23.07.2013 Views

Effects of vegetation and land use on channel morphology.

Effects of vegetation and land use on channel morphology.

Effects of vegetation and land use on channel morphology.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> LaRd Use <strong>on</strong> Channel Morphology<br />

CATHERINE CLIFTONl<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Geography<br />

Madis<strong>on</strong>, Wisc<strong>on</strong>sin 53706 USA<br />

Abstract.-Spatial <str<strong>on</strong>g>and</str<strong>on</strong>g>. temporal morphologic variability in mountain streams may be attributed to local<br />

prevailing c<strong>on</strong>diti<strong>on</strong>s. Morphologically distinct reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> Wickiup Creek, in the Blue Mountains <str<strong>on</strong>g>of</str<strong>on</strong>g> central<br />

Oreg<strong>on</strong>, result from differences in the compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, physiography, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>use</str<strong>on</strong>g>. Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grazed <str<strong>on</strong>g>and</str<strong>on</strong>g> ungrazed meadow reaches <str<strong>on</strong>g>and</str<strong>on</strong>g> a forested reach loaded with large organic<br />

debris reveal specific differences related to the local envir<strong>on</strong>mental setting. Overall, width, depth, <str<strong>on</strong>g>and</str<strong>on</strong>g> cross<br />

secti<strong>on</strong> area do not increase systematically downstream. The greatest widths are found in the forested reach.<br />

Stream depths are at a maximum through the ungrazed meadow reach. Spatial variability results from prevailing<br />

<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Temporal variability in the un grazed exclosure results from the exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> livestock<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent re<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the meadow. Over a 50-year period without grazing, a 94% reducti<strong>on</strong> in <strong>channel</strong><br />

cross secti<strong>on</strong> area occurred.<br />

Spatial variability in a sec<strong>on</strong>d order, interm<strong>on</strong>tane<br />

stream results from differences in the structure <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>riparian <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, presence <str<strong>on</strong>g>of</str<strong>on</strong>g>embedded organic<br />

del;¢s, <str<strong>on</strong>g>and</str<strong>on</strong>g> local physiography. Temporal variability in<br />

<strong>channel</strong> <strong>morphology</strong> is largely the result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in<br />

grazing management.<br />

Several researchers have recognized the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> to fluvial processes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>channel</strong> <strong>morphology</strong>.<br />

Nans<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Beach (1977) describe the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g><br />

<strong>on</strong> <strong>channel</strong> <strong>morphology</strong> in northeastern British Columbia,<br />

where varying densities <str<strong>on</strong>g>of</str<strong>on</strong>g> floodplain <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> are<br />

influencing overbank sedimentati<strong>on</strong> rates. The character<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> also c<strong>on</strong>tributes to variability in<br />

<strong>channel</strong> <strong>morphology</strong>. In Verm<strong>on</strong>t, small streams flowing<br />

through sod tend to be narrower <str<strong>on</strong>g>and</str<strong>on</strong>g> deeper than streams<br />

under forest cover (Zimmerman et al. 1967). Forested<br />

reaches <str<strong>on</strong>g>of</str<strong>on</strong>g>stream tend to have highly variable widths as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g>local disturbance. Smith (1976) observedthe role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> in reducing bank erosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent lateral<br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a glacial meltwater <strong>channel</strong>. Erosi<strong>on</strong><br />

rates drop with increases in root mass in <strong>channel</strong> bank<br />

sediments, as <strong>channel</strong> bank roots protect against fluvial<br />

erosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> anchor against collapse (Smith 1976).<br />

Large organic debris, derived from streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>,<br />

influences <strong>channel</strong> <strong>morphology</strong> by protecting<br />

streambanks <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing <strong>channel</strong> roughness. Further,<br />

woody debris helps c<strong>on</strong>trol the routing <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

water (Swans<strong>on</strong> et al. 1982). In steep mountain streams,<br />

organic debris c<strong>on</strong>trols local stream <strong>morphology</strong> by trapping<br />

sediment <str<strong>on</strong>g>and</str<strong>on</strong>g> creating plunge pools (Keller <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Swans<strong>on</strong> 1979). Log steps provide local c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>base level<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> serve to decrease <strong>channel</strong> gradients (Heede 1985). In a<br />

coastal redwood envir<strong>on</strong>ment, 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total drop in<br />

