupled EM ...

Highly Efficient Design of Microwave Circuits Using Coupled EM ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Highly</strong> <strong>Efficient</strong> <strong>Design</strong> <strong>of</strong><br />

<strong>Microwave</strong> <strong>Circuits</strong><br />

Brad Brim<br />

Applications Engineer, Ans<strong>of</strong>t Corp.


<strong>Highly</strong> <strong>Efficient</strong> <strong>Design</strong> <strong>of</strong><br />

<strong>Microwave</strong> <strong>Circuits</strong> :<br />

Application <strong>of</strong> <strong>EM</strong>/Circuit Codesign<br />

Techniques


Objectives<br />

1. Introduce and provide an intuitive understanding<br />

<strong>of</strong> an <strong>Efficient</strong> <strong>Design</strong> Flow for <strong>Microwave</strong> <strong>Circuits</strong>,<br />

“<strong>EM</strong>/Circuit Codesign”.<br />

2. Demonstrate and explain through a set <strong>of</strong><br />

easy-to-understand and realistic examples.<br />

3. Provide motivation to consider application <strong>of</strong><br />

<strong>EM</strong>/Circuit Codesign for microwave circuits<br />

based on a clear understanding <strong>of</strong> the benefits.


<strong>EM</strong>/Circuit Codesign Examples<br />

1. obvious MDL monopulse comparator<br />

2. straight forward RS <strong>Microwave</strong> iris filter<br />

3. more difficult couplers & filters<br />

1<br />

Ch.2<br />

Input<br />

2<br />

Ch.1<br />

3


� <strong>EM</strong>-only <strong>Design</strong><br />

<strong>Design</strong> Flows<br />

� Benefit: accuracy, generality<br />

� like using only one hand<br />

� Circuit-only <strong>Design</strong><br />

� Benefit: speed, higher level analyses<br />

� like using the other hand<br />

� <strong>EM</strong>/Circuit Codesign<br />

� Benefit: efficiency, accuracy, re-use<br />

� like using both hands together


<strong>EM</strong> Circuit<br />

Analyze<br />

Parametric<br />

Components<br />

Draw<br />

Composite<br />

Geometry<br />

<strong>EM</strong>/Circuit Codesign Flow<br />

Synthesize<br />

Circuit<br />

Materials<br />

Boundaries<br />

Ports<br />

Analysis Setup<br />

user-directed loop<br />

automated loop<br />

Analyze, Tune<br />

and Optimize<br />

Circuit<br />

automated loop<br />

Analyze and<br />

Optimize<br />

Plot Circuit<br />

Results<br />

Plot Results<br />

Examine Fields


Enabling Concepts<br />

1. Definition <strong>of</strong> S-parameters<br />

� There is a definitional difference in S-parameters between<br />

circuit and <strong>EM</strong> analyses.<br />

2. Parametric Component Models<br />

� Automated schematic-level circuit design requires access to<br />

parametric component models or libraries<br />

3. Arbitrary Transmission Lines<br />

� Circuit design requires TL components<br />

� Circuit tools support only: coax, MS, SL, RWG<br />

4. Matched Ports<br />

� <strong>Microwave</strong> design applies matched ports,<br />

which are not 50 ohms and are typically frequency dependent


Definition <strong>of</strong> S-parameters<br />

� Circuit Analysis<br />

� Y-parameter based modified nodal analysis<br />

� S-parameter data is converted to Y using Zo<br />

� Y-parameter results are converted to S using port reference<br />

� Electromagnetic Analysis<br />

� variations exist amongst tools but S-parameters are mostly<br />

wave based as amplitudes <strong>of</strong> incident and reflected modes<br />

� To summarize<br />

� Circuit Analysis defines S11 = 0 for a conjugate match<br />

� <strong>EM</strong> Analysis applies S11 = 0 for a matched load<br />

� A difference not easily overcome


S-parameter Definition<br />

an example<br />

a trick you can apply to extract Zo from a built-in TL component:<br />

Zo = sqrt(Zin_open*Zin_short)<br />

NOTE:<br />

very lossy line,<br />

with complex Zo


S-parameter Definition<br />

unexpected results for <strong>EM</strong> designers!<br />

(expected loss, unexpected reflection)<br />

NOTE: re_Zo & im_Zo from previous slide<br />

an example


S-parameter Definition<br />

a simple solution<br />

Ans<strong>of</strong>t <strong>Design</strong>er optionally uses the <strong>EM</strong> definition for Circuit analysis,<br />

