22.07.2013 Views

Beta Barium Borate (BBO)

Beta Barium Borate (BBO)

Beta Barium Borate (BBO)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Beta</strong> <strong>Barium</strong> <strong>Borate</strong><br />

(<strong>BBO</strong>) Single Crystal<br />

Introduction...<br />

<strong>Beta</strong>-barium borate (<strong>BBO</strong>) has the following<br />

exceptional properties that make it a very important<br />

nonlinear crystal:<br />

• Broad phasematching range from<br />

410 nm to 2100 nm<br />

• Useful optical transmission from<br />

200 nm to 2100 nm<br />

• Large effective nonlinear coefficients<br />

• High laser damage threshold<br />

• Low thermo-optic coefficient<br />

<strong>BBO</strong> is of particular importance in the visible and far<br />

UV. A wide variety of phasematching applications are<br />

possible, including the following:<br />

• Second harmonic generation to generate<br />

wavelengths as short as 204.8 nm [8,9]<br />

transmission<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

Optical Transmission of 8 mm Thick <strong>BBO</strong> <strong>BBO</strong><br />

Uncoated & Protectively Coated Coated Crystals Crystals<br />

• Shorter wavelengths can be generated<br />

by sum frequency mixing [7,10]<br />

• Fifth harmonic generation of<br />

Nd:YAG [11,12] by mixing the<br />

fundamental and the fourth harmonic<br />

• UV generation over a broad wavelength<br />

range by mixing the output of a<br />

Ti:sapphire laser.<br />

• Many optical parametric oscillators<br />

(OPOs) have been demonstrated for<br />

producing wavelengths in the visible,<br />

[14,18] near infrared, [19-21] and<br />

the ultraviolet [22]<br />

Transverse field Pockel cells made from <strong>BBO</strong> are useful<br />

when high average powers or short wavelengths are<br />

used, [30] even though the electro-optic coefficients are<br />

relatively small (r 22 ≈(1/10)r 63 of KD*P).<br />

0.00<br />

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00<br />

wavelength -- - microns<br />

The higher transmission trace results from a <strong>BBO</strong> crystal coated with our standard coating that minimizes reflection at 600 nm on<br />

the input face and at 270 nm on the output face.