<strong>channel</strong> elevati<strong>on</strong> is associated with instream debris<br />

(Keller <str<strong>on</strong>g>and</str<strong>on</strong>g> Tally 1979).<br />

Historic <strong>channel</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g>ten obscure l<strong>on</strong>ger term<br />

<strong>channel</strong> evoluti<strong>on</strong>. Gregory (1984) <str<strong>on</strong>g>and</str<strong>on</strong>g> Hickin (1983) c<strong>on</strong>cluded<br />

that most rivers are dominated by transient behavior<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> never fully adjust to major climatologic events or<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>use</str<strong>on</strong>g> change. Historic <strong>channel</strong> adjustments have been<br />

further linked to the growth <str<strong>on</strong>g>and</str<strong>on</strong>g> decline <str<strong>on</strong>g>of</str<strong>on</strong>g>bank <str<strong>on</strong>g>and</str<strong>on</strong>g> floodplain<br />

<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>. Hadley (1961) <str<strong>on</strong>g>and</str<strong>on</strong>g> Graf (1978) describe<br />

<strong>channel</strong> narrowing <str<strong>on</strong>g>and</str<strong>on</strong>g> deepening in resp<strong>on</strong>se to the progressive<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> tamarisk in the southwestern USA.<br />

I Present address: U. S. Forest Service, Payette Nati<strong>on</strong>al Forest,<br />

McCall, Idaho 83638 USA<br />

121<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> livestock grazing <strong>on</strong> stream ecosystems<br />

are receiving attenti<strong>on</strong> from researchers in many fields.<br />

Biologists have l<strong>on</strong>g been aware <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing impacts <strong>on</strong><br />

fisheries resources (Platts 1979). Livestock effects can be<br />

divided into impacts <strong>on</strong>streamside<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>impacts<br />

<strong>on</strong> the adjacent <strong>channel</strong>. Vegetati<strong>on</strong> is altered by soil compacti<strong>on</strong>,<br />

selective herbage removal, <str<strong>on</strong>g>and</str<strong>on</strong>g> physical damage<br />

by trampling <str<strong>on</strong>g>and</str<strong>on</strong>g> rubbing (Kauffman <str<strong>on</strong>g>and</str<strong>on</strong>g> Kreuger 1984).<br />

Impacts <strong>on</strong> the stream <strong>channel</strong> include increased <strong>channel</strong><br />

bank instability, <strong>channel</strong> shape adjustments, <str<strong>on</strong>g>and</str<strong>on</strong>g> changes<br />

in sediment <str<strong>on</strong>g>and</str<strong>on</strong>g> discharge volumes (Platts 1979). Downstream<br />

from a fenced reach <str<strong>on</strong>g>of</str<strong>on</strong>g> stream in eastern Oreg<strong>on</strong>,<br />

Winegar (1977) found reduced sediment loads. By 1978, 9<br />

years after the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g>the exclosure, up to 3 m <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

material had aggraded withinthe exclosed reach(Winegar<br />

1977).<br />

The recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial morphologic<br />

variabilityin mountainstreams presents a challengetothe<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al analytic techniques. For<br />

example, the quasi equilibrium state described by downstream<br />

hydraulic geometry (LeoP!lld <str<strong>on</strong>g>and</str<strong>on</strong>g> Maddock 1953)<br />

may not accommodate the range <str<strong>on</strong>g>of</str<strong>on</strong>g> natural variability<br />

that is found in mountain streams. C<strong>on</strong>venti<strong>on</strong>al analysis<br />

such as hydraulic geometry is directed towards quantifiable<br />

deterministic soluti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> may ignore processes<br />

which ca<str<strong>on</strong>g>use</str<strong>on</strong>g> deviati<strong>on</strong>s from predicted trends (Hickin<br />

