22.07.2013 Views

Quantification of methylene blue aggregation on a fused silica ...

Quantification of methylene blue aggregation on a fused silica ...

Quantification of methylene blue aggregation on a fused silica ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

Quanti®cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> a <strong>fused</strong><br />

<strong>silica</strong> surface and resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

absorbance spectra<br />

Shane M. Ohline * , Sunyoung Lee, Stacie Williams, C<strong>on</strong>nie Chang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Wellesley College, Wellesley, MA 02481, USA<br />

Received 11 July 2001<br />

The absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> aggregates adsorbed by spin coating <strong>on</strong> a <strong>fused</strong> <strong>silica</strong> surface<br />

are resolved. Using singular value decompositi<strong>on</strong> and a model incorporating Beer's Law and elemental c<strong>on</strong>servati<strong>on</strong>, a<br />

varied c<strong>on</strong>centrati<strong>on</strong> family <str<strong>on</strong>g>of</str<strong>on</strong>g> UV±Vis spectra are ®t. Results indicate that H-dimer formati<strong>on</strong> occurs beginning at a<br />

surface c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 10 13 molecules=cm 2 , and further aggregate formati<strong>on</strong>, including J-type dimers, is signi®cant<br />

above 2 10 14 molecules=cm 2 . Based <strong>on</strong> our results, past assumpti<strong>on</strong>s that a spin-coated surface using a millimolar<br />

coating soluti<strong>on</strong>) results in a m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> m<strong>on</strong>omers should be reexamined. Ó 2001 Elsevier<br />

Science B.V. All rights reserved.<br />

1. Introducti<strong>on</strong><br />

28 September 2001<br />

Chemical Physics Letters 346 2001) 9±15<br />

Past work to examine the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

dye molecules, including <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> and<br />

rhodamine dyes, adsorbed <strong>on</strong> <strong>fused</strong> <strong>silica</strong> surfaces<br />

[1±7] has used a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorpti<strong>on</strong> methods to<br />

produce a thin ®lm <str<strong>on</strong>g>of</str<strong>on</strong>g> dye at the surface. The<br />

methods used have included spin coating [2], depositi<strong>on</strong><br />

from a c<strong>on</strong>centrated soluti<strong>on</strong> [3], and<br />

wiping the surface with lens paper and a drop <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dye soluti<strong>on</strong> [8]. Once coated, various n<strong>on</strong>linear<br />

[2,3] and linear [7] spectroscopic techniques were<br />

used to determine the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dye molecules<br />

relative to surface normal. Despite extensive<br />

* Corresp<strong>on</strong>ding author. Present address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chemistry, 1253 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreg<strong>on</strong>, Eugene, OR97403-<br />

1253, USA. Fax: +1-781-283-3642.<br />

E-mail address: sohline@wellesley.edu S.M. Ohline).<br />

0009-2614/01/$ - see fr<strong>on</strong>t matter Ó 2001 Elsevier Science B.V. All rights reserved.<br />

PII: S 0 0 0 9 - 2 6 1 4 0 1 ) 0 0 962-9<br />

www.elsevier.com/locate/cplett<br />

research by others <strong>on</strong> <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dyes in soluti<strong>on</strong><br />

[9±14], much <str<strong>on</strong>g>of</str<strong>on</strong>g> this interfacial work paid<br />

<strong>on</strong>ly cursory attenti<strong>on</strong> to the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> dimer<br />

or other aggregate formati<strong>on</strong> <strong>on</strong> the surface [2,5,7].<br />

In fact, much <str<strong>on</strong>g>of</str<strong>on</strong>g> the interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dye/<br />

surface spectroscopic data relied <strong>on</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aggregates. For example, in sec<strong>on</strong>d harm<strong>on</strong>ic<br />

generati<strong>on</strong> SHG) studies, to simplify data analysis,<br />

the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic transiti<strong>on</strong> dipole<br />

is frequently used as an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dominant<br />

tensor element c<strong>on</strong>tributing to the surface n<strong>on</strong>linear<br />

susceptibility. Subsequently, this is used to<br />

determine the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecule relative<br />

to surface normal [2,3]. If dimers or other aggregates)<br />

are present <strong>on</strong> the surface, the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the electr<strong>on</strong>ic transiti<strong>on</strong> dipole is not always<br />

known or obvious. There is no reas<strong>on</strong> to assume it<br />

will lie al<strong>on</strong>g the same axis in the m<strong>on</strong>omer and the<br />

dimer. This is particularly true if <strong>on</strong>e obtains SHG


10 S.M. Ohline et al. / Chemical Physics Letters 346 2001) 9±15<br />

using a wavelength res<strong>on</strong>ant with an electr<strong>on</strong>ic<br />

transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an aggregate. Thus formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates<br />

