22.07.2013 Views

Science Case

Science Case

Science Case

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

European Extremely Large Telescope<br />

<strong>Science</strong> <strong>Case</strong><br />

Markus Kissler-Patig<br />

E-ELT Project Scientist<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


GMT<br />

TMT<br />

E-ELT


E-ELT Overview


• A project lead by ESO on behalf of 14 member states<br />

• Segmented mirror, adaptive telescope of 42m<br />

diameter with a 5 mirror design<br />

• Schedule:<br />

• Detail design phase until mid-2010<br />

• Start of construction by end of 2010<br />

• End of construction 2017<br />

The E-ELT in a Nutshell<br />

• Cost (Telescope + Instruments): ~1 billion Euros


The E-ELT Dome


BRD v1<br />

The E-ELT Structure<br />

Azimuth track Altitude cradle<br />

Two industrial studies: cost & schedule check<br />

BRD v2<br />

Baseline for updating requirements


$<br />

N?G7J8$:$$$.A6OD>I$$6=;>%L?AGJAO6$;K$@7JH8L$J8IB$/A>?;$A6$A$?;K$;8L$ED$L?;G$<br />

$<br />

.183 MM<br />

The BRD v2 Optical Design<br />

G<br />

49390$ #=>?@AB$C7AB?>D$<br />

M4 (AO): 2.6m<br />

G<br />

G<br />

!%!&'$#(')*+&$,!")-.$/!(#/'$<br />

M1 (seg): 42m<br />

M2: 5.7m<br />

M3: 4m<br />

G<br />

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$>P;2$<br />

$ 19<br />

>?@7A8$4$*


The E-ELT Emphasis<br />

• Active optics to phase up the large mirror surfaces<br />

• Adaptive optics is being designed into the telescope<br />

and first-generation instruments<br />

to give maximum gains in resolution and sensitivity<br />

priority for diffraction-limited instruments


Adaptive Optics<br />

• The Telescope delivers:<br />

• seeing limited mode<br />

• Ground Layer AO (w/ and w/o LGS) [GLAO]<br />

• Post-Focal AO facilities:<br />

• Single Conjugated AO (no LGS) [SCAO]<br />

• Laser Tomography AO [LTAO]<br />

• Multi-conjugated AO [MCAO]<br />

• AO included in instruments:<br />

• Extreme AO [XAO]<br />

• Single Conjugated AO [SCAO]