1984).<br />

The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the ca<str<strong>on</strong>g>use</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>morphologic variability,<br />

such as <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, basin characteristics, <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>use</str<strong>on</strong>g>,<br />

will c<strong>on</strong>tributetowards a broaderunderst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<str<strong>on</strong>g>of</str<strong>on</strong>g>change<br />

in the natural envir<strong>on</strong>ment as well as provide a gage for<br />

evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ses to management activities. L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

management goals <strong>on</strong> public l<str<strong>on</strong>g>and</str<strong>on</strong>g>s are evolving to include<br />

multiple resource management <str<strong>on</strong>g>of</str<strong>on</strong>g> fisheries, wildlife, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

recreati<strong>on</strong>, in additi<strong>on</strong> to the traditi<strong>on</strong>al <str<strong>on</strong>g>use</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>timber <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

range. Federal l<str<strong>on</strong>g>and</str<strong>on</strong>g> management agencies are developing<br />

strategies for streamside management(Beschta <str<strong>on</strong>g>and</str<strong>on</strong>g>Platts<br />

1986), but it may not be possible to enhance all stream<br />

resources simultaneously.<br />

Study Area<br />

Wickiup Creek is a sec<strong>on</strong>d order tributary to the Silvies<br />

River in central Oreg<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> has a drainage area <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 km2<br />

(Figure 1). The study basin lies at an average elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1,650 m above mean sea level <str<strong>on</strong>g>and</str<strong>on</strong>g> is largely forested (95%)<br />

with mixed st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>derosa pine Pinus p<strong>on</strong>derosa,<br />

lodgepole pinePinus c<strong>on</strong>torta, gr<str<strong>on</strong>g>and</str<strong>on</strong>g>firAbies gr<str<strong>on</strong>g>and</str<strong>on</strong>g>is, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Douglas fir Pseudotsuga menziesii. The drainage basin is


",.,<br />

characterized by steep forested slopes <str<strong>on</strong>g>and</str<strong>on</strong>g> narrow alluvial<br />

valleys. At its headwaters, Wickiup Creek is ephemeral,<br />

flowing through forested reaches. Downstream, flow<br />

becomes intermittent to perennial. The valley widens into<br />

open, sagebrush Artemisia spp. meadows <str<strong>on</strong>g>and</str<strong>on</strong>g> a me<str<strong>on</strong>g>and</str<strong>on</strong>g>ering<br />

pattern is established. Streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>annual <str<strong>on</strong>g>and</str<strong>on</strong>g> perennialherbaceous <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, occasi<strong>on</strong>al<br />

thickets <str<strong>on</strong>g>of</str<strong>on</strong>g>willow Salix spp., <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>mixed c<strong>on</strong>ifers,<br />

predominantly lodgepole pine. Seas<strong>on</strong>al livestock grazing<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> timberharvest c<strong>on</strong>stitute the principlel<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>use</str<strong>on</strong>g> activities<br />

in the study area. The Qasin falls within a larger cattle<br />

allotment that is divided into six pastures <str<strong>on</strong>g>and</str<strong>on</strong>g> is currently<br />

managed under a rest-rotati<strong>on</strong> grazing system. In<br />

1938, the county agricultural agent<str<strong>on</strong>g>and</str<strong>on</strong>g> U. S. Forest Service<br />

pers<strong>on</strong>nel cooperated in the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2.8-hectare<br />

fenced livestock exclosure <strong>on</strong> Wickiup Creek to dem<strong>on</strong>strate<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing <strong>on</strong> forage producti<strong>on</strong>.<br />

Figure I.-Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> study area.<br />