<strong>on</strong> the surface can dramatically a€ect the<br />

®nal results <strong>on</strong>e obtains in these orientati<strong>on</strong> determinati<strong>on</strong>s.<br />

Most recently, researchers hoping to increase<br />

the e€ectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> photovoltaic cells have investigated<br />

dye <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g>. To expand the range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the electromagnetic spectrum over which solar<br />

cells can collect energy, dye molecules have been<br />

applied to nanostructured semic<strong>on</strong>ductor surfaces<br />

[15,16] and semic<strong>on</strong>ductor nanoparticles [16±19] to<br />

determine if the dyes can e ciently transfer excitati<strong>on</strong><br />

energy to the semic<strong>on</strong>ductor. Informati<strong>on</strong><br />

which provided spectra and c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

various aggregates would be useful for these researchers<br />

in designing suitable coatings for<br />

photovoltaic cells.<br />

One problem inherent to most previous studies<br />

involving dyes is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative informati<strong>on</strong><br />

c<strong>on</strong>cerning the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the various aggregate<br />

species <strong>on</strong> solid surfaces. Without a simple<br />

relati<strong>on</strong>ship between the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

m<strong>on</strong>omers and dimers e.g., an equilibrium c<strong>on</strong>stant),<br />

as <strong>on</strong>e has in soluti<strong>on</strong>, it is di cult to determine<br />

analytically the relative c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each aggregate <strong>on</strong> the surface and their spectral<br />

signature. Using singular value decompositi<strong>on</strong><br />

SVD), Beer's Law and elemental c<strong>on</strong>servati<strong>on</strong>, we<br />

provide quantitative informati<strong>on</strong> about the degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <strong>on</strong> a quartz<br />

surface and identify the species involved. Brand et<br />

al. [20] have used a similar method to resolve the<br />

spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> rhodamine 6G aggregates up to the<br />

tetramer) in an aqueous soluti<strong>on</strong>. Using a spin<br />

coating technique, we show that formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Htype<br />

dimers occurs even at 4 10 5 M coating<br />

soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s, and more complex spectra<br />

are observed between 2 10 4 and 5 10 3 M.<br />

These c<strong>on</strong>centrati<strong>on</strong>s are within the range used by<br />

others in their SHG work typically 1 10 3 M)<br />

[2,3,8]. Finally, we analyze spectra <strong>on</strong> the surface<br />

up to 5:5 10 15 molecules=cm 2 coating soluti<strong>on</strong><br />

5 10 3 M), which show both <str<strong>on</strong>g>blue</str<strong>on</strong>g> and red-shifted<br />

absorpti<strong>on</strong> peaks relative to the m<strong>on</strong>omer, indicating<br />

both H- and J-type dimers are present.<br />

Using this novel technique to determine quantitatively<br />

aggregate c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> a surface, we<br />

show that past assumpti<strong>on</strong>s regarding surface<br />

coating could be revisited.<br />

2. Experimental<br />

Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> trihydrate Sigma,<br />

MB-1) were prepared in 200 pro<str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol. The<br />

c<strong>on</strong>centrati<strong>on</strong>s Ctot) ranged from 4:16 10 5 M<br />

0.5%) to 5:20 10 3 M and were made by serial<br />

diluti<strong>on</strong>s from a stock soluti<strong>on</strong>. This range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s was chosen to match those used by<br />

others in their orientati<strong>on</strong> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> dyes <strong>on</strong> surfaces<br />

[2,3]. Flat <strong>fused</strong> <strong>silica</strong> windows 1 in. diameter,<br />