which enables results to be viewed and optimization goals to be defined<br />

in a more familiar manner


S-parameter Definition<br />

more familiar results for <strong>EM</strong> designers!<br />

“matched ports”:<br />

no reflection, transmission loss<br />

the same example


S-parameter Definition<br />

the implications<br />

If you always use real Zref you are not affected by<br />

this issue if (and only if)<br />

� your renormalize all <strong>EM</strong> data in the <strong>EM</strong> tool to a<br />

real Zref for lossy lines and cut<strong>of</strong>f modes<br />

� internal and external ports must be renormalized<br />

implying a complication <strong>of</strong> optimization goals<br />

This issue is “rediscovered” periodically and may well<br />

be the basis <strong>of</strong> industry-wide under utilization <strong>of</strong><br />

<strong>EM</strong>/Circuit codesign techniques, especially for<br />

circuits involving cut<strong>of</strong>f modes.


Parametric Component Models<br />

� Parametric <strong>EM</strong> data models are required in circuit<br />

analysis to perform “design”<br />

� Ans<strong>of</strong>t <strong>Design</strong>er can access parametric HFSS<br />

sub-circuit components directly from HFSS projects<br />

tuner gap parameter<br />

G1<br />

H1<br />

tap height parameter


Inserting an HFSS Component<br />

from Ans<strong>of</strong>t <strong>Design</strong>er<br />

1. menu item “Circuit � Add SubCircuit � Add HFSS NPort <strong>Design</strong>”<br />

2. select HFSS project, design and analysis/sweep<br />

3. click mouse to place component in the schematic<br />

1 2 3


Arbitrary Transmission Lines<br />

� Arbitrary Transmission Lines are required to enable<br />

circuit analysis <strong>of</strong> many microwave devices<br />

� Ans<strong>of</strong>t <strong>Design</strong>er can access parametric HFSS port<br />

data to provide arbitrary multi-moded T-Lines<br />

“S1” is Line length


Inserting an HFSS TL Component<br />

from Ans<strong>of</strong>t <strong>Design</strong>er<br />

exactly the same as shown for a 3D HFSS component<br />

� specify “Transmission line model” and select HFSS port<br />

� multiple modes are accommodated automatically (3 in this case)


Port Reference Impedance<br />

� Circuit Analysis uses 50 ohm ports by default<br />

� no concept <strong>of</strong> “matched” ports,<br />

which yield “generalized S-parameters”<br />

the default behavior for HFSS wave-ports<br />

� Tedious to apply Circuit frequency dependent Zref<br />

� equations, circuit file or subcircuit based<br />

� potential issues with parameterization<br />

� many circuit tools fail with imaginary Zref<br />

� (i.e. cut<strong>of</strong>f modes)<br />

� desire intuitive design specifications<br />

� difficult to specify RWG coupler or filter goals in 50 ohms


Matched Ports for<br />

Arbitrary Transmission Line<br />

TL and Zref from HFSS:<br />

completely automated and general<br />

even across cut<strong>of</strong>f! (at 10 GHz)<br />

NOTE: correspondence <strong>of</strong> component ID “23” in the<br />

matched port reference impedance specification.