OREGON<br />

45·<br />

WICKIUP CREEK<br />

·study<br />

area<br />

scale: ?<br />

i N<br />

I<br />

kilometers<br />

Study Reaches<br />

In order to establish patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>channel</strong> <strong>morphology</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> evaluate sources <str<strong>on</strong>g>of</str<strong>on</strong>g> variability, the length (9.2 km) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wickiup Creek was divided int<str<strong>on</strong>g>of</str<strong>on</strong>g>ive studyreaches (Figure 2).<br />

A reach was identified as having similar physiography,<br />

<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, <strong>channel</strong> pattern, <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>use</str<strong>on</strong>g> treatment<br />

(Table 1).<br />

2<br />

I<br />

122<br />

Figure 2.-Study reaches <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> selected <strong>channel</strong> cross<br />

secti<strong>on</strong> survey sites.<br />

t<br />

N<br />

I<br />

Icale:<br />

o<br />

kilometer.<br />

Table I.-Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> principle reach characteristics.<br />

Reach'<br />

Distance<br />

downstream<br />

(meters) Descripti<strong>on</strong><br />

1 2,414-3,863 Steep, forested, headwater <strong>channel</strong>;<br />

ephemeral to intermittent flow.<br />

2a 3,863-4,255 Moderate slope, meadow, mid-basin<br />

<strong>channel</strong>; intermittent to perennial.<br />

2b 4,255-4,705 Exclosure <strong>channel</strong>-same as 2a.<br />

3 4,705-5,538 Moderate slope, forested reach, embedded<br />

large organic debris; perennial<br />

flow.<br />

4 5,538-8,153 Moderate to gentle slope, meadowforest,<br />

valley widening; perennial.<br />

5 8,153-9,300 Moderate to gentle slope, meadow;<br />

perennial flow.<br />

Methods<br />

Field sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> historic documentary evidence were<br />

combined for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> identifying stream <strong>channel</strong><br />

interacti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>se to riparian <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, physiography,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> livestock grazing. Field data recovery was<br />

based <strong>on</strong> the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g>representative cross secti<strong>on</strong><br />

survey sites atintervals al<strong>on</strong>g Wickiup Creek (reaches I,


can be rejected supporting the c<strong>on</strong>tenti<strong>on</strong> that differences<br />

in betwftn-group <strong>channel</strong> <strong>morphology</strong> are representative<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> real differences in the <strong>morphology</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Wickiup Creek. In<br />

sum, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance support the<br />

differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reaches based <strong>on</strong> the following criteria:<br />

drainage basin characteristics, <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> management<br />

treatment.<br />

formed <strong>on</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardizedregressi<strong>on</strong> residuals. Byanalyzing<br />

regressi<strong>on</strong> residuals, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing drainage<br />

area are removed, isolating variabilitydue to otherfactors.<br />

The residuals are grouped by reaches, <str<strong>on</strong>g>and</str<strong>on</strong>g> the means <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>s compared. Again, significant differ­<br />

ences (P =:; 0.05) are found, further supporting the charac­<br />

terizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reach <strong>morphology</strong>.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisher's LSD Test<br />

Comparingactual values <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardresiduals (Table<br />

4) reveals a decrease in the level <str<strong>on</strong>g>of</str<strong>on</strong>g> explained variance for<br />

A more complete picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the differences between<br />

individual groups emerges following applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fisher's LSD test (Table 5). The means <str<strong>on</strong>g>of</str<strong>on</strong>g> each group are<br />

ranked from smallestto largest, <str<strong>on</strong>g>and</str<strong>on</strong>g>coded A through F. An<br />

"S" indicates that the mean is significantly different from<br />

the corresp<strong>on</strong>ding level. For reaches 2a, 2b, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3, width<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> width:depth ratios are significantly different. For all<br />

mot"p-hologic variables except cross secti<strong>on</strong> area, the forestedreach<br />

(3) <str<strong>on</strong>g>and</str<strong>on</strong>g> thegrazed meadow reach (2a) are signif­<br />

icantly different. All levels are not significantly different<br />

depth, area, <str<strong>on</strong>g>and</str<strong>on</strong>g> hydraulic radius, suggesting a dependence<br />