3/16 in. thick, ESCO Products P110188) were<br />

cleaned in boiling sulfuric acid for 5 min, rinsed<br />

with dei<strong>on</strong>ized water then dried in an oven for<br />

several hours. The windows were then coated with<br />

the ethanolic soluti<strong>on</strong>s by spin coating. A<br />

2 ll 2:5% drop <str<strong>on</strong>g>of</str<strong>on</strong>g> the dye soluti<strong>on</strong> was placed in<br />

the center <str<strong>on</strong>g>of</str<strong>on</strong>g> each quartz window; these were then<br />

placed inside a hanging bucket centrifuge Beckman<br />

GS-6R) equipped with ¯at bottomed buckets<br />

and were spun at 2000 rpm for 2 min until the<br />

ethanol had completely evaporated. This left a<br />

measured circle <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 13 mm 1 mm) diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dye coating the surface. Using the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the dye<br />

circle and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> molecules<br />

in the 2 ll drop, surface c<strong>on</strong>centrati<strong>on</strong> in molecules/cm<br />

2 , C S ) was calculated …C S ˆ Ctot<br />

2 ll=area†. A UV±Vis spectrum was then obtained<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each surface Varian, Cary 500 NIRUV±Vis<br />

Spectrometer) using a solid sample holder. An<br />

uncoated quartz window spectrum was used as a<br />

background and was subtracted from each dye<br />

coated window. The sample was scanned at 1 nm/s<br />

from 400 to 800 nm, averaging 20 points per nanometer.<br />

A linear ®t to the baseline was performed<br />

and subtracted. The data were smoothed <strong>on</strong>ce<br />

before analysis using a binomial smoothing algorithm.<br />

3. Results and analysis<br />

Experimental data for a series <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s<br />

ranging between surface c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4:7 10 12 ±6:6 10 14 molecules=cm 2 are shown in


Fig. 1. Corresp<strong>on</strong>ding soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s are<br />

given in Table 1. The changes in the spectra, even<br />

at these low optical densities are clearly shown.<br />

The peak maximum around 650 nm has l<strong>on</strong>g been<br />

attributed to m<strong>on</strong>omer absorbance [9], while the<br />

peak at 600 nm grows in at higher c<strong>on</strong>centrati<strong>on</strong>s.<br />

Using excit<strong>on</strong> splitting theory [1,17,21], this <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

shifted peak is attributed to a sandwich-type dimer<br />

H-type) in which the angle between the planes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> are between 54.7° and 90°. Redshifted<br />

peaks, relative to the m<strong>on</strong>omer, are attributed<br />

to transiti<strong>on</strong>s from the ground state to a<br />

lower-lying S 1 state allowed <strong>on</strong>ly in J-type dimers<br />

Fig. 1. Experimental data for <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <strong>on</strong> quartz. See<br />

Table 1 for c<strong>on</strong>centrati<strong>on</strong>s corresp<strong>on</strong>ding to the labels.<br />

which have an angle between the methlyene <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

planes <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 54.7° [1,17,21]. Oblique dimers<br />

with an angle greater than 90° between the<br />

m<strong>on</strong>omers), result in both red and <str<strong>on</strong>g>blue</str<strong>on</strong>g> shifted<br />

peaks.<br />

To identify the aggregates and their relative<br />

c<strong>on</strong>centrati<strong>on</strong>s, we follow and modify the method<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Brand et al. [20]. First, we use the method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SVD [22] to determine the number <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrally<br />

independent species involved in the total spectrum.<br />

SVD <str<strong>on</strong>g>of</str<strong>on</strong>g> our 6 370 matrix 6 spectra each at a<br />

di€erent c<strong>on</strong>centrati<strong>on</strong>, 370 wavelengths in the<br />

431±800 nm range) gave the results shown in Fig. 2.<br />

Table 1<br />

Soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s used to coat quartz surfaces and resulting surface c<strong>on</strong>centrati<strong>on</strong> C S ) shown in Fig. 1<br />

Spectrum Soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

M) 0.5%)<br />

S.M. Ohline et al. / Chemical Physics Letters 346 2001) 9±15 11<br />

Fig. 2. SVD results for the data presented in Fig. 1. The singular<br />

values are noted by m and are normalized to the highest<br />

value. Each graph has the same scale as that noted in the upper<br />

left hand corner <str<strong>on</strong>g>of</str<strong>on</strong>g> this ®gure.<br />

