24.07.2013 Views

Economic optimization of gas turbine air-cooling systems in ... - circe

Economic optimization of gas turbine air-cooling systems in ... - circe

Economic optimization of gas turbine air-cooling systems in ... - circe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ECONOMIC OPTIMISATION OF GAS TURBINE INLET<br />

AIR – COOLING SYSTEMS IN COMBINED CYCLE APPLICATIONS<br />

Raquel Gareta, CIRCE<br />

Luis M. Romeo, CIRCE<br />

Antonia Gil, CIRCE<br />

CIRCE (Center for Power Plant Efficiency Research). University <strong>of</strong> Zaragoza.<br />

Centro Politécnico Superior, Maria de Luna, 3, 50015 Zaragoza (Spa<strong>in</strong>)<br />

ABSTRACT<br />

It is well-known the strong dependence <strong>of</strong><br />

climate conditions on <strong>gas</strong> <strong>turb<strong>in</strong>e</strong> (GT)<br />

behaviour. A proper solution to m<strong>in</strong>imise this<br />

negative effect is to reduce GT <strong>in</strong>let <strong>air</strong><br />

temperature by means <strong>of</strong> an <strong>air</strong> <strong>cool<strong>in</strong>g</strong><br />

system. The criteria to select the most suitable<br />

alternative among <strong>cool<strong>in</strong>g</strong> technologies and<br />

<strong>cool<strong>in</strong>g</strong> siz<strong>in</strong>g are complex.<br />

On one hand, bigger <strong>cool<strong>in</strong>g</strong> siz<strong>in</strong>g means an<br />

<strong>in</strong>crease <strong>in</strong> GT power output and, as a<br />

consequence, an improvement <strong>in</strong> money<br />

<strong>in</strong>comes. This option is generally adopted by<br />

manufacturers. Nevertheless, it should be<br />

considered carefully, because the size <strong>of</strong> the<br />

<strong>cool<strong>in</strong>g</strong> equipment <strong>in</strong>creases substantially<br />

without an important power augmentation <strong>in</strong><br />

certa<strong>in</strong> situations.<br />

On the other hand, another criteria could be<br />

selected <strong>in</strong> order to maximise comb<strong>in</strong>ed cycle<br />

efficiency or <strong>cool<strong>in</strong>g</strong> system pr<strong>of</strong>itability. The<br />

former leads to an optimum behaviour <strong>of</strong> the<br />

global system, m<strong>in</strong>imis<strong>in</strong>g the emissions per<br />

kilowatt and the cost <strong>of</strong> electricity. Due to the<br />

fact that money <strong>in</strong>comes directly depends on<br />

the cost <strong>of</strong> electricity and the power<br />

augmentation, the latter comb<strong>in</strong>es the<br />

advantage <strong>of</strong> tak<strong>in</strong>g <strong>in</strong>to account the power<br />

augmentation and the global system<br />

efficiency.<br />

This paper shows a comparison between all <strong>of</strong><br />

these criteria, optimis<strong>in</strong>g the size <strong>of</strong> a <strong>cool<strong>in</strong>g</strong><br />

system for a comb<strong>in</strong>ed cycle application <strong>in</strong><br />

order to achieve: (i) maximum power<br />

augmentation, (ii) maximum comb<strong>in</strong>ed cycle<br />

efficiency or (iii) maximum <strong>cool<strong>in</strong>g</strong> system<br />

pr<strong>of</strong>itability, and analys<strong>in</strong>g the key po<strong>in</strong>ts <strong>in</strong><br />

order to properly size the <strong>cool<strong>in</strong>g</strong> equipment.<br />

INTRODUCTION<br />

Comb<strong>in</strong>ed cycles (CC) based on <strong>gas</strong> <strong>turb<strong>in</strong>e</strong>s<br />

are a competitive alternative to produce<br />

electricity power. CC are high efficiency cycles<br />

with low production costs and emissions<br />

which are essential issues <strong>in</strong> the current<br />

economic and environmental framework.<br />

Despite their high efficiency, GT and also CC<br />

performance strongly depends on ambient <strong>air</strong><br />

temperature. Different <strong>air</strong> <strong>cool<strong>in</strong>g</strong> <strong>systems</strong><br />

have been developed to reduce this <strong>in</strong>fluence<br />

and to improve GT performance. A wide range<br />

<strong>of</strong> <strong>cool<strong>in</strong>g</strong> technologies can be selected.<br />

