17.10.2012 Views

Presentation - Modeling of a 192-Way Waveguide Power Divider

Presentation - Modeling of a 192-Way Waveguide Power Divider

Presentation - Modeling of a 192-Way Waveguide Power Divider

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lockheed Martin<br />

E Marx-1<br />

MODELING OF A <strong>192</strong>-WAY<br />

WAVEGUIDE POWER DIVIDER<br />

Eric Marx<br />

Lockheed Martin M&DS<br />

Reconnaissance Systems<br />

Goodyear, AZ, USA<br />

eric.l.marx@lmco.com<br />

Ans<strong>of</strong>t HF Users’ Workshop, Los Angeles, CA, January, 2002<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_2<br />

Abstract<br />

A <strong>192</strong>-way, waveguide power divider is designed, modeled and<br />

validated through prototype dividers. The structure is part <strong>of</strong><br />

the power distribution network that controls the Taylor<br />

amplitude weighting for a Synthetic Aperture Radar antenna.<br />

Ans<strong>of</strong>t High Frequency Structure Simulator with Optimetrics<br />

was used to determine the optimal design for each transition.<br />

The design process relies on heavy use <strong>of</strong> the macro language to<br />

maximize model reuse and minimize design cycle. The described<br />

procedure is suitable to any large power distribution network<br />

with non-uniform amplitude distribution.<br />

Lockheed Martin<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_3<br />

Background<br />

Lockheed Martin M&DS – Reconnaissance Systems division in Goodyear,<br />

AZ develops and produces airborne Synthetic Aperture Radar (SAR)<br />

Systems. The waveguide power distribution network described in this<br />

presentation is part <strong>of</strong> an antenna for a podded SAR system.<br />

Lockheed Martin<br />

Examples <strong>of</strong> SAR Images<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_4<br />

SAR System in a Pod<br />

Lockheed Martin<br />

SAR POD<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_5<br />

Antenna Design<br />

� The SAR Antenna discussed in this presentation has stacked<br />

patch radiators that are fed with both a waveguide power<br />

distribution network and a microstrip distribution network.<br />

� There are a total <strong>of</strong> 1536 radiating elements.<br />

� The antenna weighting requirements are uniform amplitude in<br />

elevation and 20 dB, n_bar=3, Taylor weighting in azimuth.<br />

� The waveguide power distribution network is the means by<br />

which the non-uniform amplitude weighting is achieved. This<br />

requires a 1-to-<strong>192</strong> network and many unequal power splits.<br />

� The system is Ku-Band and both WR-62 and WR-51 waveguide<br />

are used.<br />

� The antenna aperture is 38” x 14.25”.<br />

Lockheed Martin<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_6<br />

<strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

14.25”<br />

Input Ports(2)<br />

Lockheed Martin<br />

38”<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Output Ports<br />

(<strong>192</strong>)


E Marx_7<br />

Amplitude Weighting<br />

� 16 waveguide power dividers are needed to achieve the 1-to-32<br />

azimuth distribution. The number <strong>of</strong> unequal power divider types was<br />

reduced to 6 for the azimuth power division to simplify the design.<br />

Six was determined to be sufficient (see the following page). The<br />

power split ratio and location were chosen such that the resulting<br />

amplitude weighting was close to the ideal weighting.<br />

� A 2-to-1 power split was used for the elevation power distribution<br />

Lockheed Martin<br />

30/70<br />

40/60 43/57<br />

Magic Tee<br />

47/53 43/57 45/55 49/51<br />

49/51 47/53 47/53 47/53 47/53 47/53 49/51 49/51<br />

Azimuth <strong>Power</strong> Division<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_8<br />

Amplitude Weighting<br />

� The following plot shows the ideal azimuth Taylor weighting and the<br />

weighting generated using a reduced number <strong>of</strong> power divider types.<br />

Normalized Magnitude<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Lockheed Martin<br />

Azimuth Amplitude Weighting<br />

1 6 11 16 21 26 31<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Ideal<br />