Surface c<strong>on</strong>centrati<strong>on</strong><br />

mol/cm 2 )<br />

Surface c<strong>on</strong>centrati<strong>on</strong><br />

molecules/cm 2 )<br />

a 5:20 10 4 1:1 :1 10 9 6:6 :9 10 14<br />

b 2:60 10 4 2:6 :3 10 10 1:6 :1 10 14<br />

c 1:04 10 4 1:0 :1 10 10 6:2 :6 10 13<br />

d 4:16 10 5 4:7 :5 10 11 2:8 :3 10 13<br />

e 2:08 10 5 2:4 :2 10 11 1:4 :1 10 13<br />

f 5:20 10 6 7:8 :9 10 12 4:7 :5 10 12


12 S.M. Ohline et al. / Chemical Physics Letters 346 2001) 9±15<br />

The singular value for each spectral vector is given<br />

by the value m in each frame. The values are<br />

normalized by the highest value for comparis<strong>on</strong>.<br />

From these spectral vectors, we see that two values<br />

are clearly above the noise level in the spectra,<br />

str<strong>on</strong>gly suggesting the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> two species,<br />

most likely the m<strong>on</strong>omer and the dimer. The third<br />

spectral vector also may be signi®cant, possibly<br />

indicating the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a trimer. SVD al<strong>on</strong>e<br />

does not resolve the spectral signature <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

aggregate. However, the spectra in Fig. 1 are a<br />

linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> each spectrally<br />

distinct chemical species. To recover the<br />

spectrum for each species, we use a model to ®t our<br />

data. First, we use elemental c<strong>on</strong>servati<strong>on</strong>, the fact<br />

that the total c<strong>on</strong>centrati<strong>on</strong> in soluti<strong>on</strong> is the<br />

weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> each species<br />

Ctot ˆ X<br />

nCn; …1†<br />

n<br />

where Ctot is the total c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methylene</str<strong>on</strong>g><br />

<str<strong>on</strong>g>blue</str<strong>on</strong>g> in the ethanolic soluti<strong>on</strong> before coating, n ˆ 1<br />

for the m<strong>on</strong>omer, n ˆ 2 for the dimer, etc., and Cn<br />

is the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each n-mer in the soluti<strong>on</strong>.<br />

Sec<strong>on</strong>d, Beer's law states that the absorbance,<br />

A…k†, can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong>s,<br />

Cn, and the molar extincti<strong>on</strong> coe cient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each n-mer, n…k†<br />

A…k† ˆL X<br />

Cn n…k†; …2†<br />

C S<br />

tot<br />

n<br />

where L is the optical path length. The units <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

L Cn can be expressed in moles/cm2 , which is<br />

surface c<strong>on</strong>centrati<strong>on</strong> CS ). Because we know <strong>on</strong>ly<br />

the Ctot and CS tot , and not each Cn or CS n , and we do<br />

not know the path length L) for our samples, we<br />

use the surface c<strong>on</strong>centrati<strong>on</strong> in Eqs. 1) and 2) to<br />

obtain<br />

X<br />

ˆ …3†<br />

n<br />

n<br />

nC S<br />

n<br />

and<br />

A…k† ˆ X<br />

C S<br />

n n…k†: …4†<br />

By ®tting our data to Eqs. 3) and 4) simultaneously,<br />

we obtain values for n…k† for each species<br />

and the surface c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each n-mer <strong>on</strong> the<br />

surface. Before we perform the ®tting <str<strong>on</strong>g>of</str<strong>on</strong>g> the data<br />

in Fig. 1, the experimental absorbance measurements<br />

are normalized to account for the di€erences<br />

in magnitude between the lowest and the highest<br />

total surface c<strong>on</strong>centrati<strong>on</strong>. We divide the absorbance<br />

in each spectrum by the area under that<br />

spectrum. In this way, we do not overemphasize<br />

the highest c<strong>on</strong>centrati<strong>on</strong>s in our ®tting procedure.<br />

