23.07.2013 Views

Fundamentals of Fluid-Solid Interactions-Analytical and

Fundamentals of Fluid-Solid Interactions-Analytical and

Fundamentals of Fluid-Solid Interactions-Analytical and

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fundamentals</strong> <strong>of</strong> <strong>Fluid</strong>–<strong>Solid</strong><br />

<strong>Interactions</strong><br />

<strong>Analytical</strong> <strong>and</strong> Computational Approaches


MONOGRAPH SERIES ON NONLINEAR<br />

SCIENCE AND COMPLEXITY<br />

SERIES EDITORS<br />

Albert C.J. Luo<br />

Southern Illinois University, Edwardsville, USA<br />

George Zaslavsky<br />

New York University, New York, USA<br />

ADVISORY BOARD<br />

Valentin Afraimovich, San Luis Potosi University, San Luis Potosi, Mexico<br />

Maurice Courbage, Université Paris 7, Paris, France<br />

Ben-Jacob Eshel, School <strong>of</strong> Physics <strong>and</strong> Astronomy, Tel Aviv University,<br />

Tel Aviv, Israel<br />

Bernold Fiedler, Freie Universität Berlin, Berlin, Germany<br />

James A. Glazier, Indiana University, Bloomington, USA<br />

Nail Ibragimov, IHN, Blekinge Institute <strong>of</strong> Technology, Karlskrona, Sweden<br />

Anatoly Neishtadt, Space Research Institute Russian Academy <strong>of</strong> Sciences,<br />

Moscow, Russia<br />

Leonid Shilnikov, Research Institute for Applied Mathematics & Cybernetics,<br />

Nizhny Novgorod, Russia<br />

Michael Shlesinger, Office <strong>of</strong> Naval Research, Arlington, USA<br />

Dietrich Stauffer, University <strong>of</strong> Cologne, Köln, Germany<br />

Jian-Qiao Sun, University <strong>of</strong> Delaware, Newark, USA<br />

Dimitry Treschev, Moscow State University, Moscow, Russia<br />

Vladimir V. Uchaikin, Ulyanovsk State University, Ulyanovsk, Russia<br />

Angelo Vulpiani, University La Sapienza, Roma, Italy<br />

Pei Yu, The University <strong>of</strong> Western Ontario, London, Ontario N6A 5B7, Canada


<strong>Fundamentals</strong> <strong>of</strong> <strong>Fluid</strong>–<strong>Solid</strong><br />

<strong>Interactions</strong><br />

<strong>Analytical</strong> <strong>and</strong> Computational Approaches<br />

XIAODONG (SHELDON) WANG<br />

Department <strong>of</strong> Mathematical Sciences<br />

New Jersey Institute <strong>of</strong> Technology<br />

323 Martin Luther King, Jr. Blvd.<br />

Newark, NJ 07102, USA<br />

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD<br />

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO


Elsevier<br />

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherl<strong>and</strong>s<br />

Linacre House, Jordan Hill, Oxford OX2 8DP, UK<br />

First edition 2008<br />

Copyright © 2008 Elsevier B.V. All rights reserved<br />

No part <strong>of</strong> this publication may be reproduced, stored in a retrieval system or transmitted in any form<br />

or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written<br />

permission <strong>of</strong> the publisher<br />

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,<br />

UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively<br />

you can submit your request online by visiting the Elsevier web site at http://www.elsevier.com/<br />

locate/permissions, <strong>and</strong> selecting Obtaining permission to use Elsevier material<br />

Notice<br />

No responsibility is assumed by the publisher for any injury <strong>and</strong>/or damage to persons or property as<br />

a matter <strong>of</strong> products liability, negligence or otherwise, or from any use or operation <strong>of</strong> any methods,<br />

products, instructions or ideas contained in the material herein. Because <strong>of</strong> rapid advances in the medical<br />

sciences, in particular, independent verification <strong>of</strong> diagnoses <strong>and</strong> drug dosages should be made<br />

Library <strong>of</strong> Congress Cataloging-in-Publication Data<br />

A catalog record for this book is available from the Library <strong>of</strong> Congress<br />

British Library Cataloguing in Publication Data<br />

A catalogue record for this book is available from the British Library<br />

ISBN: 978-0-444-52807-0<br />

ISSN: 1574-6917<br />

For information on all Elsevier publications<br />

visit our website at elsevierdirect.com<br />

Printed <strong>and</strong> bound in Hungary<br />

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1


Contents<br />

Preface vii<br />

Chapter 1. Introduction 1<br />

1.1. Historical background 1<br />

1.2. Motivation 3<br />

1.3. Outline 4<br />

Chapter 2. Aspects <strong>of</strong> Mathematics <strong>and</strong> Mechanics 5<br />