Enabling Concepts Wrap-Up<br />

1. Definition <strong>of</strong> S-parameters<br />

2. Parametric Component Models<br />

3. Arbitrary Transmission Lines<br />

4. Matched Ports<br />

� Ans<strong>of</strong>t <strong>Design</strong>er to HFSS Dynamic Link<br />

� HFSS and Ans<strong>of</strong>t <strong>Design</strong>er have both been augmented to<br />

address all these issues<br />

� A unique contribution unmatched by any other<br />

combination <strong>of</strong> tools from any vendor(s)<br />

� <strong>EM</strong>/Circuit Codesign is uniquely enabled and<br />

completely automated


<strong>Efficient</strong> Coupler <strong>Design</strong><br />

� Couplers to be examined<br />

� 2-hole (narrowband), 16-hole (broadband)<br />

� Discussion<br />

� <strong>EM</strong>-based design<br />

� Circuit based design<br />

� <strong>EM</strong>/Circuit Codesign


An Isolated Coupling Hole<br />

the ‘one’ HFSS component<br />

Coupling Hole HFSS simulation time ≈ 60 sec<br />

(includes refinement and frequency sweep time for each unique hole radius)


2-hole RWG Coupler<br />

<strong>Design</strong> Objectives<br />

� -30dB forward coupling at 15GHz (S41)<br />

� no reflection & reverse coupling (S11, S31)<br />

Initial <strong>Design</strong> Parameters (quick approximations)<br />

� R1 half power from each hole (3mm)<br />

� S1 quarter wavelength separation (7mm)


2-hole RWG Coupler<br />

Circuit optimization in only seconds in Ans<strong>of</strong>t <strong>Design</strong>er<br />

by applying Dynamic Link HFSS components and TLs.<br />

Optimization Goals


Circuit-level design parameters<br />

R1 = 2.89254 mm<br />

S1 = 6.57886 mm<br />

HFSS verification performed<br />

simulation time ≈ 2.5 min<br />

2-hole RWG Coupler<br />

GOOD: Coupling within 1.3 dB while nearlymeeting<br />

bothreflection and reverse coupling isolation goals!


2-hole RWG Coupler<br />

HFSS optimization performed with new SNLP optimizer<br />

same optimization goals, desired response after 6 steps<br />

HFSS verification and optimization in less than 15 minutes<br />

R1 = 3.0059 mm<br />

S1 = 6.6275 mm<br />

BETTER: -30dB forward coupling while meeting both<br />

reflection and reverse coupling isolation specs!!!


16-hole Coupler <strong>Design</strong><br />

� broad bandwidth objective<br />

� symmetry implies: 8 hole radii, 8 separations


16-hole Coupler <strong>Design</strong><br />

� circuit analysis time <strong>of</strong> seconds despite much larger circuit<br />

� first perform circuit-level random optimization<br />

� then gradient optimization from best case result


3D view<br />

16-hole Coupler <strong>Design</strong><br />

HFSS design with<br />

circuit-optimized parameter values<br />

side view<br />

end view<br />

top<br />

view


Circuit<br />

Prediction<br />

AWESOME!!!<br />

<strong>Design</strong> is Completed!<br />

16-hole Coupler <strong>Design</strong><br />

<strong>EM</strong><br />

Verification<br />

HFSS analysis results


top<br />

side<br />

Cut<strong>of</strong>f Mode S-parameters<br />

an <strong>EM</strong>/Circuit Codesign Example<br />

an evanescent mode attenuator<br />

and its step-in-height/width “component”<br />

attenuator<br />

step<br />

top<br />

side


Cut<strong>of</strong>f Mode Attenuator<br />

HFSS results for step component<br />

deembedded to common face where waveguides meet<br />

∑<br />

1<br />

= i n<br />

i=<br />

NOTE: Sij<br />

≠ 1<br />

2<br />

Port 2 cut<strong>of</strong>f (im_Zo) transmission phase 45 deg


Cut<strong>of</strong>f Mode Attenuator<br />

<strong>EM</strong> and Circuit analysis yield the same results for the attenuator<br />

using HFSS Dynamic Link step component and TLs.