To perform our numerical ®t <str<strong>on</strong>g>of</str<strong>on</strong>g> the data set, we<br />

c<strong>on</strong>structed an algorithm using Matlab ver. 6.0,<br />

The Mathworks), Eqs. 3) and 4) and a n<strong>on</strong>linear<br />

least squares Levenburg±Marquardt minimizati<strong>on</strong><br />

routine. The functi<strong>on</strong> minimized, v 2 , was de®ned<br />

as the weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the squares <str<strong>on</strong>g>of</str<strong>on</strong>g> the di€erences<br />

between the acquired data A…k† and C S tot )<br />

and the ®tting parameters, as de®ned in Eqs. 3)<br />

and 4)<br />

v 2 ˆ XNsam XNsp mˆ1<br />

nˆ1<br />

…CS tot † m nCS h i2 n m<br />

r 2 mn …CS tot † n<br />

‡ XNsam<br />

PNsp X A…k† m nˆ1<br />

mˆ1 k<br />

…CS n † h i2 m …k† nm †<br />

r2 mkA…k† ;<br />

m<br />

…5†<br />

where Nsam corresp<strong>on</strong>ds to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples<br />

from which we obtained spectra 6 for Fig. 1); Nsp<br />

corresp<strong>on</strong>ds to the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> n-mers <strong>on</strong> the<br />

surface e.g., n ˆ 3 for a ®t <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omer, dimer and<br />

trimer); k corresp<strong>on</strong>ds to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelengths<br />

collected in each spectrum.<br />

Variance in each data point are represented by<br />

r2 mk and r2 mn . Variances are noted for the CS tot data<br />

in Table 1. A typical value for r2 mk was 10 5 based<br />

<strong>on</strong> repeat absorbance measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the same<br />

surface. With typical absorbance readings <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.001, the value for r2 mkA…k† m was <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 8 . The importance in proper weighting<br />

has been outlined elsewhere [23].<br />

Because we do not know our CS n or n…k† for any<br />

species, an in®nite variety <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s are equivalent<br />

[24]. One must place additi<strong>on</strong>al c<strong>on</strong>straints<br />

<strong>on</strong> the system to ®nd an unique soluti<strong>on</strong>. We place<br />

c<strong>on</strong>straints <strong>on</strong> our system based <strong>on</strong>: i) the results<br />

from the SVD analysis that there are 2 or possibly<br />

3 species), ii) the fact that Eq. 3) is valid, and<br />

therefore poses a c<strong>on</strong>straint <strong>on</strong> the system while<br />

®tting spectral data, and iii) that all values <str<strong>on</strong>g>of</str<strong>on</strong>g> CS n<br />

and n…k† be positive.


The results <str<strong>on</strong>g>of</str<strong>on</strong>g> our analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1 are shown in<br />

Fig. 3. From these results, we ®nd that <strong>on</strong>ly the<br />

m<strong>on</strong>omer and H-type dimer appear to be present up<br />

to surface c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 6:6 10 14<br />

molecules=cm 2 . Although the spin-coating method<br />

was employed here, we have used other techniques<br />

to coat the surface, including soluti<strong>on</strong> dipping [3]<br />

and applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> by lens tissue [8] and ®nd<br />

very similar spectral results to those observed in Fig.<br />

1. This indicates that the methods <str<strong>on</strong>g>of</str<strong>on</strong>g> coating do not<br />

generally a€ect the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g>, and our<br />

method <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis can be used for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coating techniques. However, spin coating enables a<br />

n<strong>on</strong>-spectroscopic determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface c<strong>on</strong>centrati<strong>on</strong>,<br />

necessary to complete this analysis.<br />

Also, we note that the values we obtained for 1 650<br />

nm) and 2 600 nm) are similar to those obtained for<br />

methlyene <str<strong>on</strong>g>blue</str<strong>on</strong>g> in soluti<strong>on</strong> [14,25].<br />

To determine if trimers were also present <strong>on</strong> the<br />

surface, we ®t the data in Fig. 1 to a three species<br />

model. We ®nd that although v 2 is lower for the<br />

three species ®t, no unique spectral signature <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

trimer could be determined in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

c<strong>on</strong>centrati<strong>on</strong>s shown in Fig. 1. The dominant<br />

Fig. 3. Results obtained by ®tting experimental data in Fig. 1<br />

to Eqs. 3) and 4) simultaneously. The top ®gure shows the<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the absorpti<strong>on</strong> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>omer and Htype<br />

dimer, while the bottom ®gure shows the quantitative<br />

values for the surface c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> both the m<strong>on</strong>omer and<br />

dimer.<br />

S.M. Ohline et al. / Chemical Physics Letters 346 2001) 9±15 13<br />

trimer peak appeared at 650 nm, directly below the<br />

m<strong>on</strong>omer. Additi<strong>on</strong>ally, the calculated surface<br />

c<strong>on</strong>centrati<strong>on</strong>s for the trimer CS 3 ) were <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> four orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude smaller than<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>omer and dimer. Therefore, we<br />

deduce that m<strong>on</strong>omers and H-type dimers are the<br />

primary species up to a surface c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