<strong>on</strong> the downstream effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing drainage<br />

area. An increase in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> explained variance is<br />

apparent for width, wetted perimeter, <str<strong>on</strong>g>and</str<strong>on</strong>g> width:depth<br />

ratio, indicating a dependence <strong>on</strong> local factors. Removing<br />

the downstream effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing drainage area iso­<br />

lates those variables most resp<strong>on</strong>sive to local <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> management treatment. Width, wetted<br />

perimeter, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>channel</strong> shape, therefore, reflect local variability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>livestock<br />

<str<strong>on</strong>g>use</str<strong>on</strong>g>.<br />

in all cases.<br />

Changes in Channel Morphology by Reach<br />

Downstream <str<strong>on</strong>g>Effects</str<strong>on</strong>g> The headwater, ephemeral <strong>channel</strong> (reach 1) <str<strong>on</strong>g>of</str<strong>on</strong>g> Wickiup<br />

Creek is relatively wide <str<strong>on</strong>g>and</str<strong>on</strong>g> enlarged, probably reflecting<br />

In order to account for the downstream effects <str<strong>on</strong>g>of</str<strong>on</strong>g> more infrequent flow events. Downstream, through reach<br />

increasing drainage area, an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>variance was per­<br />

2a, the <strong>channel</strong> is intermediate in width <str<strong>on</strong>g>and</str<strong>on</strong>g> shallower<br />

Table 5.-Differences between individual groups ­ results <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisher's LSD Test.<br />

Width Mean depth<br />

Level Reach Mean A B c D E F Level Reach Mean A B c D E F<br />

A 2b 1.21 S S S S S A 3 0.22 S S<br />

B 2a 2.01 S S S B 2a 0.25 S S<br />

C 1 2.42 S C 4 0.26 S S<br />

D 5 3.02 S D 1 0.31 S S<br />

E 4 3.28 S s E 2b 0.41 s s s S<br />

F 3 3.34 S s F 5 0.45 S S s S<br />

Maximum depth Wetted perimeter<br />

Level Reach Mean ABC D E F Level Reach Mean ABC D E F<br />

A 3 0.35 s S A 2b 1.71 s S s s<br />

B 2a 0.38 s S B 2a 2.23 S s s<br />

C 4 0.40 S C 1 2.87 S<br />

D 1 0.42 D 4 3.4 S S<br />

E 2b 0.50 s s E 3 3.42 S S<br />

F 5 0.59 s s s F 5 3.46 S S<br />

Area Hydraulic radius<br />

Level Reach Mean ABC D E F Level Reach Mean ABC D E F<br />

A 2b 0.43 S A 3 0.21 S S<br />

B 2a 0.47 S B 2a 0.21 S<br />

C 3 0.67 S C 4 0.25 S<br />

D 1 0.77 S D 2b 0.26 S S<br />

E 4 0.81 S E 1 0.28 S<br />

F 5 1.44 S s S S s F 5 0.38 S S S S S<br />

Width:depth ratio Velocity<br />

Level Reach Mean ABC D E F Level Reach Mean ABC D E F<br />

A 2b 2.62 S S S A 2b 0.52 S S S S<br />

B 5 7.32 S B 3 0.66 S S S<br />

C 1 8.10 S C 2a 0.75 S S S S<br />

D 2a 9.39 S S D 5 1.06 S S S<br />

E 4 13.49 S E 4 1.31 S S S<br />

F 3 18.14 S S S S S F 1 1.62 S S S S<br />

124


Through the forested reach, <strong>channel</strong> shape is highly<br />

variable. An abundant supply <str<strong>on</strong>g>of</str<strong>on</strong>g> organic debris effects<br />

<strong>channel</strong> form <str<strong>on</strong>g>and</str<strong>on</strong>g> fluvial processes by providing sites for<br />

depositi<strong>on</strong>, locally reducing or enhancing bank erosi<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dissipating stream energy (Keller <str<strong>on</strong>g>and</str<strong>on</strong>g> Swans<strong>on</strong> 1979).<br />