Evaporative coolers, mechanical and<br />

absorption chillers are potentially among the<br />

best <strong>cool<strong>in</strong>g</strong> technologies to <strong>in</strong>stall.<br />

Three different criteria can be adopted to<br />

select the most suitable siz<strong>in</strong>g and <strong>cool<strong>in</strong>g</strong><br />

technologies. Cool<strong>in</strong>g equipment manufacturers<br />

generally choose the system which<br />

maximise GT power output (or CC power<br />

output) <strong>in</strong> order to show the maximum benefits<br />

<strong>of</strong> an <strong>air</strong> <strong>cool<strong>in</strong>g</strong> system. In these cases, to


obta<strong>in</strong> the GT power output augmentation due<br />

to <strong>cool<strong>in</strong>g</strong>, m<strong>in</strong>imum <strong>cool<strong>in</strong>g</strong> temperature and<br />

maximum ambient temperature are selected.<br />

However, the latter is scarcely representative<br />

<strong>of</strong> climate conditions, hence <strong>cool<strong>in</strong>g</strong><br />

equipment is generally overestimated. The<br />

result <strong>of</strong> this criterion is to maximise the power<br />

output regardless the ambient temperature.<br />

In order to solve this limitation, a second<br />

criterion can be selected. Tak<strong>in</strong>g the<br />

environment <strong>in</strong>to account, the most suitable<br />

criteria is to achieve CC maximum efficiency.<br />

Given that the po<strong>in</strong>t <strong>of</strong> maximum efficiency is<br />

generally near the design temperature (10 –<br />

15ºC), the <strong>cool<strong>in</strong>g</strong> equipment selected are <strong>of</strong><br />

lower size as compared to the previous<br />

criteria. Although, CC power augmentation is<br />

also reduced, efficiency is maximised and<br />

generation cost are m<strong>in</strong>imised.<br />

F<strong>in</strong>ally, a third criterion could be adopted to<br />

maximise the <strong>cool<strong>in</strong>g</strong> system pr<strong>of</strong>itability. This<br />

criterion <strong>in</strong>cludes the effect <strong>of</strong> the <strong>cool<strong>in</strong>g</strong><br />

system <strong>in</strong> efficiency or <strong>in</strong> power augmentation<br />

and <strong>in</strong>tegrates all these variables with <strong>gas</strong> and<br />

electricity markets. The size <strong>of</strong> the <strong>cool<strong>in</strong>g</strong><br />

equipment is usually between those result<strong>in</strong>g<br />

from the first and the second criteria, although<br />

<strong>in</strong> certa<strong>in</strong> economic scenarios the same<br />

results are obta<strong>in</strong>ed.<br />

In the last case, the <strong>cool<strong>in</strong>g</strong> system not only<br />

depends on climate conditions or GT/CC type,<br />

but also on its coefficient <strong>of</strong> operation (COP),<br />

fuel and electricity prices and comb<strong>in</strong>ed cycle<br />

arrangement. These complex variables add<br />

new difficulties <strong>in</strong> the technical and<br />

economical assessment <strong>of</strong> <strong>cool<strong>in</strong>g</strong> <strong>systems</strong>.<br />

Some examples [1]-[4], [7], [8] and<br />

methodologies [8] have been developed <strong>in</strong><br />

order to evaluate these <strong>in</strong>fluences <strong>in</strong> a<br />

complex system as cogeneration or CC<br />

applications.<br />

The aim <strong>of</strong> this paper is to compare above<br />

criteria <strong>in</strong> order to size a mechanical chiller<br />

<strong>cool<strong>in</strong>g</strong> system <strong>in</strong> a CC application. The size<br />