Optical and Electro-Optical Properties<br />

Sellmeier Equation Contants (λ in microns @ 20°C)<br />

n = [A + B / (1-C/l2 ) + D / (1 - E/l 2 )] 1/2<br />

o-ray [32] e-ray [32]<br />

A 1.7018379 1.5920433<br />

B 1.0357554 0.7816893<br />

C 0.018003440 0.016067891<br />

D 1.2479989 0.8403893<br />

E 91 91<br />

Temperature Variation of Refractive Index [2,32]<br />

dn o /dT = -16.6•10 -6 /°C @ 1.064 µm<br />

dn e /dT = -9.3•10 -6 /°C @ 1.064 µm<br />

n r = n 20 + (T - 20°C) dn/dT)<br />

dn/dT = (GR + HR 2 ) / (2n)<br />

o-ray [32] e-ray [32]<br />

G -19.3007 x 10 -6 141.421 x 10 -6<br />

H -34.9683 x 10 -6 110.8630 x 10 -6<br />

R λ 2 / [λ 2 − (0.0652) 2 ] λ 2 / [λ 2 − (0.0730) 2 ]<br />

Nonlinear Optical Coefficients [1,2,4] d 22 = 2.2 pm/V<br />

d 32 > -(0.07 ± 0.03) x d 22<br />

d 33 ≈ 0 pm/V<br />

Electro-Optic Coefficients [5,6] r 22 s = 2.1 pm/V<br />

r 22 T = 2.5 pm/V<br />

r c s = 0.11 pm/V<br />

r c T = 0.17 pm/V<br />

Damage Threshold [2] 13.5 J/cm 2 @ 1 nsec<br />

Acceptance Angle, Wavelength Acceptance and Walk Off<br />

Wavelength nm Δθ(mrad-cm) Δλ(nm-cm) Walk-off Angle (°)<br />

1064 + 1064 = 532 0.51 2.11 3.2<br />

532 + 532 = 266 0.17 0.07 4.8<br />

1064 + 266 = 213 0.11 0.08 5.3<br />

488 + 488 = 244 0.16 0.05 4.7<br />

2


Physical and Thermal Properties<br />

Chemical Formula<br />

Crystal Symmetry and Class<br />

β−ΒaB204 trigonal, R3c<br />

Optical Summetry [2] uniaxial negative<br />

Point Group [2] 3m<br />

Lattice Constants [2] a = 12.547(6) Å<br />

c = 12.736(9) Å<br />

Density 3.85 g/cm3 Melting Point 1095°C<br />

Moh’s Hardness 4.5<br />

Fracture Toughness [2] 150 kPa/m2 Dielectric Constants [2] Loss Tangent<br />

K11 = 6.7<br />

K33 = 8.1<br />

[2] Tan δ < 0.001<br />

Phase Transition (α-<strong>BBO</strong> stable above) 925°C<br />

Thermal Conductivity [2]<br />

⊥ c 0.08 W/mK<br />

⏐⏐ c 0.8 W/mK<br />

Specific Heat 1.91 J/cm3K Thermal Expansion [2,3] α11 = 4•10-6 /K<br />

α33 = 36•10-6 /K<br />

Harmonic Generation<br />

Output Wavelength -- microns<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

THG<br />

4HG<br />

5HG<br />

Type I Mixing<br />

Type I Mixing<br />

1+1,<br />

1 +<br />

1+2,<br />

1, 1<br />

1+3,<br />

+ 2,<br />

and<br />

1 + 3<br />

1+4<br />

and 1 + 4<br />

SHG<br />

0 10 20 30 40 50 60 70 80 90<br />

<strong>BBO</strong> <strong>BBO</strong> Phasematch Angle Angle -- - degrees degrees<br />

3


Fundamental Wavelength -- microns<br />

Fundamental Wavelength -- microns<br />

Fundamental Wavelength -- microns<br />

Sum Frequency Mixing Schemes OPO/OPA Phase Matching Curves<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

Type I SFM with 1.064 microns<br />

0.20<br />

0.168<br />

0 10 20 30 40 50 60 70 80 90<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

<strong>BBO</strong> Phasematch Angle -- degrees<br />

Type I SFM with 0.532 microns<br />

0.706<br />

0.646<br />

0.587<br />

0.527<br />

0.467<br />

0.407<br />

0.347<br />

0.288<br />

0.228<br />

0.20<br />

0.195<br />

0 10 20 30 40 50 60 70 80 90<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

Genertaed Wavelength -- microns<br />

<strong>BBO</strong> Phasematch Angle -- degrees<br />

Signal and Idler Wavelengths -- microns<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