Approximate


Lockheed Martin<br />

E Marx_9<br />

Far Field Patterns<br />

� Amplitude approximation due to reduced number <strong>of</strong> power dividers<br />

types has little impact on the far field antenna patterns.<br />

� The first two sidelobes are reduced by ~0.5 dB.<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Taylor<br />

Approx


<strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

Lockheed Martin<br />

E Marx_10<br />

� Determined logical points to break the problem into pieces<br />

that can be modeled using Optimetrics.<br />

• Single power dividers<br />

• <strong>Waveguide</strong> bends: H-plane and E-plane<br />

• WR-62 to WR-51 transformer<br />

� An H-plane waveguide power divider was chosen for its<br />

geometrical advantages.<br />

� The double-iris H-plane T-junction configuration[1] was chosen<br />

because it is relatively easy to manufacture and integrate.<br />

� Prototypes were made and tested to validate the design<br />

concept and the HFSS modeling.<br />

[1] J. Joubert & S.R. Rengarajan, "Design <strong>of</strong> Unequal H-plane <strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong>s for Array Applications", Proceedings <strong>of</strong> the IEEE<br />

Antennas and Propagation Society International Symposium 1996, Vol. 3, pp 1636-1639, Baltimore, USA, 21-26 July 1996.<br />

Management & Data Systems<br />

Reconnaissance Systems


Double-Iris H-Plane T-Junction<br />

Lockheed Martin<br />

E Marx_11<br />

Port<br />

#2<br />

Design Variables<br />

dy = power split <strong>of</strong>fset<br />

ir1L = power split iris length<br />

ir1W = power split iris width<br />

ir2L = matching iris length<br />

ir2W = matching iris width<br />

dpath = delta path length<br />

a<br />

<strong>Power</strong> Split Iris<br />

dpath<br />

Matching Iris<br />

ir1L<br />

ir2W<br />

a<br />

Port<br />

#1<br />

dy<br />

ir1W<br />

ir2L<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Port<br />

#3


HFSS Models<br />

Lockheed Martin<br />

E Marx_12<br />

� The T-Junction model was<br />

used to determine the iris<br />

geometry, <strong>of</strong>fset, and phase<br />

differential.<br />

� This was completed for each<br />

power divider type.<br />

� A macro was built for this<br />

model and Optimetrics was<br />

used to iterate to the<br />

optimum geometry.<br />

Machining Radius<br />

� The inside corners that are left by the milling process have a<br />

measurable impact on the electrical performance and were included in<br />

the model.<br />

� Prototypes <strong>of</strong> this type <strong>of</strong> power divider were manufactured and the<br />