Typically, <strong>channel</strong> widths increase upstream from blockages,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> depths are locally enhanced in plunge pools<br />

downstream. Elevati<strong>on</strong> changes associated with embedded<br />

organic debris dissipate erosi<strong>on</strong>al energy.<br />

Historic adjustments in the <strong>morphology</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wickiup<br />

Creek were observed inthe exclosure. Historic photos show<br />

a dramatic change in vegetative cover from 1933 to 1980. In<br />

1933 the entire reach <str<strong>on</strong>g>and</str<strong>on</strong>g> adjacent meadow were barren <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g>. Cattle were excluded in 1938, <str<strong>on</strong>g>and</str<strong>on</strong>g> by 1948 the<br />

site had revegetated <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>channel</strong> had narrowed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

deepened. By 1986 the <strong>channel</strong> had underg<strong>on</strong>e an order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude reducti<strong>on</strong> in bankfull <strong>channel</strong> cross secti<strong>on</strong><br />

area. Today, thickly vegetated overhanging banks obscure<br />

a narrow <str<strong>on</strong>g>and</str<strong>on</strong>g> deep <strong>channel</strong>.<br />

On Camp Creek in central Oreg<strong>on</strong>, Winegar (1977) described<br />

the recovery <str<strong>on</strong>g>of</str<strong>on</strong>g>a reach excl uded from grazinginthe<br />

1960s. Winegar emphasized the functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g><br />

in <strong>channel</strong> stabilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment depositi<strong>on</strong>.<br />

Sediment load sampling al<strong>on</strong>g Camp Creek indicated significant<br />

reducti<strong>on</strong>s in suspended load occurring through<br />

5.6 km <str<strong>on</strong>g>of</str<strong>on</strong>g>protected stream. The exclosure <strong>on</strong> Wickiup Creek<br />

is also functi<strong>on</strong>ing as a sediment trap, as indicated by<br />

changes in <strong>channel</strong> <strong>morphology</strong>. The principle n<strong>on</strong>-fluvial<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> are anchoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>channel</strong><br />

banks <str<strong>on</strong>g>and</str<strong>on</strong>g> trapping sediment. Vegetati<strong>on</strong> influences<br />

hydraulicinteracti<strong>on</strong>s by c<strong>on</strong>tributing roughness elements<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> shear strength to the <strong>channel</strong> boundary. Increased<br />

roughness increases resistance to flow <str<strong>on</strong>g>and</str<strong>on</strong>g> promotes sediment<br />

depositi<strong>on</strong> through reduced competency.<br />

In c<strong>on</strong>clusi<strong>on</strong>, the <strong>channel</strong> <strong>morphology</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wickiup<br />

Creek shows a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> variability when examined<br />

by reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively uniform characteristics. C<strong>on</strong>venti<strong>on</strong>al<br />

plots <str<strong>on</strong>g>of</str<strong>on</strong>g> morphologic variables such as width <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

depth against distance downstream do not exhibit str<strong>on</strong>g<br />

systematic trends beca<str<strong>on</strong>g>use</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>the small size <str<strong>on</strong>g>of</str<strong>on</strong>g>the drainage<br />

basin (24 km2) <str<strong>on</strong>g>and</str<strong>on</strong>g> beca<str<strong>on</strong>g>use</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>the overwhelming influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>local <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>use</str<strong>on</strong>g>. Specifically, width, wetted<br />

perimeter, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>channel</strong> shape are most resp<strong>on</strong>sive to local<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> livestock<br />

<str<strong>on</strong>g>use</str<strong>on</strong>g>. Where Wickiup Creek flows through the<br />

ungrazed exclosure the <strong>channel</strong> is narrow <str<strong>on</strong>g>and</str<strong>on</strong>g> deep, the<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g>thick bank <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> promoted by the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

livestock. In theforested reach the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> downed timber<br />

are reflected in the <strong>channel</strong> <strong>morphology</strong>; the stream is<br />

wider <str<strong>on</strong>g>and</str<strong>on</strong>g> shallower <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibits a variable <strong>channel</strong><br />

shape. Large organic debris deflects <strong>channel</strong>flow <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trols<br />

the routing <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment down-<strong>channel</strong>.<br />