266 nm<br />

213 nm<br />

355 nm<br />

Type I OPO with Various Pumps<br />

Type I SFM with 1.064 microns Type I OPO with Various Pumps<br />

<strong>BBO</strong> Phasematch Angle - degrees<br />

Type I SFM with 0.532 microns<br />

<strong>BBO</strong> Phasematch Angle - degrees<br />

<strong>BBO</strong> Phasematch Angle -- degrees<br />

Type I SFM with 0.355 microns<br />

Type I SFM with 0.355 microns<br />

0.420<br />

0.395<br />

0.370<br />

0.345<br />

0.320<br />

0.295<br />

0.270<br />

0.245<br />

0.220<br />

0.40<br />

0.200<br />

0 10 20 30 40 50 60 70 80 90<br />

<strong>BBO</strong> Phasematch Angle - degrees<br />

<strong>BBO</strong> Phasematch Angle -- degrees<br />

0.304<br />

0.291<br />

0.278<br />

0.265<br />

0.252<br />

0.239<br />

0.226<br />

0.213<br />

Generated Wavelength -- microns<br />

Generated Wavelength -- microns<br />

4<br />

Signal & Idler Wavelengths -- microns<br />

532 nm<br />

20<br />

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20<br />

Signal & and Idler Wavelengths -- microns - microns<br />

2.30<br />

2.20<br />

2.10<br />

2.00<br />

1.90<br />

1.80<br />

1.70<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

Type II OPA with 800 nm Pump<br />

perpendicular to pump<br />

parallel to pump<br />

1.20<br />

25 26 27 28 29 30 31 32 33 34 35 36<br />

2.20<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

Type I<br />

Type II OPA with 800 nm Pump<br />

<strong>BBO</strong> Phasematch Angle - degrees<br />

<strong>BBO</strong> Phasematch Angle -- degrees<br />

Type I and & Type II II Tuning Curves Curves<br />

For OPO / OPA with 400 nm Pump<br />

For OPO/OPA With 400 nm Pump<br />

Type II o-ray<br />

Type II e-ray<br />

0.40<br />

20 30 40 50 60 70<br />

<strong>BBO</strong> Phasematch Angle - degrees<br />

<strong>BBO</strong> Phasematch Angle -- degrees


<strong>BBO</strong> Single Crystals<br />

INRAD can fabricate and polish almost any size crystal<br />

and any orientation of <strong>BBO</strong>. In order to simplify manufacturing,<br />