<strong>of</strong> a <strong>cool<strong>in</strong>g</strong> system has been optimised to<br />

obta<strong>in</strong>: (i) maximum power augmentation, (ii)<br />

maximum comb<strong>in</strong>ed cycle efficiency or (iii)<br />

maximum <strong>cool<strong>in</strong>g</strong> system pr<strong>of</strong>itability. The key<br />

po<strong>in</strong>ts to size properly the <strong>cool<strong>in</strong>g</strong> equipment<br />

have been analysed.<br />

In a particular CC, an economical optimisation<br />

(based on <strong>cool<strong>in</strong>g</strong> system pr<strong>of</strong>itability) is<br />

achieved <strong>in</strong> different scenarios <strong>in</strong>fluenced by<br />

electricity and fuel prices.<br />

COMBINED CYCLE SIMULATION.<br />

To calculate power output improvements<br />

caused by the <strong>air</strong> <strong>cool<strong>in</strong>g</strong> and to quantify the<br />

CC efficiency and <strong>cool<strong>in</strong>g</strong> system pr<strong>of</strong>itability,<br />

a simulation <strong>of</strong> a CC has been carried out.<br />

Simulation <strong>in</strong>puts are: ambient conditions<br />

(relative humidity and temperature), <strong>cool<strong>in</strong>g</strong><br />

system COP, <strong>gas</strong> and electricity prices.<br />

Variables obta<strong>in</strong>ed as results are: CC<br />

efficiency and power output (<strong>gas</strong> and steam<br />

<strong>turb<strong>in</strong>e</strong>s), <strong>air</strong> conditions at GT <strong>in</strong>let, cost <strong>of</strong><br />

electricity, <strong>cool<strong>in</strong>g</strong> pr<strong>of</strong>itability (hourly <strong>in</strong>comes<br />

<strong>in</strong>clud<strong>in</strong>g system amortisation) and properties<br />

<strong>of</strong> different CC po<strong>in</strong>ts.<br />

Three CC optimisations have been carried<br />

out: (i) CC power augmentation, (ii) CC global<br />

efficiency and (iii) CC hourly <strong>in</strong>comes (<strong>cool<strong>in</strong>g</strong><br />

pr<strong>of</strong>itability), with the temperature <strong>of</strong> GT <strong>in</strong>let<br />

(size <strong>of</strong> the <strong>cool<strong>in</strong>g</strong> system) as the<br />

<strong>in</strong>dependent variable.<br />

A three-level steam pressure comb<strong>in</strong>ed cycle<br />

has been chosen for the analysis. It is based<br />

on three 52.8 MW <strong>in</strong>dustrial GT and a 67.4<br />

MW steam <strong>turb<strong>in</strong>e</strong> [9]-[10]. Both <strong>gas</strong> and<br />

steam cycles have been simulated <strong>in</strong> order to<br />

study the <strong>in</strong>fluence <strong>of</strong> climatic data and GT<br />

<strong>in</strong>let <strong>air</strong>-<strong>cool<strong>in</strong>g</strong> <strong>in</strong>stallation.<br />

GT corrections for power output, heat rate,<br />

mass flow rate and exhaust <strong>gas</strong>es<br />

temperature at different ambient tem-<br />

peratures, as well as <strong>in</strong>let and outlet pressure<br />

drop parameters have been calculated by<br />

means <strong>of</strong> performance curves. The variation<br />

<strong>of</strong> exhaust <strong>gas</strong>es properties has been<br />

considered, due to its relevant <strong>in</strong>fluence on<br />

the temperature pr<strong>of</strong>ile <strong>of</strong> the Heat Recovery<br />

Steam Generator (HRSG). Additional GT <strong>in</strong>let<br />

and outlet pressure drops have been taken<br />

<strong>in</strong>to account because <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong><br />

<strong>cool<strong>in</strong>g</strong> coils and HRSG. Ambient conditions<br />

are <strong>in</strong>put variables for this model. Output


variables are GT efficiency and power output<br />

and exhaust <strong>gas</strong>es properties. The HRSG and<br />

the steam <strong>turb<strong>in</strong>e</strong> have been simulated with<br />

usual equations and strategies [7].<br />

Although there are different <strong>cool<strong>in</strong>g</strong><br />

techniques <strong>in</strong> order to improve the GT and CC<br />

performance, only mechanical chillers have<br />

been considered for the optimisation. A<br />

mechanical chiller refrigerates the <strong>air</strong> stream<br />

by means <strong>of</strong> a cold refrigerant circuit. This<br />

refrigerant is cooled with a mechanical<br />

compressor system. In the simulation, the<br />

refrigerant cycle is not relevant, s<strong>in</strong>ce<br />

electricity consumption <strong>in</strong> electrically driven<br />

chillers ma<strong>in</strong>ly depends on the coefficient <strong>of</strong><br />

