24.07.2013 Views

here - Berkeley Wireless Research Center - University of California ...

here - Berkeley Wireless Research Center - University of California ...

here - Berkeley Wireless Research Center - University of California ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Annual Report 2013


Table <strong>of</strong> Contents<br />

Introduction ................................................................................................................................ i<br />

BWRC Faculty & Scientific Directors...................................................................................... v<br />

Theme Reports<br />

RF and mm-Wave ................................................................................................................... 1<br />

Biomedical Systems .............................................................................................................. 21<br />

Energy Efficient Systems ....................................................................................................... 35<br />

Extreme Circuits .................................................................................................................... 55<br />

UnPad and eWallpaper......................................................................................................... 67<br />

Advanced Spectrum Utilization .............................................................................................. 77<br />

Integrated <strong>Wireless</strong> Systems and Applications ...................................................................... 85<br />

Recent Publications ................................................................................................................ 98<br />

Acknowledgements .............................................................................................................. 105<br />

BWRC Staff ............................................................................................................................ 109


BWRC Students<br />

Theme Reports<br />

RF and mm-Wave ...................................................................................................................................................... 1<br />

Ashkan Borna ................................................................................................................................................. 3<br />

Lucas Calderin ................................................................................................................................................ 4<br />

Jia-Shu Chen .................................................................................................................................................. 5<br />

Dajana Danilovic ............................................................................................................................................. 6<br />

Shinwon Kang .................................................................................................................................................. 7<br />

Lingkai Kong ................................................................................................................................................... 8<br />

Nai-Chung Kuo ................................................................................................................................................ 9<br />

Amanda Pratt ................................................................................................................................................ 10<br />

Paul Swirhun .................................................................................................................................................. 11<br />

Maryam Tabesh ............................................................................................................................................. 12<br />

Chintan Thakkar ........................................................................................................................................... 13<br />

Siva Thyagarajan ........................................................................................................................................... 14<br />

Andrew Townley ............................................................................................................................................ 15<br />

Angie Wang .................................................................................................................................................. 16<br />

Chaoying Wu ................................................................................................................................................ 17<br />

Bonjern Yang ................................................................................................................................................ 18<br />

Lu Ye ............................................................................................................................................................. 19<br />

Biomedical Systems................................................................................................................................................. 21<br />

William Biederman ......................................................................................................................................... 23<br />

Jun-Chau Chien ............................................................................................................................................. 24<br />

Ping-Chen Huang .......................................................................................................................................... 25<br />

Jaclyn Leverett .............................................................................................................................................. 26<br />

Wen Li ............................................................................................................................................................ 27<br />

Filip Maksimovic ........................................................................................................................................... 28<br />

Rikky Muller ................................................................................................................................................... 29<br />

Nathan Narevsky ........................................................................................................................................... 30<br />

DJ Seo ........................................................................................................................................................... 31<br />

Christopher Sutardja ...................................................................................................................................... 32<br />

Dan Yeager .................................................................................................................................................... 33<br />

Energy Efficient Systems ......................................................................................................................................... 35<br />

Steven Bailey ................................................................................................................................................ 37<br />

Jethro Beekman ............................................................................................................................................ 38<br />

Milovan Blagojevic ........................................................................................................................................ 39<br />

Pi-Feng Chiu .................................................................................................................................................. 40<br />

Ruzica Jevtic ................................................................................................................................................. 41<br />

Mervin John .................................................................................................................................................. 42<br />

Benjamin Keller ............................................................................................................................................. 43<br />

Nam-Seog Kim .............................................................................................................................................. 44<br />

Jaehwa Kwak ................................................................................................................................................. 45<br />

Hanh-Phuc Le ................................................................................................................................................ 46


Pengpeng Lu ................................................................................................................................................ 47<br />

Hoai Chau Nguyen Van ................................................................................................................................. 48<br />

Jesse Richmond ............................................................................................................................................ 49<br />

Nicholas Sutardja .......................................................................................................................................... 50<br />

Stephen Twigg ............................................................................................................................................... 51<br />