RF performance matched the simulated data very well.<br />

Management & Data Systems<br />

Reconnaissance Systems


HFSS Models<br />

Lockheed Martin<br />

E Marx_13<br />

� The next step is to take<br />

the individual 3-port<br />

power dividers and create<br />

the next higher level<br />

model.<br />

� Using the baseline model,<br />

more complex models<br />

were built to capture the<br />

effects <strong>of</strong> nearby<br />

transitions.<br />

� <strong>Power</strong> division and phase<br />

were adjusted at this<br />

level.<br />

� The Filter Cost Function is used to achieve a flat amplitude response<br />

across the entire bandwidth (use the Equal To curve) and minimize<br />

the return loss (use the Below curve). These filter cost functions<br />

were combined into a single cost function to optimize to the required<br />

performance.<br />

Management & Data Systems<br />

Reconnaissance Systems


<strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

14.25”<br />

Lockheed Martin<br />

E Marx_14<br />

38”<br />

Management & Data Systems<br />

Reconnaissance Systems


HFSS Models / Results<br />

Lockheed Martin<br />

E Marx_15<br />

HFSS Model “pd4_4”<br />

E-Field Plot<br />

Management & Data Systems<br />

Reconnaissance Systems


Magnitude (dB) HFSS Model “pd4_4”<br />

Return Loss<br />

Lockheed Martin<br />

E Marx_16<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

-50<br />

Return Loss<br />

16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.5<br />

Frequency (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


<strong>Power</strong> Split<br />

HFSS Model “pd4_4”<br />

Lockheed Martin<br />

E Marx_17<br />

Magnitude (dB)<br />

-5.5<br />

-5.6<br />

-5.7<br />

-5.8<br />

-5.9<br />

-6.0<br />

-6.1<br />

-6.2<br />

-6.3<br />

-6.4<br />

Output Magnitude<br />

-6.5<br />

16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.5<br />

Desired Amplitude<br />

Frequency (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

S12<br />

S13<br />

S14<br />

S15


Phase Matching<br />

HFSS Model “pd4_4”<br />

Phase (Degrees)<br />

Lockheed Martin<br />

E Marx_18<br />

180<br />

150<br />

120<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

-60<br />

-90<br />

-120<br />

-150<br />

-180<br />

S12<br />

S13<br />

S14<br />

S15<br />

Phase Match<br />

Frequency Phase (Degrees)<br />

(GHz)<br />

S12 S13 S14 S15<br />

16.86 -147.94 -147.78 -148.10 -147.96<br />

16.88 -152.51 -152.35 -152.68 -152.53<br />

16.90 -157.07 -156.92 -157.25 -157.11<br />

16.92 -161.63 -161.48 -161.81 -161.68<br />

16.94 -166.19 -166.04 -166.37 -166.24<br />

16.96 -170.75 -170.59 -170.93 -170.81<br />

16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.5<br />

Frequency (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


Top Layer <strong>Power</strong> <strong>Divider</strong>s<br />

Lockheed Martin<br />

E Marx_19<br />

� The amplitude and phase optimization <strong>of</strong> the 4-way power dividers<br />

determined the location <strong>of</strong> the 180 degrees E-plane bends that<br />

transition to the top layer <strong>of</strong> waveguide power dividers.<br />

� Two 5-port models and the 7-port model shown here complete the<br />

waveguide hogout power divider modeling.<br />

PHASE (DEG)<br />

PHASE BALANCE<br />

180<br />

150<br />

120<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

-60<br />

-90<br />

-120<br />

-150<br />

-180<br />

16.3 16.8 17.3<br />

FREQUENCY (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


Top Layer <strong>Power</strong> <strong>Divider</strong>s<br />

� Results are from the 7-port model pictured on the previous slide.<br />

� The desired amplitudes are –10 dB and –6.32 dB.<br />

� This model includes the two greatest unequal power splits.<br />

� Also included is the transformer from WR-62 to WR-51.<br />

� This was the largest waveguide power divider modeled.<br />

AMPLITUDE (dB)<br />

Lockheed Martin<br />

E Marx_20<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

INPUT POWER DIVIDER STRUCTURE<br />

-60<br />

16.3 16.5 16.7 16.9 17.1 17.3 17.5<br />

FREQUENCY (GHz)<br />

AMPLITUDE (dB)<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

AMPLITUDE BALANCE<br />

-11<br />

16.3 16.8 17.3<br />

Desired Amplitude<br />

FREQUENCY (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


Photos <strong>of</strong> the <strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

Lockheed Martin<br />

E Marx_21<br />

Layer 1<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Layer 2


Summary<br />

Lockheed Martin<br />

E Marx_22<br />

� Large power divider networks with non-uniform amplitude<br />

distributions require many different power splits.<br />

� Depending on the performance requirements, some<br />

simplifications may be made by simply reducing the number <strong>of</strong><br />

power split types.<br />

� Design a generic power divider design and identify the<br />

parameters that can be varied to meet all the requirements.<br />

� Generating a baseline model using the macro language with<br />

variable parameters minimizes model development time by<br />

maximizing model reuse. This has positive impacts on cost,<br />

schedule, and repeatability<br />

� Using Optimetrics allows the user to reach the best design in<br />

the least amount <strong>of</strong> time.<br />

Management & Data Systems<br />

Reconnaissance Systems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!