Laser Guide Stars<br />

Baseline:<br />

•Six Continuous Wave lasers of 50 W (TBC) each at 589 nm<br />

•Gravity invariant laser clean room(s)<br />

•Launch from behind secondary mirror<br />

•Mirror relay to launch telescope<br />

•Rotate laser with the field (not with the pupil)<br />

LLT<br />

Sodium<br />

layer<br />

~5” elongation


Instrument Suite


E-ELT Instrumentation: Background<br />

E-ELT Proposal to ESO Council (Dec 2006)<br />

• High Priority Instruments<br />

• Policy of studies and instrument procurement<br />

• “5-6 first generation instruments” at an estimated hardware<br />

construction cost to ESO of 86 M€<br />

Instrument and AO modules Study Plan (April 2007)<br />

• Plan presented and discussed with STC foresees:<br />

8 instruments and 2 post-focal AO module preparatory<br />

studies<br />

• 2.3 M€ Study Budget 2007-2009 (now 90% committed) +<br />

30 ESO FTE for Study Phase<br />

• For the most demanding instruments and AO modules<br />

additional funding provided by EC Framework programs


Foreseen first generation of instruments<br />

Name Instrument type<br />

Wavelength<br />

range<br />

MICADO Diffraction limited NIR Imager 0.8-2.4 μm<br />

HARMONI Single-field NIR spectrograph 0.8-2.4 μm<br />

EAGLE<br />

CODEX<br />

Wide-field multi-object NIR<br />

spectrograph<br />

High-resolution visual<br />

spectrograph<br />

0.8-2.4 μm<br />

0.35-0.72<br />

μm<br />

METIS Mid-IR imager and spectrograph 3.5-20 μm<br />

FoV and<br />

sampling<br />

30”<br />

4 mas/pix<br />

~1”-10”<br />

20-50 mas/pix<br />

patrol field ≥5'<br />

10-50 mas/pix<br />

Spectral<br />

resolution<br />

~4000<br />

(~20.000)<br />

~5000<br />

(R>15.000)<br />

AO support<br />

envisaged<br />

SCAO/MCAO<br />

SCAO/LTAO<br />

point source >120.000 Tip-Tilt?<br />

30”<br />

15-30 mas/pix<br />

5-200<br />

~100.000<br />

Notes<br />

MOAO multiplex >20<br />

SCAO/LTAO<br />

stability < 2 cm/s<br />

over 30 years<br />

EPICS Planet finder 0.6-1.8 μm ~2”-4” >50 XAO Polarimetry<br />

?? Optical MOS 0.3-1.8 μm 5’-10’ FoV 1000-10.000 GLAO multiplex >100<br />

?? NIR high-resolution spectrograph 0.8-2.4 μm slit >100.000 GLAO<br />

MAORY Multi-conjugated AO module 0.6-2.4 μm 2’ FoV<br />

2 DMs + M4,<br />

6 LGS<br />

?? Laser tomography AO module 0.6-2.4 μm 1’ FoV M4, 6 LGS


Markus Kissler-Patig E-ELT Status GSMT Workshop, Chicago, 16 June 2008 15


Markus Kissler-Patig E-ELT Status GSMT Workshop, Chicago, 16 June 2008 15


Markus Kissler-Patig E-ELT Status GSMT Workshop, Chicago, 16 June 2008 16


TEST INSTRUMENT DISTRIBUTION (NASMYTH PLATFORMS)<br />

MCAO & LTAO modules, MICADO, HARMONI, EPICS, METIS , one WF INSTRUMENT<br />

Test<br />

Camera<br />

WIDE FIELD<br />

INSTRUMENT<br />

MICADO<br />

MCAO module<br />

P<br />

M6<br />

units,<br />

Adaptors<br />

P<br />

HARMONI<br />

LTAO<br />

modules<br />

METIS<br />

EPICS+<br />

XAO


EAGLE<br />

+MOAO<br />

TEST INSTRUMENT DISTRIBUTION (GI and COUDE foci)<br />

CODEX


PRELIMINARY<br />

NIRSpec<br />

E-ELT Instrumentation Project Office<br />

WAVELENGTH vs. SPECTRAL RESOLUTION<br />

Wavelength (nm)<br />

MET<br />

IS


PRELIMINARY<br />

JWST MIRI<br />

Strehl<br />

0 0.5 1<br />

E-ELT Instrumentation Project Office<br />

PIXEL SAMPLING vs.STREHL for diffraction limited E-ELT INSTRUMENTS<br />

Pixel size<br />

0.90(N)<br />

0.72 (K)<br />

JWST NIRCam<br />

0.5 (K)<br />

30” field<br />

20


PRELIMINARY<br />

WF, visual-red camera or<br />

spectrograph with GLAO<br />

E-ELT Instrumentation Project Office<br />

PIXEL SAMPLING, EE within 2x2 spaxels of Wide Field E-ELT INSTRUMENTS<br />

EE<br />

0 100<br />

Pixel size (mas)<br />

EE 30% at I<br />

5’<br />

EAGLE, NIR<br />

MIFU with<br />

MOAO


<strong>Science</strong> <strong>Case</strong>


The <strong>Science</strong> <strong>Case</strong> for Giant Telescope builds on three pillars:<br />

Discovery / the unknown<br />

Synergy with large facilities (VLT/I, JWST, ALMA, LSST, SKA, ...)<br />

Contemporary <strong>Science</strong><br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The Unknown<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Enabling discovery by opening parameter space<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Synergy with Large Facilities<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The main synergy is expected with:<br />

The 8-10m class Telescopes (VLT/I, ...)<br />

The JWST<br />

ALMA<br />

LSST<br />

SKA / SKA Pathfinders<br />

...<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


JWST key science<br />

The End of the Dark Ages: First Light and Reionization<br />

Assembly of Galaxies<br />

➱ suite of optical/NIR sensitive multi-object spectrographs<br />

The Birth of Stars and Protoplanetary Systems<br />

Planetary Systems and the Origins of Life<br />

➱ METIS: mid-IR instrument (high spatial/spectral resolution at<br />

3-15 μm)<br />

➱ EPICS: planet-finder (incl. low-resolution spectroscopy and<br />

polarimetry)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


ALMA key science<br />

Detect spectral line emission from CO or CII in a normal<br />

galaxy like the Milky Way at a redshift of z = 3, in less than 24<br />

hours of observation.<br />

➱ NIR sensitive integral spectrograph and imager<br />

Image the gas kinematics in protostars and in protoplanetary<br />

disks around young Sun-like stars at a distance of the nearest<br />

star-forming clouds.<br />

➱ NIR and mid-IR high-spectral resolution instruments<br />

Provide precise images at an angular resolution of 0.1 arcsec.<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Contemporary <strong>Science</strong><br />

The Design Reference Mission<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Stars & Galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Stars & Galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Stars & Galaxies<br />

Galaxies & Cosmology<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Today, we can detect Jupiter-mass planets indirectly.<br />

What the ELT would allow us to do:<br />

1- detect Earth-mass planets indirectly<br />

2- perform direct imaging of planets<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

To date: 270 extra-solar planets<br />

have been detected


Derived key requirements:<br />

• measure radial velocities with


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Evolution of planetary systems in Orion<br />