Wenting Zhou ................................................................................................................................................ 52<br />

Brian Zimmer ................................................................................................................................................. 53<br />

Extreme Circuits ...................................................................................................................................................... 55<br />

Steven Callender ........................................................................................................................................... 57<br />

John Crossley ................................................................................................................................................ 58<br />

Yida Duan ...................................................................................................................................................... 59<br />

Jaeduk Han .................................................................................................................................................... 60<br />

Rachel Hochman ........................................................................................................................................... 61<br />

Kwangmo Jung .............................................................................................................................................. 62<br />

Yue Lu ........................................................................................................................................................... 63<br />

Rachel Nancollas ........................................................................................................................................... 64<br />

Aikaterini Papadopoulou ................................................................................................................................ 65<br />

Matthew Spencer ........................................................................................................................................... 66<br />

UnPad and eWallpaper ........................................................................................................................................... 67<br />

Shaoyi Cheng ................................................................................................................................................ 69<br />

Terry Filiba ..................................................................................................................................................... 70<br />

Greg Gibeling ................................................................................................................................................. 71<br />

Alexander Krasnov ........................................................................................................................................ 72<br />

Hao Liu .......................................................................................................................................................... 73<br />

James Martin ................................................................................................................................................. 74<br />

Simon Scott ................................................................................................................................................... 75<br />

Advanced Spectrum Utilization ................................................................................................................................ 77<br />

Milos Jorgovanovic ........................................................................................................................................ 79<br />

Arash Parsa ................................................................................................................................................... 80<br />

Sameet Ramakrishnan .................................................................................................................................. 81<br />

Matthew Weiner ............................................................................................................................................. 82<br />

Sharon Xiao ................................................................................................................................................... 83<br />

Integrated <strong>Wireless</strong> Systems and Applications ........................................................................................................ 85<br />

Jayme Keist ................................................................................................................................................... 87<br />

Deepa Madan ................................................................................................................................................ 88<br />

Peter Minor .................................................................................................................................................... 89<br />

Christopher Sherman ..................................................................................................................................... 90<br />

Adam Tornheim ............................................................................................................................................. 91<br />

Jason Trager .................................................................................................................................................. 92<br />

Zuoqian Wang ............................................................................................................................................... 93<br />

Andrew Waterbury ......................................................................................................................................... 94<br />

Rich Winslow ................................................................................................................................................. 95<br />

Qiliang (Richard) Xu....................................................................................................................................... 96


INTRODUCTION<br />

Ken Lutz, Technical Director<br />

<strong>Berkeley</strong> <strong>Wireless</strong> <strong>Research</strong> <strong>Center</strong><br />

The <strong>Berkeley</strong> <strong>Wireless</strong> <strong>Research</strong> <strong>Center</strong> (BWRC), now in its second decade, is a partnership <strong>of</strong> UCB<br />

researchers, leading electronics companies, and government research agencies. The mission <strong>of</strong> BWRC is<br />

to educate world class researchers while exploring the leading edge <strong>of</strong> knowledge in future generations <strong>of</strong><br />

technology for wireless communications systems. BWRC addresses the design, conception, and<br />

implementation <strong>of</strong> the next-generation integrated wireless systems in state-<strong>of</strong>-the-art CMOS (and related)<br />

technologies. Our focus is on the integrated circuits and systems advances needed to enable a vision <strong>of</strong><br />

truly ubiquitous wireless, including the realization <strong>of</strong> always-connected reliable networks through<br />

advanced spectrum utilization techniques, the design <strong>of</strong> energy-efficient high data-rate links at 60 GHz<br />

and above, the investigation <strong>of</strong> the boundaries <strong>of</strong> ultra-low-energy wireless networks, and the exploration<br />

<strong>of</strong> the leading edge circuit techniques and components that make these systems possible.<br />

Faculty and students at BWRC collaborate in communication theory with the <strong>Berkeley</strong> <strong>Wireless</strong><br />