Traditi<strong>on</strong>ally, mountain regi<strong>on</strong>s in the West have been<br />

exploited for their forage, timber, <str<strong>on</strong>g>and</str<strong>on</strong>g> mineral resources,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> the stream <str<strong>on</strong>g>and</str<strong>on</strong>g> riparian envir<strong>on</strong>ment.<br />

Alternative values such as wildlife <str<strong>on</strong>g>and</str<strong>on</strong>g> recreati<strong>on</strong><br />

are gaining attenti<strong>on</strong>. In additi<strong>on</strong>, there is growing c<strong>on</strong>cern<br />

over quantity <str<strong>on</strong>g>and</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water supply for downstream<br />

<str<strong>on</strong>g>use</str<strong>on</strong>g>rs. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> small mountain stream systems<br />

provide insight into sources <str<strong>on</strong>g>of</str<strong>on</strong>g> variability in <strong>channel</strong> <strong>morphology</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> fulfill a more immediate need for an underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> mountain streams for<br />

improved management.<br />

128<br />

Acknowledgments<br />

This paper represents results from part <str<strong>on</strong>g>of</str<strong>on</strong>g> a Master's<br />

thesis submitted to the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin-Madis<strong>on</strong>,<br />

under the supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dr. James Knox. Cooperati<strong>on</strong><br />

from the Malheur Nati<strong>on</strong>al Forest is acknowledged.<br />

References<br />

Barnes, H. H. 1967. Roughness characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

<strong>channel</strong>s. U. S. Geological Survey Water SupplyPaper<br />

No. 1849.<br />

Beschta, R. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> W. S. Platts. 1986. Morphologicfeatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small streams: significance <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>. Water<br />

Resources Bulletin 22:369-379.<br />

Cowan, W. L.1956. Estimatinghydraulicroughnesscoefficients.<br />

Agricultural Engineering 37:473-475.·<br />

Graf, W. L. 1978. Fluvial adjustments to the spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tamarisk in the Columbia Plateau regi<strong>on</strong>. Geological<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Bulletin 89:1491-1501.<br />

Gregory, K. J. 1984. Fluvial geo<strong>morphology</strong>. Progress in<br />

physical geography 8:421-430.<br />

Hadley, R. F. 1961. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><br />

<strong>channel</strong> shape, northeasternAriz<strong>on</strong>a. U. S. Geological<br />

Survey Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al Paper 424-6:30-31.<br />

Harris, D. D., <str<strong>on</strong>g>and</str<strong>on</strong>g> L. E. Hubbard. 1983. Magnitude <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g>floods in eastern Oreg<strong>on</strong>. U. S. Geological<br />

Survey Water Resources Investigati<strong>on</strong>s Report 82­<br />

4078.<br />

Heede. B. 1985. Interacti<strong>on</strong>s between streamside <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> stream dynamics. U. S. Forest Service<br />

General Technical Report RM-120:54-58.<br />

Hickin, E. J. 1983. River <strong>channel</strong> changes: retrospect <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

prospect. Special Publicati<strong>on</strong>s Internati<strong>on</strong>al Associati<strong>on</strong><br />

Sedimentologists 6:61-83.<br />

Hickin, E. J. 1984. Vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> river<strong>channel</strong>dynamics.<br />

Canadian Geographer 28(2):11-126.<br />

Kauffman, J. B., <str<strong>on</strong>g>and</str<strong>on</strong>g> W. C. Kreuger. 1984. Livestock<br />

impacts <strong>on</strong> riparian ecosystems <str<strong>on</strong>g>and</str<strong>on</strong>g> streamside management<br />

implicati<strong>on</strong>s: a review. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range<br />