6:6 1014 molecules=cm2 see Table 2).<br />

In another experiment, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> which are<br />

shown in Fig. 4, we increased surface c<strong>on</strong>centrati<strong>on</strong><br />

up to 5:5 1015 molecules=cm2 . These spectra<br />

are particularly interesting because, after clear <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> the peak from 656 to 600 nm, indicating<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an H-type dimer, the 600 nm<br />

peak c<strong>on</strong>tinues to increase in magnitude and<br />

broaden to the <str<strong>on</strong>g>blue</str<strong>on</strong>g>, and a new peak appears at 690<br />

nm. Using the analysis outlined in detail above, we<br />

®t these data to two, three and four species models.<br />

Results for this set <str<strong>on</strong>g>of</str<strong>on</strong>g> spectra indicate a signi®cant<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the H-type dimer, but also a J-type<br />

dimer bey<strong>on</strong>d a coating c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 10 4<br />

M. J-type dimers will appear to the red <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

m<strong>on</strong>omer peak, as justi®ed by excit<strong>on</strong> splitting<br />

theory [1,21]. Based <strong>on</strong> the statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> this ®t, the<br />

stoichiometric coe cient <str<strong>on</strong>g>of</str<strong>on</strong>g> both the 600 and 690<br />

nm peak must be two, indicating that both are<br />

dimers rather than higher aggregates. Work will<br />

c<strong>on</strong>tinue to characterize these species. Additi<strong>on</strong>ally,<br />

¯uorescence spectroscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> these samples<br />

will assist in characterizing the aggregates, as an<br />

H-type dimer does not ¯uoresce, while J- and oblique-type<br />

dimers do.<br />

4. Discussi<strong>on</strong> and c<strong>on</strong>clusi<strong>on</strong><br />

Results from Experiment 1 al<strong>on</strong>e shown in Fig.<br />

1) indicate that between 1 10 4 and 1 10 3 M<br />

Table 2<br />

Results from ®tting <str<strong>on</strong>g>of</str<strong>on</strong>g> data from Fig. 1<br />

Model, n v2 weighted)<br />

1, 2 136.031<br />

1, 3 136.069<br />

1, 4 137.386<br />

1, 2, 3 133.442<br />

1, 2, 4 133.673<br />

The ®nal analysis results are shown in Fig. 3.


14 S.M. Ohline et al. / Chemical Physics Letters 346 2001) 9±15<br />

Fig. 4. Experimental results for <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> coated <strong>on</strong> a<br />

<strong>fused</strong> <strong>silica</strong> surface. Corresp<strong>on</strong>ding surface c<strong>on</strong>centrati<strong>on</strong>s are<br />

given in Table 3.<br />

coating soluti<strong>on</strong>, dimerizati<strong>on</strong> is signi®cant.<br />

Therefore past SHG results should require the<br />

molecules be modeled not as rod-like m<strong>on</strong>omers<br />

but also as dimers. Although, in their work <strong>on</strong><br />

<str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> at the <strong>fused</strong> <strong>silica</strong> surface, Corn et<br />

al. [3] determined two rather than <strong>on</strong>e, as other<br />

SHG analysis has used for large aromatic dye<br />

molecules [2]) molecular tensor elements c<strong>on</strong>tributed<br />

to the surface n<strong>on</strong>linear susceptibility, this<br />

work still assumed a m<strong>on</strong>omer as the dominant<br />

species <strong>on</strong> the surface. Several wavelengths were<br />

used to obtain a SHG signal, two <str<strong>on</strong>g>of</str<strong>on</strong>g> these wavelengths<br />

585 and 615 nm) overlap dimer rather<br />

than m<strong>on</strong>omer res<strong>on</strong>ance, as is shown by our<br />

spectral signature for the H-type dimer Fig. 3).<br />

Thus c<strong>on</strong>tributi<strong>on</strong>s to the SHG signal would be<br />

dominated by dimers rather than m<strong>on</strong>omers.<br />

Recent work by Leach et al. [4] evaluated <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> similarly sized) rhodamine 6G <strong>on</strong><br />