Foundations <strong>Center</strong>, in MEMS technology with the <strong>Berkeley</strong> Sensor and Actuator <strong>Center</strong> (BSAC), and in<br />

applications for biomedical and environmental engineering with the <strong>Center</strong> for Information Technology<br />

<strong>Research</strong> in the Interest <strong>of</strong> Society (CITRIS) and the UCSF Medical School. This critical-mass<br />

combination <strong>of</strong> UC <strong>Berkeley</strong> researchers, leading corporate sponsors and government funding agencies<br />

continues to deliver in making truly significant advances possible as demonstrated by the <strong>Center</strong>s’ impact<br />

in the areas <strong>of</strong> millimeter-wave radio, cognitive radio, ultra wideband and ultra-low power wireless<br />

systems.<br />

As you will see from this annual report, 2012 has been an exciting year at BWRC. Significant progress<br />

has been made across all areas <strong>of</strong> research and several new initiatives, including the eWallpaper, have<br />

moved forward.<br />

The following section provides a brief introduction and update to the seven research themes <strong>of</strong> the<br />

<strong>Berkeley</strong> <strong>Wireless</strong> <strong>Research</strong> <strong>Center</strong><br />

1. RF and mm-Wave<br />

The aim <strong>of</strong> this group is to design and implement highly-integrated RF and mm-wave transceivers using<br />

conventional silicon technology. The group consists <strong>of</strong> circuit designers who interact with system<br />

engineers to design energy efficient communication and imaging systems. Our current focus is on<br />

expanding the potential application space for low-cost mm-wave CMOS circuits and SoCs. Projects<br />

include high efficiency power amplifiers and transmitters, both for RF and mm-wave applications. These<br />

transmitters incorporate mixed signal and digital techniques to enhance the efficiency using an RF power<br />

DAC, oversampling and digital spectral image filtering. On the receiver side the focus is on improving<br />

the linearity <strong>of</strong> amplifiers and mixers to enable SAWless operation for multi-standard and reconfigurable<br />

front-ends. We are also exploring the application <strong>of</strong> mm-waves for wireless chip-to-chip communication.<br />

A 240 GHz prototype is developed to provide high data rates (> 10 Gbps) with low power consumption<br />

(< 50pJ/bit). Work in imaging includes the Time-domain UWB Synthetic Imager (TUSI) for medical<br />

applications and mm-Wave RFID.<br />

i


Operating at mm-wave frequencies using technologies with lossy substrates requires novel circuit design<br />

techniques as well as accurate high-frequency modeling <strong>of</strong> active and passive devices. Also, new system<br />

design methodologies will be needed to account for the limited performance <strong>of</strong> CMOS microwave circuits<br />

up to 300 GHz along with the huge amounts <strong>of</strong> available bandwidth. To accomplish this goal, our group<br />

combines <strong>Berkeley</strong>'s traditional expertise on integrated circuit design, device modeling, and system<br />

design with the state-<strong>of</strong>-the-art silicon technologies and vast experience with mm-wave circuit design<br />

provided by the BWRC industrial partners.<br />

2. Biomedical Systems<br />

Advancements in systems and circuits miniaturization and energy reduction allow for an ever-tighter<br />

interfacing between the biological and the cyber world. It is not too far-fetched to imagine integrated<br />

sensor (actuator) nodes, including data acquisition and processing circuitry as well as data transmission,<br />

that approach the size <strong>of</strong> a biological cell. This opens the door for a broad range <strong>of</strong> exciting new<br />

applications in the biomedical space. Examples include advanced in-situ and in-vivo monitoring and<br />

diagnostics, as well as stimulation or actuation. Mobility, longevity and reliability concerns demand that<br />

these nodes communicate wirelessly and operate in energy self-contained mode for a long period <strong>of</strong> time<br />