Management 37:430-437.<br />

Keller, E. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> F. J. Swans<strong>on</strong>. 1979. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

organic material <strong>on</strong> <strong>channel</strong> form <str<strong>on</strong>g>and</str<strong>on</strong>g> fluvial processes.<br />

Earth Surfaces Processes <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g>forms 4:361­<br />

380.<br />

Keller, E. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Tally. 1979. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> large organic<br />

debris <strong>on</strong> <strong>channel</strong>form <str<strong>on</strong>g>and</str<strong>on</strong>g>fluvial processes in a coastal<br />

redwood envir<strong>on</strong>ment. Pages 169-197 in D. D.<br />

Rhodes <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Williams, editors. Adjustments <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fluvial system. Proceedings Tenth Annual Geo<strong>morphology</strong><br />

Symposium Series, Binghampt<strong>on</strong>, New York.<br />

Leopold, L. B., <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Maddock, Jr. 1953. The hydraulic<br />

geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> stream <strong>channel</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> some physiographic<br />

implicati<strong>on</strong>s. U. S. Geological Survey Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al<br />

Paper 252.<br />

Leopold, L. B., M. G. Wolman, <str<strong>on</strong>g>and</str<strong>on</strong>g>J. P. Miller. 1964. Fluvial<br />

. processes in geo<strong>morphology</strong>. Freeman, San Francisco.<br />

Mosley, M. P.1981. Self-determinate hydraulic geometry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

river<strong>channel</strong>s, South Isl<str<strong>on</strong>g>and</str<strong>on</strong>g>, New Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g>. EarthSurface<br />

Processes <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g>forms 6:127-137. '<br />

Nans<strong>on</strong>, C. G., <str<strong>on</strong>g>and</str<strong>on</strong>g> H. F. Beach. 1977. Forest successi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> sedimentati<strong>on</strong> <strong>on</strong> a me<str<strong>on</strong>g>and</str<strong>on</strong>g>ering-river floodplain,<br />

northeast British Columbia, Canada. Sedimentology<br />

27:3-29.


Platts, W. S. 1979. Livestock grazing <str<strong>on</strong>g>and</str<strong>on</strong>g> riparian stream<br />

ecosystems - an overview. Pages 39-45 in O. B. Cope,<br />

editor. Proceedings, forum-grazing <str<strong>on</strong>g>and</str<strong>on</strong>g> riparian!<br />

stream ecosystems. Trout Unlimited, Denver.<br />

Richards, K. 1982. Rivers - form <str<strong>on</strong>g>and</str<strong>on</strong>g> process in alluvial<br />

<strong>channel</strong>s. Metheun, New York.<br />

Smith, D. 1976. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> lateral migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anastomosed <strong>channel</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a glacial meltwater river.<br />

Geological Society America Bulletin 87:857-860.<br />

Swans<strong>on</strong>, F. J., R. L. Fredriks<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. M. McCoris<strong>on</strong>.<br />

1982. Material transfer in a western Oreg<strong>on</strong> forested<br />

watershed. US-IBP (Internati<strong>on</strong>al Biological Program)<br />

Synthesis Series 14:233-266.<br />

129<br />

Winegar, H. H. 1977. Camp Creek <strong>channel</strong> fencing-plant,<br />

wildlife, soil, <str<strong>on</strong>g>and</str<strong>on</strong>g> water resp<strong>on</strong>se. Rangeman's Journal<br />

4(1):10-12.<br />

Zimmerman, R. C., J. C. Goodlet, <str<strong>on</strong>g>and</str<strong>on</strong>g> G. H. Comer. 1967.<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>vegetati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>channel</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

streams. Pages 255-275 in Symposium <strong>on</strong> river <strong>morphology</strong>.<br />

Internati<strong>on</strong>al Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific<br />

Hydrology Publicati<strong>on</strong> 75, Wallingford Engl<str<strong>on</strong>g>and</str<strong>on</strong>g>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!