performance (COP), and variations <strong>in</strong> this<br />

parameter at different operation loads have<br />

not been considered. The COP is a function <strong>of</strong><br />

the refrigerant type and technology selected<br />

([1]-[4]). The model pays special attention to<br />

analyse changes <strong>in</strong> <strong>air</strong>-water mixture<br />

properties. Cool<strong>in</strong>g <strong>of</strong> the humid <strong>air</strong> causes<br />

saturation at the dew temperature, fixed by<br />

the <strong>in</strong>itial humid <strong>air</strong> properties. If the f<strong>in</strong>al <strong>air</strong><br />

temperature is below the dew temperature,<br />

water content <strong>in</strong> the mixture condenses. This<br />

process has an important chill<strong>in</strong>g energy cost,<br />

s<strong>in</strong>ce the energy to produce the phasechange<br />

is necessary to be transferred. In<br />

consequence, these <strong>systems</strong> allow the<br />

temperature to be reduced at the desired<br />

level, but subject to high <strong>cool<strong>in</strong>g</strong> power<br />

consumption. It is assumed that this <strong>cool<strong>in</strong>g</strong><br />

system causes a pressure drop <strong>of</strong> 0.3kPa at<br />

GT <strong>in</strong>let duct. The m<strong>in</strong>imum <strong>air</strong> temperature<br />

achieved is around 5ºC, because lower <strong>air</strong><br />

temperatures may damage the compressor<br />

blades.<br />

RESULTS OF THE OPTIMISATION<br />

As it is aforementioned, it is possible to select<br />

three different criteria to select or to operate<br />

the <strong>in</strong>let <strong>air</strong>-<strong>cool<strong>in</strong>g</strong> <strong>systems</strong> <strong>in</strong>tegrated <strong>in</strong> a<br />

comb<strong>in</strong>ed cycle. The first criterion is to design<br />

the <strong>cool<strong>in</strong>g</strong> system <strong>in</strong> order to obta<strong>in</strong> the<br />

highest power output improvement. To reach<br />

this operation po<strong>in</strong>t, the m<strong>in</strong>imum <strong>in</strong>let<br />

temperature must be reached. This m<strong>in</strong>imum<br />

temperature is fixed by technological issues to<br />

5ºC.<br />

Results obta<strong>in</strong>ed with the first assumption are<br />

shown <strong>in</strong> Table 1. The power output <strong>in</strong>crease<br />

is high, but the energy cost <strong>of</strong> this<br />

improvement is also high, due to the efficiency<br />

loss. High temperatures and high relative<br />

humidity implies the use <strong>of</strong> powerful chillers.<br />

The efficiency loss is caused by the high<br />

electricity consumption <strong>of</strong> the chillers. The<br />

high <strong>in</strong>vestment <strong>of</strong> a 38 000 kW <strong>cool<strong>in</strong>g</strong> power<br />

system probably makes unfeasible its<br />

<strong>in</strong>stallation. The cost <strong>of</strong> the electricity<br />

production and hourly <strong>in</strong>comes are blank<br />

because the power output maximisation is<br />

<strong>in</strong>dependent <strong>of</strong> the energy market framework,<br />

and it is not possible to evaluate this cost<br />

without an energy market framework.<br />

Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. a ∆Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (kW) (%) (cent/kW) (€/hour)<br />

5,0 60 5,0 0 0 44,69 - -<br />

15,0 60 5,0 6 917 10 294 44,24 - -<br />

25,0 60 5,0 19 957 19 596 43,14 - -<br />

35,0 60 5,0 38 005 29 392 41,69 - -<br />

15,0 40 5,0 5 620 10 618 44,30 - -<br />

15,0 60 5,0 6 917 10 294 44,24 - -<br />

15,0 80 5,0 25 232 9 575 44,10 - -<br />

Table 1. Cool<strong>in</strong>g results when the performance criteria is maximise the power improvement<br />

( a M. C. P. means Mechanical Chiller Power)


Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. ∆ Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (kW) (%) (cent/kW) (€/hour)<br />