Transition from disks to planetary systems<br />

McCaughrean, Stapelfeldt, & Close PPIV, 2000<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

McCaughrean


Circumstellar disks are the birthplaces of planets<br />

How is material assembled?<br />

And on which time scales?<br />

The ELT will allow us to study the morphology, dynamics<br />

and chemistry of the young disks.<br />

The ELT has ~10 the spatial resolution of the JWST in<br />

the mid-infrared<br />

Artist’s representation of a protoplanetary disk<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

Hartmann


Derived key requirements:<br />

• diffraction limited imaging at 2-10 μm wavelength<br />

‣ efficient telescope and AO in the mid-infrared<br />

• diffraction limited spectroscopy at 2-20 μm wavelength<br />

‣ telescope transmitting all the way to 20 μm<br />

‣ spectrograph with high resolution (100.000) at 5 μm<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


How do molecular clouds fragment?<br />

What is the mass spectrum of stars?<br />

(Extension of ALMA science) !<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

-<br />

0<br />

8


Derived key requirements:<br />

• “wide field” diffraction limited imaging at 2 μm wavelength<br />

‣ Multi-Conjugate AO over >30” FoV in the near<br />

infrared<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Stars & Galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Imaging and spectroscopy of resolved stellar<br />

populations in galaxies<br />

Black holes and AGN<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Imaging and spectroscopy of resolved stellar<br />

populations in galaxies<br />

Black holes and AGN<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Understanding the formation and evolution of galaxies<br />

The goals with the ELT are:<br />

Leo A<br />

Deepest ever CMD (in<br />

absolute mag) for an<br />

isolated dwarf irregular.<br />

M814 ! +3.4<br />

M475 ! +4.2<br />

1- to obtain ultra-deep photometry of stars in nearby galaxies<br />

2- to understand the very first stars formed in our galaxy<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

Cole et al. 2007<br />

Leo A: Deepest colourmagnitude<br />

diagram ever<br />

obtained for a galaxy


Derived key requirements:<br />

• “wide field” diffraction limited imaging down to visible<br />

wavelength<br />

‣ Multi-Conjugate AO over >60” FoV down to 0.6 μm<br />

• high-resolution spectrograph in the UV<br />

‣ telescope efficient down to the atmospheric cut-off<br />

(340 nm)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Imaging and spectroscopy of resolved stellar<br />

populations in galaxies<br />

Black holes and AGN (Active Galactic Nuclei)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Probing closer to black holes:<br />

Is the black hole intimately connected with the<br />

evolution of the galaxy?<br />

With a combination of high spatial and spectral resolution, the<br />

ELT will be able to probe black hole over a large range of masses<br />

in all types of galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

M87 hosts a 10 9 Mo black hole


Derived key requirements:<br />

• high spatial and spectral resolution spectroscopy<br />

‣ spectroscopy with resolution 5.000 to 10.000 at the<br />

diffraction limit in the near-infrared<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Galaxies & Cosmology<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


What did galaxies look like 10 billion years ago?<br />

The ELT will allow to measure the kinematics (masses/structure)<br />

of galaxies in the very early universe (redshifts between 2 and 6)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

V σ<br />

z ~ 4 50 mas pixels<br />

z=0 rotating disk simulations (M. Puech)<br />

42-m, 10-hr integration, MOAO (MCAO)


Derived key requirements:<br />

• spectroscopy at high spatial resolution for multiple sources<br />

in a large field<br />

‣ field of view of 5’ to 10’<br />

‣ FoV corrected locally with Mutli-Object AO<br />

‣ gravity invariant focus<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Scanning the Inter-Galactic Medium back in time with Quasars:<br />

Where are the metals formed by the galaxies?<br />

To Earth<br />

The ELT with its large collecting area allows to probe the faintest<br />

lines in the IGM at high redshift<br />

QSO absorption lines<br />

Lyman limit Ly"<br />

Ly!<br />

Ly" em<br />

Ly! forest<br />

Quasar<br />

Ly! em<br />

SiII<br />

CII<br />

NV em<br />

SiIV<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

SiIV em<br />

SiII CIV<br />

CIV em


Derived key requirements:<br />

• high spectral resolution spectrograph in the blue/UV<br />

‣ spectroscopy with resolution 50.000+ down to 380 nm<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


For the very first time, a direct measurement of the dynamical<br />

evolution of the universe is possible.<br />

The experiment requires 4000h of observations over 20 years.<br />

The systematic errors must be kept below 1cm/s spectral<br />

resolution.<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Derived key requirements:<br />

• lifetime of the telescope > 20 years<br />

‣ reproducibility of the wavelength calibration over that<br />

time<br />

• Ultra-high resolution (i.e. stable) spectrograph<br />

‣ Coudé focus for the spectrograph<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!