stocking and ordering, a number of standard<br />

sizes and orientations have been defined. If the size and<br />

orientation that you desire is not listed below, please<br />

Contact INRAD.<br />

Different orientations, crystallographically speaking,<br />

refer to the angles between the beam propagation direction<br />

and the crystallographic direction of the optic axis.<br />

Size (mm)<br />

5 x 5 x 0.1<br />

5 x 5 0.25<br />

5 x 5 x 0.5<br />

5 x 5 x 1.0<br />

5 x 5 x 2.0<br />

5 x 5 x 5<br />

5 x 5 x 10<br />

5 x 7 x 6<br />

5 x 7 x 8<br />

8 x 8 x 5<br />

8 x 8 x 10<br />

8 x 10 x 6.5<br />

8 x 10 x 12<br />

10 x 12 x 6.5<br />

10 x 12 x 8<br />

<strong>BBO</strong> Single Crystals<br />

Corresponding INRAD Cells<br />

530-041, 535-040<br />

530-041, 535-040<br />

530-041, 535-040<br />

530-041, 535-040<br />

530-041, 565-110, 535-040<br />

530-041, 534-040, 535-040, 561-044<br />

534-040, 561-044<br />

561-044<br />

561-044<br />

530-081, 534-070, 561-044<br />

534-070, 561-044<br />

5<br />

All of the orientations that are listed here are Type I,<br />

meaning that the polarization directions of the two longest<br />

wavelengths in the mixing process are in the same direction;<br />

the shortest wavelength in the mixing process has an<br />

orthogonal polarization direction.<br />

Examples of tuning applications are given for each<br />

crystal cut; other applications are also possible.<br />

561-044<br />

561-044<br />

561-044<br />

Notes<br />

CANNOT BE COATED<br />

5-14B & 5-050 size<br />

5-14B size<br />

5-035C & 5-050 size<br />

Autotracker size<br />

Autotracker size<br />

Autotracker size<br />

Autotracker size<br />

OPO size<br />

Autotracker size<br />

Autotracker size


Designation<br />

“0”, 68.5°<br />

“1”, 53.2°<br />

“2”, 37.4°<br />

“A”, 78°<br />

“B”, 55°<br />

“C”, 65°<br />

“TSS”, 28.7°<br />

“TST”, 44°<br />

“OPO1”, 36.6°<br />

“OPO2”, 57.5°<br />

“M1”, 50.2°<br />

“DGN”, 31°<br />

“IDLR”, 20°<br />

“OPO3”, 30°<br />

“SHG”, 22.8°<br />

“DGN”, 81°<br />

“4HG”,47.6°<br />

<strong>BBO</strong> Single Crystals<br />

Operation<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SHG<br />

THG<br />

SFM<br />

SHG<br />

THG<br />

SFM<br />

SFM<br />

SHG<br />

OPO<br />

SHG<br />

THG<br />

4HG<br />

Input Output<br />

418-464 nm<br />

(600-665 nm) + (300-331 nm)<br />

454-560 nm<br />

(651-800 nm) + (325-400 nm)<br />

542-820 nm<br />

(774-1165 nm) + (387-582 nm)<br />

410-433 nm<br />

(594-620 nm) + (297-310 nm)<br />

448--543 nm<br />

(642-775 nm) + (321-358 nm)<br />

423-480 nm<br />

(608-687 nm) + (304-343 nm)<br />

636-1000 nm<br />

(906-2100 nm) + (453-1050 nm)<br />

496-675 nm<br />

(710-960 nm) + (355-480 nm)<br />

549-844 nm<br />

(784-1200 nm) + (392-600 nm)<br />

1064 + (510-567 nm)<br />

440-525 nm<br />

(632-750 nm) + (316-375 nm)<br />

1064 + (243-340) nm<br />

1064 + (510-567 nm)<br />

1380-1460 nm<br />

355 nm<br />

1064 nm<br />

1064 nm + 532 nm<br />

532 nm<br />

Note: An MgF 2 protective coating can be provided on all <strong>BBO</strong> crystals (except for 0.1 mm thick) for additional cost per crystal<br />