Cut<strong>of</strong>f Mode S-parameters<br />

You can perform circuit-level design with cut<strong>of</strong>f modes!!!<br />

(despite what you might read in literature or hear at conferences)<br />

There is confusion concerning S-parameters for cut<strong>of</strong>f modes<br />

� stems from <strong>EM</strong> vs. Circuit S-parameter definitional difference<br />

� For cut<strong>of</strong>f mode loss free devices:<br />

if ‘n’ includes only loss free<br />

propagating modes/devices,<br />

then the sum is 1.0<br />

∑<br />

1<br />

= i n<br />

i=<br />

Sij<br />

2<br />

≠<br />

1


Resonator Filter <strong>Design</strong><br />

� Comb-Line Resonator Filters<br />

� capacitively loaded resonators<br />

� in a cut<strong>of</strong>f rectangular waveguide


HFSS Parametric Components<br />

� 3D components<br />

� round-to-square coax, tap-fed resonator, isolated resonator<br />

� Transmission Lines (not shown) from 3D component ports<br />

� round coax, rectangular coax, multi-moded cut<strong>of</strong>f waveguide


� Ans<strong>of</strong>t <strong>Design</strong>er<br />

2-resonator Filter<br />

Circuit-level Verification<br />

� circuit analysis <strong>of</strong> two back-to-back HFSS components,<br />

each half-filter with multi-moded cut<strong>of</strong>f rectangular waveguide


Only 3 Modes Required<br />

Accumulated dB(S11) plot for {5,4,3} modes<br />

� HFSS effectively shorts modes<br />

not specified, as emulated here<br />

using Ans<strong>of</strong>t <strong>Design</strong>er<br />

5 modes, 4 modes<br />

3 modes


3-resonator Filter <strong>Design</strong><br />

High Level Filter Goal<br />

� -20dB bandwidth <strong>of</strong> 10%<br />

� center frequency <strong>of</strong> 10.0 GHz<br />

Detailed Filter Behavior (as tuned during manufacturing)<br />

� bandwidth controlled mostly by S2, partially by S1<br />

� center frequency controlled by G2<br />

� passband match controlled by G1


3-resonator Filter <strong>Design</strong><br />

� Ans<strong>of</strong>t <strong>Design</strong>er Tune capability applied to quickly find<br />

� S1 = 200 mil<br />

� S2 = 234 mil<br />

� G1 = 12.5 mil<br />

� G2 = 19.5 mil


3-resonator Filter <strong>Design</strong><br />

AMAZING CORRESPONDENCE !!!<br />

HFSS verification <strong>of</strong> circuit-level filter design<br />

� Bandwidth 10%<br />

� Center frequency 10.03 GHz


Wrap-up<br />

� Ans<strong>of</strong>t <strong>Design</strong>er and HFSS have been augmented<br />

to uniquely support an <strong>EM</strong>/Circuit Codesign flow.<br />

� flow is applicable to a broad class <strong>of</strong> microwave designs<br />

� each <strong>of</strong> four “Enabling Concepts” must be addressed to<br />

implement such an efficient design flow<br />

� Impressive correspondence between Circuit level<br />

design and full <strong>EM</strong> analysis.<br />

� even for cut<strong>of</strong>f modes<br />

� Benefits<br />

� huge savings for total design time<br />

� tuning, optimization and synthesis techniques available


Stated Objectives Were<br />

1. Introduce and provide an intuitive understanding<br />

<strong>of</strong> an <strong>Efficient</strong> <strong>Design</strong> Flow for <strong>Microwave</strong> <strong>Circuits</strong>,<br />

“<strong>EM</strong>/Circuit Codesign”.<br />

2. Demonstrate and explain through a set <strong>of</strong><br />

easy-to-understand and realistic examples.<br />

3. Provide motivation to consider application <strong>of</strong><br />

<strong>EM</strong>/Circuit Codesign for microwave circuits<br />

based on a clear understanding <strong>of</strong> the benefits.


<strong>EM</strong> Circuit<br />

Analyze<br />

Parametric<br />

Components<br />

<strong>EM</strong>/Circuit Codesign Flow<br />

(more familiar than first perceived)<br />

Draw<br />

Composite<br />

Geometry<br />

Synthesize<br />

Circuit<br />

Materials<br />

Boundaries<br />

Ports<br />

Analysis Setup<br />

user-directed loop<br />

automated loop<br />

Analyze, Tune<br />

and Optimize<br />

Circuit<br />

automated loop<br />

Analyze and<br />

Optimize<br />

Plot Circuit<br />

Results<br />

Plot Results<br />

Examine Fields

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!