5,0 60 5,0 0 0 44,69 - -<br />

15,0 60 11,7 1 813 3 550 44,35 - -<br />

25,0 60 16,7 4 550 9 341 43,55 - -<br />

35,0 60 26,1 4 808 10 520 42,13 - -<br />

15,0 40 11,7 1 822 3 583 44,35 - -<br />

15,0 60 11,7 1 813 3 550 44,35 - -<br />

15,0 80 11,8 1 766 3 446 44,35 - -<br />

Table 2. Cool<strong>in</strong>g results when the performance criteria is to maximise efficiency<br />

The second possibility is optimis<strong>in</strong>g CC<br />

efficiency. With this option, the power output<br />

improvement is reduced <strong>in</strong> order to reach the<br />

po<strong>in</strong>t <strong>of</strong> lowest fuel consumption per kilowatt.<br />

This efficiency is calculated consider<strong>in</strong>g the<br />

chiller consumption. As shown <strong>in</strong> Table 1,<br />

s<strong>in</strong>ce high power improvement is obta<strong>in</strong>ed,<br />

efficiency loss appears as a result <strong>of</strong> the high<br />

chiller consumption. Consequently, with this<br />

criterion the optimum <strong>in</strong>let <strong>air</strong>-<strong>cool<strong>in</strong>g</strong> system<br />

is obta<strong>in</strong>ed by reduc<strong>in</strong>g slightly <strong>in</strong>let <strong>air</strong><br />

temperature without modify the efficiency <strong>of</strong><br />

the global system (work<strong>in</strong>g both comb<strong>in</strong>ed<br />

cycle and chiller).<br />

The results <strong>of</strong> the second criteria are<br />

presented <strong>in</strong> Table 2. The most remarkable<br />

aspect is the reduction <strong>of</strong> the chiller size. As a<br />

result <strong>of</strong> that, the power improvement is also<br />

extremely reduced. That means that a<br />

reduced cost <strong>of</strong> the chill<strong>in</strong>g equipment allows<br />

the efficiency to be optimised but prevents the<br />

power from the highest improvements.<br />

The last criterion is to optimise the hourly<br />

<strong>in</strong>comes. In this study, the hourly <strong>in</strong>comes are<br />

considered <strong>in</strong> a simplified way, as the<br />

difference between the electricity sale and the<br />

fuel payment. Obviously, to select an<br />

economic parameter for the optimisation<br />

<strong>in</strong>volves the knowledge <strong>of</strong> the market<br />

framework.<br />

In consequence, three energy market<br />

situations are considered: (i) a favourable<br />

energy market, where electricity price is<br />

clearly higher than the electricity production<br />

cost; (ii) a non-favourable energy market,<br />

where the electricity production cost is clearly<br />

higher than the electricity price; and f<strong>in</strong>ally, (iii)<br />

an <strong>in</strong>termediate situation, where the electricity<br />

production cost is slightly lower than the<br />

electricity price.<br />

Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. ∆ Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (kW) (%) (cent/kW) (€/hour)<br />

5,0 60 5,0 0 0 44,69 2,90 4 568,56<br />

15,0 60 5,0 6 916 10 293 44,24 2,93 4 451,45<br />

25,0 60 5,0 19 957 19 596 43,14 3,00 4 167,83<br />

35,0 60 5,0 38 005 29 392 41,69 3,11 3 785,01<br />

15,0 40 5,0 5 620 10 617 44,30 2,92 4 467,16<br />

15,0 60 5,0 6 916 10 293 44,24 2,93 4 451,45<br />

15,0 80 5,0 9 789 9 575 44,10 2,93 4 416,54<br />

Table 3. Cool<strong>in</strong>g results when the performance criteria is to optimise hourly <strong>in</strong>comes <strong>in</strong> a favourable<br />

energy market framework<br />

(Electricity price: 4,81 cent €/kW; natural <strong>gas</strong> price: 1,50 cent €/therm)


Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. ∆ Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (kW) (%) (cent/kW) (€/hour)<br />