6<br />

209-232 nm<br />

200-220 nm<br />

227-280 nm<br />

217-266 nm<br />

271-410 nm<br />

258-388 nm<br />

205-216 nm<br />

198-206 nm<br />

224-271 nm<br />

214-258 nm<br />

211-240 nm<br />

203-229 nm<br />

318-500 nm<br />

302-700 nm<br />

248-337 nm<br />

237-320 nm<br />

275-422 nm<br />

262-400 nm<br />

345-370 nm<br />

220--262 nm<br />

211-250 nm<br />

198-257 nm<br />

345-370 nm<br />

690-730 nm<br />

410-2000 nm<br />

532 nm<br />

355 nm<br />

266 nm


Ordering Information<br />

All crystal growth, orientation, fabrication, polishing,<br />

and testing of <strong>BBO</strong> at INRAD is done at one site, so that<br />

you are assured of complete traceability and satisfaction<br />

with every crystal that you purchase.<br />

Sizes<br />

Specify cross-section and length. Available crystal<br />

lengths range from 50 μm, for extremely short pulse<br />

work, up to about 15 mm for nanosecond OPO/OPA use.<br />

Typical angular phasematching crystal lengths for frequency<br />

mixing of nanosecond sources range from 5 mm<br />

at the shortest wavelengths, up to 10 mm at the longest<br />

wavelengths, with the optimum length largely being determined<br />

by the angular acceptance of the crystal for phasematching.<br />

Orientation<br />

Specify Type I or Type II and the phase match angle, θ.<br />

Crystals are oriented in a double crystal x ray spectrometer<br />

and are typically accurate to ±5 minutes.<br />

Type I<br />

Finishing<br />

Wavefront distortion in transmission is typically λ/10.<br />

Crystals can be wedged, typically 30’ in the less critical<br />

tuning direction or parallel to w 2 w 1 for largest w 3


Literature Cited<br />

1. C.T. Chen, B. Wu, A. Jiang, G. You, R. Li and S. Lin, Sci. Sin., 18, 235 (1985).<br />

2. D. Eimerl, L. Davis, S. Velsko, E.K. Graham and A. Zalkin, J Appl. Phys., 62, 1968 (1987).<br />

3. D. Guiqin, L. Wei, A. An, H. Qingzhen, and L. Jinkui, J. Am. Ceram. Soc., 73 2526 (1990).<br />

4. R. C. Eckardt, H. Masuda, Y.X. Fan, and R.L. Byer, IEEE. J. Quant. Elect., 26, 922 (1990).<br />

5. H. Nakatani, W. Bosenberg, L.K. Cheng, and C.L. Tang, Appl. Phys. Lett., 52, 1288 (1988).<br />

6. C.A. Ebbers, Appl. Phys. Lett., 52, 1948 (1988).<br />

7. G.C. Bahr, U. Chatterjee, and S. Das, Appl. Phys. Lett., 58, 231, (1991).<br />

8. K. Kato, IEEE. J. Quant. Electron., 22, 1013 (1986).<br />

9. K. Miyazaki, H. Sakai, and T. Sato, Opt. Lett., 11, 797 (1986).<br />

10. M . Watanabe, K. Hayasaka, H. Imajo, and Shinji Urabe, Opt. Lett., 17, 46 (1992).<br />

11. K. Kato, Rev. Laser Eng., 18, 3 (1991).<br />

12. T.A. Caughey, F.C. Chen, S.L. Trokel, H. Schubert, C. Martin, and S.D. Jacobs, Lasers and Light in<br />

Opthalmology, 6, 77 (1994).<br />

13. T. Meguro, T. Caughey, and L. Wolf, Opt. Lett., 19, 102 (1994)<br />

14. G.A. Rines, H.H. Zenzie, R.A. Schwarz, Y. Isyanova, and P.J. Moulton, IEEE. J. of Sel. Top. in Quant.<br />

Elect., 1, 50 (1995).<br />

15. Y. X Fan, R.C. Eckardt, R. L. Byer, C. Chen, and A.D. Jiang, IEEE. J. Quant. Electron., 25, 1196<br />

(1998).<br />

16. W. R. Bosenberg, W.S. Peloch, and C.L. Tang, Appl. Phys. Lett., 55, 1952 (1989).<br />

17. Y.X. Fan, R. C. Eckerdt, R.L. Byer J. Nolting, and R. Wallenstein, Appl. Phys. Lett., 53, 2014 (1998).<br />

18. L.K. Cheng, W.R. Rosenberg, and C.L. Tang, Appl. Phys. Lett., 53, 175 (1998).<br />

19. W.R. Rosenberg and C.L. Tang, Appl. Phys. Lett., 56, 1819 (1990).<br />

20. M.K. Reed, M.K. Steiner-Shepard, and D.K. Negus, Opt. Lett., 19, 1855 (1994).<br />

21. M. K. Reed, M.S. Armas, M.K. Steiner-Shepard, and D.K. Negus, Opt. Lett., 20, 605 (1995).<br />

22. M.K. Reed, M.K. Steiner-Shepard, paper WE7-1, Advanced Solid Stats Lasers Conference, San<br />

Francisco, CA (1996).<br />

23. W. R. Bosenberg, L.K. Cheng, and C.L. Tang, Appl. Phys. Lett., 54, 13 (1989).<br />

24. F Haung and L. Haung, IEEE. J. Quant. Electron., 30, 2601 (1994).<br />

25. W. Jossen, H.J. Bakker, L.D. Noordam, H. G. Muller, and H.B. van Linden van den Heuvell, J. Opt.<br />

Soc. Am. B., 8, 2537 (1991).<br />

26. W. Joosen, P. Agostini, G. Petite, J.P. Chambaret, and A. Antonetti, Opt. Lett., 17, 133 (1992).<br />

27. J.Y. Haung, J.Y. Zhang, U.R. Shen, C. Chen, and B. Wu, Appl. Phys. Lett., 57, 1961 (1990).<br />

28. K.L. Cheng, W. Bosenberg, F. W. Wise, I.A. Walmsley, and C.L. Tang, Appl. Phys. Lett., 52 (519<br />

(1998).<br />

29. D.C. Edelstein, E.S. Wachman, L. K. Cheng, W.R. Bosenberg, and C.L. Tang, Appl. Phys. Lett., 52,<br />

2211 (2988).<br />

30. Phasematching angles are calculated using the Sellmeier Equations given in reference 8.<br />

31. G.D. Goodno, Z. Guo, R.J.D. Miller, I.J. Miller, J.W. Montgomery, S.R. Adhav, and R.S. Adhav, Appl.<br />

Phys. Lett., 66, 1575 (1995).<br />

32. G. Ghosh, J. Appl. Phys. 78, 6752 (1995).<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!