22.07.2013 Views

Energy calibration

Energy calibration

Energy calibration

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TEPC for Boron Neutron<br />

Capture Therapy<br />

Hsiu-Wen Hsiao<br />

934534<br />

May 2, 2007


• Introductions<br />

- BNCT<br />

Outline<br />

- Mixed radiation field dosimetry<br />

• Materials and Methods<br />

- The dual counter microdosimteric technique<br />

- Gas-filled and Measurement system<br />

- <strong>Energy</strong> <strong>calibration</strong>s<br />

• Results<br />

• Future works


BNCT (Boron Neutron Capture Therapy)<br />

thermal<br />

neutron<br />

10 B 11B<br />

7 Li<br />

nucleus<br />

4 He nucleus<br />

(α particle)<br />

γ-ray


BNCT facilities operating in the world<br />

• FiR-1 reactor Finland<br />

• HFR Petten<br />

• R2-0 reactor at Studsvik Sweden<br />

• RA-6 reactor Argentina<br />

• KUR/JRR4 Japan<br />

• MITR-II research reactor USA<br />

• LCR-I Czech Republic<br />

THOR (Tsing-Hua Open-pool Reactor), Taiwan


Mixed radiation field dosimetry<br />

• Mixed field<br />

– Fast neutron<br />

– Epithermal neutron<br />

–Photon<br />

–Dfast n – recoil protons<br />

–Dthermal n – 14N(n,p) 14C –Dphoton – 1H(n,γ) 2H – from mixed field photon <br />

– 10B(n,α) 7 The Dual Counter Microdosimetric technique<br />

-- paired low-pressure TEPC<br />

Dn Li<br />

• Within patient<br />

–D BNC


Microdosimetric Parameters<br />

Lineal energy (y)<br />

<br />

d<br />

Medium<br />

ε<br />

y =<br />

<br />

(J/m, keV/μm)<br />

ε = energy imparted<br />

= mean chord length<br />

= 4V/A = (2/3)d


Materials and Methods


The dual counter<br />

microdosimetric technique<br />

• Paired low-pressure TEPC<br />

- Boron-loaded A-150 TE counter<br />

- Non Boron-loaded A-150 TE counter<br />

Diameter = 2.5 cm<br />

Wall = 2.5 mm<br />

A-150 plastic<br />

with/ without<br />

boron loaded<br />

• Spectrum Boron-loaded - Spectrum NonBoron-loaded<br />

Spectrum BNC<br />

D BNC


The appearances of TEPC<br />

Boron concentration<br />

of wall<br />

0 ppm<br />

50 ppm<br />

commercial


TEPC<br />

• Anode<br />

– Material:Copper/Beryllium (Cu 98% / Be 2%)<br />

– Diameter:0.025 mm<br />

0.046 mm<br />

• Wall<br />

– Material: A-150 TE plastic ( and B 2 O 3 )<br />

– Thickness:2.5 mm<br />

1.25 mm<br />

• Cavity<br />

– Diameter:2.5 cm<br />

1.25 cm


Gas-filled system at NSRRC<br />

Valves<br />

TEPCs<br />

Vacuum pump<br />

manometer<br />

A gas cylinder with<br />

propane-based TE gas


The TEPC measurement system<br />

Oscilloscope<br />

H.V.<br />

Amplifier<br />

preAmp<br />

TEPC<br />

MCA


Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Flow chart<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Proton edge<br />

Alpha edge<br />

Gamma ray field<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Flow chart<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Proton edge<br />

Alpha edge<br />

Gamma ray field<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


Simulation of small volumes-1<br />

Δx t<br />

E t<br />

a cell<br />

(tissue)<br />

Δx g<br />

E g<br />

counter<br />

Propane-based<br />

TE gas<br />

55% C 3 H 8 ,<br />

39.6%CO 2 ,<br />

5.4%N 2<br />

(TEPC)


Simulation of small volumes-2<br />

E t<br />

Δx t<br />

(tissue)<br />

E g<br />

Δx g<br />

(TEPC)<br />

⎪<br />

⎪<br />

⎩<br />

⎪<br />

⎪<br />

⎨<br />

⎧<br />

ΔΧ<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

ΔΧ<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

g<br />

g<br />

g<br />

g<br />

t<br />

t<br />

t<br />

t<br />

dx<br />

dE<br />

1<br />

E<br />

dx<br />

dE<br />

1<br />

E<br />

ρ<br />

ρ<br />

ρ<br />

ρ<br />

g<br />

g<br />

g<br />

t<br />

t<br />

t<br />

dx<br />

dE<br />

1<br />

dx<br />

dE<br />

1<br />

ΔΧ<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

ΔΧ<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

ρ<br />

ρ<br />

ρ<br />

ρ<br />

g<br />

g<br />

t<br />

t<br />

ΔΧ<br />

=<br />

ΔΧ ρ<br />

ρ<br />

g<br />

g<br />

g<br />

g<br />

t<br />

t<br />

t<br />

t<br />

T<br />

P<br />

ΔΧ<br />

ρ<br />

T<br />

P<br />

ΔΧ<br />

ρ =<br />

t<br />

t<br />

g<br />

g<br />

t<br />

g<br />

t<br />

g<br />

P<br />

T<br />

T<br />

ΔΧ<br />

ΔΧ<br />

ρ<br />

ρ<br />

P =


Simulation of small volumes-3<br />

ρ ΔΧ T<br />

P P<br />

t t g<br />

g =<br />

t<br />

ρg ΔΧg Tt<br />

ρ g = 1.826 x 10 -3 g/cm 3 at P t = 760 torr, T g = 293 o K<br />

ΔX t = 1 μm;ΔX g = 2.5 cm<br />

ρ t = 1 g/cm 3 ; T t = 310.5 o K<br />

1 0.0001 293<br />

Pg= × × × 760<br />

0.0018 2.5 310.5<br />

= 16.87 torr ~<br />

17 (torr)


Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Flow chart<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Internal alpha source<br />

Proton edge<br />

Alpha edge<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


Internal alpha source <strong>calibration</strong><br />

– commercial TEPC<br />

internal alpha source<br />

-- Cm-244


• Spectrum of alpha<br />

from ICRU Report 36<br />

Low -energy<br />

delta rays<br />

Calibrations<br />

128 (keV/μm)<br />

straggling<br />

y<br />

= ×<br />

h<br />

p<br />

y h<br />

p<br />

constant


Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Flow chart<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Internal alpha source<br />

Alpha edge<br />

Proton edge<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


<strong>Energy</strong> Calibration — alpha edge<br />

• Simulation:<br />

Boron<br />

~ 50 ppm<br />

Cell membrane<br />

B-10 drugs<br />

A-150 TE plastic<br />

Propane-based<br />

TE gas<br />

cytoplasm<br />

nucleus


<strong>Energy</strong> Calibration — alpha edge<br />

10 B (n,α) 7 Li<br />

10 B (n,α) 7 Li


counts<br />

<strong>Energy</strong> Calibration — alpha edge<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

1um<br />

0<br />

0.1 1 10 100 1000<br />

y (keV/um) 386 keV/μm<br />

counts<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

6 um<br />

0<br />

0.1 1 10 100 1000<br />

y (keV/um) 216 keV/μm


Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Flow chart<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Internal alpha source<br />

Alpha edge<br />

Proton edge<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


<strong>Energy</strong> Calibration — proton edge<br />

• According to papers:<br />

Proton edge<br />

Simulated<br />

diameter<br />

(μm)<br />

Proton edge<br />

(keV/μm)<br />

1 6<br />

146 105


Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Flow chart<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Internal alpha source<br />

Alpha edge<br />

Proton edge<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


Measurements of spectrum<br />

• Epithermal neutron beam of THOR<br />

Dual counter<br />

(TE, TE+B)<br />

In air: at beam exit 7 cm<br />

In phantom<br />

Same depth but different air gap<br />

Different depths


Results


<strong>Energy</strong> Calibration —<br />

Internal alpha source<br />

• Commercial TEPC<br />

• Spectrum of <strong>calibration</strong> -- 1 μm<br />

counts<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 200 400 600 800 1000 1000<br />

channel (ch)<br />

1.8 hrs<br />

8 hrs<br />

Shift ~15 channels<br />

128 keV/μm


<strong>Energy</strong> Calibration —<br />

detector drift characteristics<br />

• The possible reasons are as follows,<br />

- Outgassing of the plastic<br />

- Temperature shift<br />

- The plastic absorbs some of the gas after it has<br />

been in the vacuum.<br />

improved by filling it and waiting for a<br />

few hours before using it.


<strong>Energy</strong> Calibration —<br />

Internal alpha source<br />

• Calibration curve for alpha edge shift :<br />

channel of alpha edge (ch)<br />

520<br />

polynomial fit:<br />

y = 499.77796 + 4.58089X - 0.22175X^2<br />

500<br />

0 2 4 6 8 10<br />

time interval after filling TE gas (hrs)


yf(y)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Spectrum of Pu-239 source<br />

• Commercial TEPC -- 6 μm<br />

• Measurement time = 2 hrs<br />

1H(n, γ)H2<br />

0.0<br />

0.1 1 10 100 1000<br />

y (keV/um)<br />

Pu-239 source<br />

Recoil proton<br />

yd(y)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Pu-239 source<br />

1H(n, γ)H2<br />

0.0<br />

0.1 1 10 100 1000<br />

y (keV/um)<br />

Recoil proton<br />

Proton edge<br />

105 keV/um


Future works


Future works<br />

Operating condition<br />

<strong>Energy</strong> <strong>calibration</strong><br />

THOR50c beam<br />

Microdosimetry spectrum<br />

Dose analysis<br />

Gas pressure<br />

Operating voltage<br />

Internal alpha source<br />

Alpha edge<br />

Proton edge<br />

TE (0 ppm、commercial)<br />

TE+B (50 ppm)


References<br />

C. S. Wuu et al., Microdosimetry for Boron Neutron<br />

Capture Therapy. Rad. Res. 130, 355-359, 1992.<br />

Hsiao-Jay Huang, Microdosimetry Study of Neutrons using the<br />

Tissue Equivalent Proportional Counter, NTHU. 2004.<br />

Anthony J. Waker, Miniature tissue-equivalent proportional<br />

counters for BNCT and BNCEFNT dosimetry, Med. Phy., Vol.<br />

28, No. 9, Sep. 2001.<br />

Srdoc, D. Experimental Technique of Measurement of<br />

Microscopic <strong>Energy</strong> Distribution in Irradiated Mater using<br />

Rossi Counters. Rad. Res. 43, 302-319, 1970.<br />

David Tattam and T. Derek Beynon, Use of low-pressure<br />

tissue equivalent proportional counters for the dosimetry of<br />

neutron beams used in BNCT and BNCEFNT, Med. Phy.,<br />

Vol. 27, No. 3, March 2000.


Thanks for your attention~☺

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!