2.1. Preliminary concepts <strong>and</strong> notations 5<br />

2.1.1 Logic; set, group, <strong>and</strong> field; Boolean algebra 5<br />

2.1.2 Mapping <strong>and</strong> linear space; grad, div, <strong>and</strong> curl 9<br />

2.1.3 Tensors <strong>and</strong> curvilinear coordinates; complex variables 15<br />

2.1.4 Eigenvalues <strong>and</strong> eigenvectors; singular value decomposition 25<br />

2.2. Kinematical descriptions <strong>and</strong> conservation laws 31<br />

2.2.1 Mass point <strong>and</strong> rigid body; continuum 32<br />

2.2.2 Vector calculus; transport theorems <strong>and</strong> conservation laws;<br />

variational principles 37<br />

2.3. Some mathematical tools 52<br />

2.3.1 Fourier series <strong>and</strong> transform; Laplace transform 52<br />

2.3.2 Contour integral; conformal mapping 58<br />

2.3.3 Sturm–Liouville problems; Frobenius’ methods <strong>and</strong> special<br />

functions 71<br />

Chapter 3. Dynamical Systems 85<br />

3.1. Single- <strong>and</strong> multi-degree <strong>of</strong> freedom systems 86<br />

3.1.1 Basic concepts; limit sets 86<br />

3.1.2 Bifurcations; Lagrangian dynamics 100<br />

3.1.3 Van der Pol; perturbation method; Duffing 112<br />

3.2. Lyapunov–Schmidt method 126<br />

3.2.1 Floquet theory 129<br />

3.2.2 Critical time step 133<br />

3.2.3 Mathieu–Hill system 136<br />

xi


xii Contents<br />

3.3. Basin <strong>of</strong> attractions <strong>and</strong> control <strong>of</strong> chaos 142<br />

3.3.1 Lyapunov methods 142<br />

3.3.2 Robust control; sliding mode; adaptive control; FIV model 147<br />

Chapter 4. Flow-Induced Vibrations 163<br />

4.1. Attenuator <strong>and</strong> flutter suppression 163<br />

4.1.1 Helmholtz resonator; attenuator design 164<br />

4.1.2 Reynolds equations; spatial <strong>and</strong> temporal discretizations;<br />

suppression results 169<br />

4.2. Stability issues <strong>of</strong> axial flow models 183<br />

4.2.1 Internal flow; concentric flow 183<br />

4.2.2 Buckling <strong>and</strong> flutter; parametric instability <strong>and</strong> Bolotin method 194<br />

4.2.3 Collapsible tube; tube law; transverse <strong>and</strong> axial oscillations 214<br />

4.3. Dynamics <strong>of</strong> thin structures 229<br />

4.3.1 Stationary <strong>and</strong> moving panel; MITC elements 230<br />

4.3.2 Bending <strong>and</strong> torsion; aeroelasticity models 244<br />

Chapter 5. Boundary Integral Approaches 267<br />

5.1. Underlying physics <strong>and</strong> formulations 267<br />

5.1.1 Potential flow 267<br />

5.1.2 Acoustic medium 273<br />

5.1.3 Stokes flow 274<br />

5.2. Green’s functions <strong>and</strong> boundary integrals 275<br />

5.2.1 Reciprocal relations 275<br />

5.2.2 Boundary element approaches 277<br />

5.3. FSI systems with potential flows 279<br />

5.3.1 Interaction with rigid body; added mass; lift surface 279<br />

5.3.2 Radiation <strong>and</strong> scattering 299<br />

5.3.3 Rigid body surface waves interactions 305<br />

Chapter 6. Computational Linear Models 313<br />

6.1. Potential <strong>and</strong> displacement-based formulations 313<br />

6.1.1 φ-u <strong>and</strong> p-φ-u formulations 314<br />

6.1.2 u/p <strong>and</strong> u-p-Λ formulations 321<br />

6.1.3 Solvability <strong>and</strong> stability; FSI interfaces; zero modes 328<br />

6.2. Solution procedures <strong>and</strong> convergence issues 344<br />

6.2.1 Mode superposition; direct integration methods 347<br />

6.2.2 Acoustoelastic/slosh FSI systems 356<br />

6.2.3 Inf-Sup conditions <strong>of</strong> mixed formulations 386


Contents xiii<br />

Chapter 7. Computational Nonlinear Models 407<br />

7.1. Upwind <strong>and</strong> stabilization 407<br />

7.1.1 One-dimensional model 408<br />

7.1.2 Multi-dimensional model 411<br />

7.2. Nonlinear finite element formulations for FSI systems 427<br />

7.2.1 Mixed formulations for fluid <strong>and</strong> solid domains 427<br />

7.2.2 Direct method with Jacobian matrix 436<br />

7.2.3 Matrix-free Newton–Krylov; multigrid 441<br />

7.2.4 Laminar <strong>and</strong> turbulent flows; porous interface; benchmark tests 455<br />

7.3. Immersed methods 487<br />

7.3.1 Immersed boundary method; nodal forces; incompressible<br />

continuum 489<br />

7.3.2 Particulate flow <strong>and</strong> blood modeling; mapping <strong>and</strong> kernel 499<br />

7.3.3 Fictitious domain method; immersed continuum method 527<br />

7.3.4 Implicit/compressible solver; FSI systems with immersed<br />

solids 537<br />

References 547<br />

Subject Index 567

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!