<strong>fused</strong> <strong>silica</strong> and found dimers were present at<br />

c<strong>on</strong>centrati<strong>on</strong>s in the range used previously to<br />

determine molecular orientati<strong>on</strong> at this interface<br />

[2]. They also found the SHG signal from this<br />

surface oscillated. Each maximum in SHG signal<br />

corresp<strong>on</strong>ded to the completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a new m<strong>on</strong>olayer<br />

and apparent ordering <str<strong>on</strong>g>of</str<strong>on</strong>g> the probed surface<br />

[4]. Leach's work proved SHG signal does not<br />

arise solely from the single dye m<strong>on</strong>olayer directly<br />

adsorbed to the <strong>fused</strong> <strong>silica</strong> surface, but rather<br />

from that surface and any ordered bulk above this<br />

layer. Therefore c<strong>on</strong>tributi<strong>on</strong>s from ordered dimers,<br />

at or in the bulk above the surface, will<br />

c<strong>on</strong>tribute to SHG signal and a€ect orientati<strong>on</strong><br />

determinati<strong>on</strong>). Unpublished atomic force images<br />

from our lab indicate that both <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

and rhodamine 6G coated <strong>fused</strong> <strong>silica</strong> surfaces<br />

coated by all <str<strong>on</strong>g>of</str<strong>on</strong>g> the three methods described here<br />

and a 1 10 3 M soluti<strong>on</strong>) are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 30<br />

nm thick islands separated by several hundred<br />

nanometers [26]. These images, with the UV±Vis<br />

spectra analyzed in this paper, indicate that these<br />

coating methods do not result in a simple m<strong>on</strong>olayer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dye m<strong>on</strong>omers. The surface created is<br />

signi®cantly more complicated than was previously<br />

assumed.<br />

By showing the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H- and J-type<br />

dimers at higher surface c<strong>on</strong>centrati<strong>on</strong>s, we also<br />

indicate that <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> may be <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to<br />

Table 3. Soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s used to coat quartz surfaces and resulting surface c<strong>on</strong>centrati<strong>on</strong> C S ) in mol/cm 2 shown in Fig. 4<br />

Spectrum Soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

M) 0.5%)<br />

Surface c<strong>on</strong>centrati<strong>on</strong><br />

mol/cm 2 )<br />

Surface c<strong>on</strong>centrati<strong>on</strong><br />

molecules/cm 2 )<br />

a 5:20 10 3 9:2 1 10 9 5:5 :9 10 15<br />

b 2:60 10 3 2:0 :2 10 9 1:2 :1 10 15<br />

c 2:60 10 4 3:4 :4 10 10 2:0 :2 10 14<br />

d 1:04 10 4 1:4 :1 10 10 8:1 :9 10 13<br />

e 4:16 10 5 6:3 :6 10 11 3:8 :4 10 13<br />

f 2:08 10 5 2:7 :3 10 11 1:6 :2 10 13<br />

g 1:04 10 5 1:4 :1 10 11 8:1 :9 10 12


those c<strong>on</strong>sidering it as an energy transferring dye<br />

in photovoltaic cells. Because it has l<strong>on</strong>g been<br />

believed that <strong>on</strong>ly H-type dimers, which do not<br />

¯uoresce, were formed by <str<strong>on</strong>g>methylene</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g>, this dye<br />

was not generally useful to transfer energy to an<br />

underlying semic<strong>on</strong>ductor. However, J-type dimers,<br />

represented by the peak at 690 nm may be<br />

more useful to transfer energy to a semic<strong>on</strong>ductor<br />

surface. Finally, this new numerical method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregate spectra and c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>on</strong> a surface should prove useful for a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> dye/surface combinati<strong>on</strong>s, as quantitative<br />

evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aggregati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> surfaces has been<br />

limited to date.<br />

Acknowledgements<br />

We gratefully acknowledge support from: The<br />

Camille and Henry Dreyfus Foundati<strong>on</strong> New<br />

Faculty Start-Up), Research Corporati<strong>on</strong><br />

Cottrell College Science Award), the American<br />

Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> University Women American<br />