5,0 60 5,0 - - 44,69 2,90 -1 174,26<br />

15,0 60 15,0 - - 44,34 2,92 -1 163,41<br />

25,0 60 25,0 - - 43,36 2,99 -1 224,05<br />

35,0 60 35,0 - - 41,79 3,10 -1 340,31<br />

15,0 40 15,0 - - 44,34 2,92 -1 163,41<br />

15,0 60 15,0 - - 44,34 2,92 -1 163,41<br />

15,0 80 15,0 - - 44,34 2,92 -1 163,41<br />

Table 4. Cool<strong>in</strong>g results when the performance criteria is optimis<strong>in</strong>g the hourly <strong>in</strong>comes <strong>in</strong> a nonfavourable<br />

energy market framework<br />

(Electricity price: 2,40 cent/kW; natural <strong>gas</strong> price: 1,50 cent/therm)<br />

Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. ∆ Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (kW) (%) (cent/kW) (€/hour)<br />

5,0 60 5,0 0 0 44,69 2,90 1 697,15<br />

15,0 60 6,8 4 885 8 665 44,31 2,92 1 609,58<br />

25,0 60 11,2 12 351 14 127 43,36 2,99 1 398,82<br />

35,0 60 20,0 16 301 16 642 42,11 3,07 1 125,28<br />

15,0 40 5,0 5 620 10 618 44,30 2,92 1 621,04<br />

15,0 60 6,8 4 885 8 665 44,31 2,92 1 609,58<br />

15,0 80 7,5 6 931 7 330 44,20 2,93 1 583,62<br />

Table 5. Cool<strong>in</strong>g results when the performance criteria is optimis<strong>in</strong>g the hourly <strong>in</strong>comes <strong>in</strong> an<br />

<strong>in</strong>termediate energy market framework<br />

(Electricity price: 6,61 cent/kW; natural <strong>gas</strong> price: 1,50 cent/therm)<br />

The results <strong>of</strong> the third criterion are shown <strong>in</strong><br />

Table 3. As the sold electricity implies an<br />

important benefit, the ma<strong>in</strong> result obta<strong>in</strong>ed<br />

from optimisation is to reduce the <strong>in</strong>let<br />

temperature as possible <strong>in</strong> order to maximise<br />

the power improvement (first criterion).<br />

Therefore, despite the <strong>in</strong>itial <strong>in</strong>vestment or the<br />

operation costs, <strong>in</strong> a good energy market the<br />

<strong>in</strong>stallation <strong>of</strong> a big chiller is justified.<br />

The results <strong>in</strong> a non-favourable energy market<br />

framework are presented <strong>in</strong> Table 4. When<br />

costs are higher than benefits, the advice is to<br />

produce only the obligatory electricity quantity<br />

(set by technological or strategic purposes).<br />

From the optimisation results, it is<br />

recommended not to cool the <strong>in</strong>let <strong>air</strong> s<strong>in</strong>ce<br />

any improvement is penalised.<br />

The situation could be less clear as <strong>in</strong> the<br />

former assumptions, as shown <strong>in</strong> Table 5. In<br />

this case, the optimisation results are<br />

<strong>in</strong>termediate between power improvement and<br />

efficiency maximisation. The chiller sizes are<br />

also <strong>in</strong>termediate. It is remarkable that high<br />

temperatures and relative humidity <strong>in</strong>volve a<br />

result near to an efficiency optimisation, while<br />

an <strong>in</strong>termediate ambient temperature allows<br />

the power output to be maximised.<br />

F<strong>in</strong>ally, Tables 6 and 7 show the <strong>in</strong>fluence <strong>of</strong><br />

the above operation criteria <strong>in</strong> the comb<strong>in</strong>ed<br />

cycle and chiller system. As expected, the<br />

third criteria allows average results to be<br />

obta<strong>in</strong>ed<br />

In Figure 1, data obta<strong>in</strong>ed for the different<br />

operation criteria are presented. S<strong>in</strong>ce an<br />

<strong>in</strong>termediate market situation has been<br />

assumed, the results for the <strong>in</strong>comes<br />

optimisation are located between the other<br />

two cases, namely, near to the maximum<br />

power at low temperatures and close to the<br />

maximum efficiency at high temperatures.


Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. ∆ Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (kW) (%) (cent/kW) (€/hour)<br />

A 15,0 60 5,0 6 917 10 294 44,24 2,93 1 609,22<br />

B 15,0 60 11,7 1 813 3 550 44,35 2,91 1 581,31<br />

C 15,0 60 6,8 4 885 8 665 44,31 2,92 1 609,58<br />

Table 6. Comparison <strong>of</strong> the all criteria results given a climate situation (temperature: 15ºC and<br />

relative humidity: 60%)<br />

(A: highest power improvement; B: best efficiency; C: highest hourly <strong>in</strong>come)<br />

Amb. Temp. Rel. Hum. Inlet Temp. M. C. P. ∆ Power Efficiency Prod. Cost Incomes<br />

(ºC) (%) (ºC) (kW) (Kw) (%) (cent/kW) (€/hour)<br />

A 25,0 60 5,0 19 957 19 596 43,14 3,00 1 395,79<br />

B 25,0 60 16,7 4 550 9 341 43,55 2,97 1 397,86<br />

C 25,0 60 11,2 12 351 14 127 43,36 2,99 1 398,82<br />

Table 7. Comparison <strong>of</strong> the three criteria result <strong>in</strong> a giv<strong>in</strong>g climate situation (temperature: 25ºC and<br />

relative humidity: 60%)<br />

(A: highest power improvement; B: best efficiency; C: highest hourly <strong>in</strong>come)<br />

Inlet temperature (ºC)<br />

Power output (kW))<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 10 20 30 40<br />

245000<br />

240000<br />

235000<br />

230000<br />

225000<br />

220000<br />

215000<br />

210000<br />

205000<br />

Ambient temperature (ºC)<br />

Max. efficiency Max. Pow er output Max. Incomes<br />

(a) Inlet temperatures<br />

200000<br />

0 10 20 30 40<br />

Ambient temperature (ºC)<br />

Max. efficiency Max. Pow er output Max. Incomes<br />

(b) Power output <strong>in</strong>crease<br />

Incomes (€/hour)<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

0 10 20 30 40<br />

Ambient temperature (ºC)<br />

Max. efficiency Max. Pow er output Max. Incomes<br />

(c) Incomes<br />

Figure 1. Results <strong>of</strong> the three criteria (maximum<br />

efficiency, maximum power output and<br />

maximum hourly <strong>in</strong>comes) for different<br />

temperatures and 60% Relative Humidity<br />

(Electricity price: 6,61 cent/kW; natural <strong>gas</strong><br />

price: 1,50 cent/therm)<br />

CONCLUSIONS<br />

The selection and siz<strong>in</strong>g <strong>of</strong> a <strong>cool<strong>in</strong>g</strong> system<br />

to be <strong>in</strong>tegrated <strong>in</strong> a CC or other power<br />

production system based <strong>in</strong> GT is a critical<br />

aspect. Due to this, it must not be considered<br />

as a secondary question. The criterion to set<br />

both <strong>of</strong> the previous characteristics must be<br />

seriously balanced.


In this paper, three optimis<strong>in</strong>g criteria have<br />

been compared: (a) The power output<br />

improvement; (b) The efficiency <strong>of</strong> the global<br />

system; (c) The economical results depend<strong>in</strong>g<br />

on the electricity and the fuel prices.<br />

The (a) and (b) criteria lead to extreme<br />

results. The former implies the use <strong>of</strong><br />

extremely big <strong>cool<strong>in</strong>g</strong> <strong>systems</strong>, if the<br />

maximum improvement are wanted to be held<br />

<strong>in</strong> adverse climatic situations. The second<br />

reduce the size <strong>of</strong> the <strong>cool<strong>in</strong>g</strong> <strong>systems</strong>, but the<br />

power improvements are slight, and the<br />

problem is only partially mitigated. However,<br />

this operation or siz<strong>in</strong>g criterion is<br />

environmentally friendly, because the fuel<br />

consumption per electricity kilowatt is<br />

reduced.<br />

The third criterion is proposed <strong>in</strong> order to<br />

<strong>in</strong>clude economical aspects <strong>in</strong> the electricity<br />

generators operation. This option allows better<br />

and more sensible results to be obta<strong>in</strong>ed. That<br />

means medium <strong>cool<strong>in</strong>g</strong> system size, efficiency<br />

near to optimum efficiency and the highest<br />

hourly <strong>in</strong>comes. Obviously, the results are<br />

adapted to the market situation, allow<strong>in</strong>g the<br />

best <strong>in</strong>vestment pay back to be reached.<br />

Therefore, an economic optimisation criteria is<br />

adviced.<br />

REFERENCES<br />

[1]. M. De Lucia, R. Bronconi, E. Carnevale.<br />

Performance and economic enhancement <strong>of</strong><br />

cogeneration <strong>gas</strong> <strong>turb<strong>in</strong>e</strong>s through<br />

compressor <strong>in</strong>let <strong>air</strong> <strong>cool<strong>in</strong>g</strong>. Journal <strong>of</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g for Gas Turb<strong>in</strong>es and Power,<br />

Transactions <strong>of</strong> the ASME v116, n2 Apr 1994:<br />

360-365c, 1994.<br />

[2]. M. De Lucia, E. Carnevale, M. Falchetti, A.<br />

Tesei. Performance improvements <strong>of</strong> a natural<br />

<strong>gas</strong> <strong>in</strong>jection station us<strong>in</strong>g <strong>gas</strong> <strong>turb<strong>in</strong>e</strong> <strong>in</strong>let <strong>air</strong><br />

<strong>cool<strong>in</strong>g</strong>. Proceed<strong>in</strong>gs <strong>of</strong> the 1997 International<br />

Gas Turb<strong>in</strong>e & Aeroeng<strong>in</strong>e Congress &<br />

Exposition. ASME Paper 97-GT-508: 1-6,<br />

1997.<br />

[3]. S. Jolly, D. Sheperd, J. Nitzken, D.<br />

Sheperd. Inlet Air Cool<strong>in</strong>g for a Frame based<br />

Comb<strong>in</strong>ed Cycle Power Plant, Power–Gen<br />

International, December, pp. 1-12. , 1997.<br />

[4]. M. De Lucia, C. Lanfranchi, V. Boggio.<br />

Benefits <strong>of</strong> compressor <strong>in</strong>let <strong>air</strong> <strong>cool<strong>in</strong>g</strong> for <strong>gas</strong><br />

<strong>turb<strong>in</strong>e</strong> cogeneration plants. Proceed<strong>in</strong>gs <strong>of</strong><br />

International Gas Turb<strong>in</strong>e and Aeroeng<strong>in</strong>e<br />

Congress and Exposition, ASME Paper 95-<br />

GT-311: 1-7, 1995.<br />

[5]. R. Bettocchi, P.R. Sp<strong>in</strong>a, F. Maberti. Gas<br />

<strong>turb<strong>in</strong>e</strong> <strong>in</strong>let <strong>air</strong> <strong>cool<strong>in</strong>g</strong> us<strong>in</strong>g non-adiabatic<br />

saturation process, Proceed<strong>in</strong>gs <strong>of</strong> the 1995<br />

ASME Cogen-Turbo Power Conference.<br />

ASME Paper 95-CTP-49: 1-10, 1995.<br />

[6]. C. White, S. Raghu, G. Giannotti, H.<br />

Giannotti. Power boost <strong>of</strong> <strong>gas</strong> <strong>turb<strong>in</strong>e</strong>s by <strong>in</strong>let<br />

<strong>air</strong> <strong>cool<strong>in</strong>g</strong>, 31st. Proceed<strong>in</strong>gs <strong>of</strong> the<br />

Intersociety Energy Conversion Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conference, v. 2. IEEE, Piscataway, NJ,<br />

USA,: 725-729, 1996.<br />

[7]. R. Gareta, L. M. Romeo, A. Gil. The effect<br />

<strong>of</strong> <strong>air</strong> <strong>cool<strong>in</strong>g</strong> <strong>systems</strong> <strong>in</strong> comb<strong>in</strong>ed cycle<br />

performance. Presented at Power Gen 2001,<br />

Brussels.<br />

[8]. R. Gareta, L. M. Romeo, A. Gil.<br />

Methodology for the economic evaluation <strong>of</strong><br />

<strong>gas</strong> <strong>turb<strong>in</strong>e</strong> <strong>air</strong>-<strong>cool<strong>in</strong>g</strong> <strong>systems</strong> <strong>in</strong> comb<strong>in</strong>ed<br />

cycle applications, submitted to Energy.<br />

[9]. ABB technical paper. The ABB Gas<br />

Turb<strong>in</strong>e range overview.<br />

[10]. ABB technical paper. The GT8C <strong>gas</strong><br />

<strong>turb<strong>in</strong>e</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!