Fellowship), HHMI Undergraduate Biological<br />

Sciences Educati<strong>on</strong> Progam and NSF-REU.<br />

Finally, SMO would like to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Geri<br />

Richm<strong>on</strong>d and the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreg<strong>on</strong> for<br />

providing an ideal envir<strong>on</strong>ment in which to<br />

complete this work.<br />

References<br />

[1] K. Kemnitz, N. Tamai, I. Yamazkaki, N. Nakashima, K.<br />

Yoshihara, J. Phys. Chem. 90 1986) 5094.<br />

[2] T. Heinz, C. Chen, D. Ricard, Y. Shen, Phys. Rev. Lett. 48<br />

7) 1982) 478.<br />

S.M. Ohline et al. / Chemical Physics Letters 346 2001) 9±15 15<br />

[3] D. Higgins, S. Byerly, M. Abrams, R. Corn, J. Phys.<br />

Chem. 95 1991) 6984.<br />

[4] T. Kikteva, D. Star, Z. Shao, T. Barisley, G.W. Leach, J.<br />

Phys. Chem. B 103 1999) 1124.<br />

[5] G. Hahner, A. Marti, N. Spencer, W. Caseri, J. Chem.<br />

Phys. 104 19) 1996) 7749.<br />

[6] S. Meech, K. Yoshihara, Photochem. Photobiol. 53 5)<br />

1991) 627.<br />

[7] M. Elking, G. He, Z. Xu, J. Chem. Phys. 105 15) 1996)<br />

6565.<br />

[8] E. Peters<strong>on</strong>, C. Harris, J. Chem. Phys. 91 1989) 2683.<br />

[9] L. Epstein, E. Rabinowitch, JACS 63 1941) 69.<br />

[10] J. Georges, Spectrochimica Acta 151A 6) 1994) 985.<br />

[11] J. Steinfeld, J. Selwyn, J. Phys. Chem. 76 5) 1972) 762.<br />

[12] T. Kajiwara, R.W. Chambers, D.R. Kearns, Chem. Phys.<br />

Lett. 22 1) 1973) 37.<br />

[13] D. Neckers, O. Valdes-Aguilera, Acc. Chem. Res. 22 1989)<br />

171.<br />

[14] J. Sutter, W. Spencer, J. Phys. Chem. 83 12) 1979) 1573.<br />

[15] A. Khazraji, S. Hotchandani, S. Das, P. Kamat, J. Phys.<br />

Chem. B 103 1999) 4693.<br />

[16] D. Liu, R.W. Fessenden, G. Hug, P.V. Kamat, J. Phys.<br />

Chem. B 101 1997) 2583.<br />

[17] I. Martini, G. Hartland, P. Kamat, J. Phys. Chem. B 101<br />

1997) 4826.<br />

[18] S. Barazzouk, H. Lee, S. Hotchandani, P.V. Kamat, J.<br />

Phys. Chem. B. 104 2000) 3616.<br />

[19] N. Chandrasekharan, P. Kamat, J. Hu, G.J. II, J. Phys.<br />

Chem. B 104 2000) 11103.<br />

[20] D. Toptygin, B. Packard, L. Brand, Chem. Phys. Lett. 277<br />

1997) 430.<br />

[21] E. McRae, M. Kasha, in: L. Augenstein, R. Mas<strong>on</strong>, B.<br />

Rosenberg Eds.), Physical Processes in Radiati<strong>on</strong> Biology,<br />

Academic Press, New York, 1964.<br />

[22] E. Henry, J. H<str<strong>on</strong>g>of</str<strong>on</strong>g>richter, in: L. Brand, M. Johns<strong>on</strong> Eds.),<br />

Methods in Enzymology, vol. 210, Academic Press, San<br />

Diego, 1992, p. 129.<br />

[23] E. Di Cera, in: L. Brand, M. Johns<strong>on</strong> Eds.), Methods in<br />

Enzymology, vol. 210, Academic Press, San Diego, 1992, p.<br />

68.<br />

[24] D. Toptygin, L. Brand, Anal. Biochem. 224 1995) 330.<br />

[25] A.K. Ghosh, Indian J. Chem. 12 1974) 313.<br />

[26] S. Ohline, S. Williams, 2001 in preparati<strong>on</strong>).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!