(> 10 years in some cases). The <strong>Berkeley</strong> <strong>Wireless</strong> <strong>Research</strong> <strong>Center</strong> (BWRC), with its long-established<br />

expertise in energy-efficient circuit design for processing and communication, as well as in energyharvesting<br />

technologies, is t<strong>here</strong>fore at the forefront <strong>of</strong> the development <strong>of</strong> the most advanced miniature<br />

biomedical systems. An example is its work in brain-machine interfaces (the ultimate unPad technology),<br />

in collaboration with the UCB-UCSF <strong>Center</strong> for Neural Engineering and Prosthetics (CNEP).<br />

<strong>Wireless</strong> technologies, besides <strong>of</strong>fering the capability <strong>of</strong> data communication and power delivery, also<br />

play an increasing role in medical imaging applications using the penetrating capabilities <strong>of</strong> highfrequency<br />

electromagnetic waveforms. BWRC has been a pioneer in the domain <strong>of</strong> millimeter-wave and<br />

TeraHertz transceivers, implemented in standard CMOS technologies. Advancing the state-<strong>of</strong>-the-art in<br />

CMOS electromagnetic imaging is the target <strong>of</strong> a range <strong>of</strong> projects at the <strong>Center</strong>, essential to the success<br />

<strong>of</strong> the tight integration <strong>of</strong> antennas, passives and active circuitry into single CMOS devices.<br />

3. Energy Efficient Systems<br />

<strong>Wireless</strong> systems are evolving to a three tiered environment with a ubiquitous, embedded and transparent<br />

sensory swarm at the outer layer. Ultra-low-power realizations <strong>of</strong> integrated wireless sensor nodes are an<br />

essential condition for the swarm concept to become truly successful. This research effort explores the<br />

boundaries <strong>of</strong> low-power design, seeking new design paradigms to enable both major power/energy<br />

reduction as well as continuing miniaturization. These reductions in size and energy can only be realized<br />

by a combination <strong>of</strong> innovative approaches, including novel technologies such as NEMS relays and<br />

oscillators; ultra-low-voltage scaled CMOS design; and alternative architectures for RF, mixed-signal and<br />

digital components.<br />

Energy scavenging and storage are critical enabling technologies for energy self-sufficient systems.<br />

<strong>Wireless</strong> power transmission and photovoltaic power harvesting are the most commonly explored<br />

techniques today, but other energy sources such as Vibrations, Air Flow, Temperature Gradients, Pressure<br />

Gradients and Human Power are being explored as well. For implantable devices, glucose bi<strong>of</strong>uel cells<br />

are an interesting option worth investigating.<br />

To push the limits, we have selected a number <strong>of</strong> advanced applications that would not be possible<br />

without major advances in low-power design technology. Among these are integrated bio-medical health<br />

management systems including sensors for neural implantation to enable brain-machine interfaces, energy<br />

self-contained sensor tags for body-area networking, wake-up radios, and sensor nets for smart energy<br />

systems.<br />

ii


4. Extreme Circuits<br />

Existing as well as evolving applications along with the integrated systems that enable them continue to<br />

require significant advances in their underlying circuit implementation. However, as CMOS scaling has<br />

shifted into a regime w<strong>here</strong> most <strong>of</strong> the device parameters do not significantly improve with<br />

miniaturization, realizing these circuit advances has become increasingly difficult to achieve. Our goal is<br />

thus to address these challenges by developing techniques that push the extremes <strong>of</strong> circuit performance,<br />

energy, and robustness, fueling the continued growth <strong>of</strong> IC applications.<br />

Given the many different functions integrated into modern ICs, researchers within this group focus on a<br />

variety <strong>of</strong> building blocks and their associated design methodologies, including digital computing and<br />

signal processing circuits, high-speed serial transceivers, RF components, memories, data converters,<br />

clock generation and synthesis circuits, and integrated voltage regulators. Furthermore, researchers are<br />

developing design methodologies and frameworks enabling the capture and automatic re-use (resulting in<br />

complete designs including schematics and layout) <strong>of</strong> the methodologies we have developed. In order to<br />

evaluate our techniques in the most realistic environment possible, many <strong>of</strong> the concepts developed<br />

within the group are demonstrated in some <strong>of</strong> the most advanced CMOS processes available (including<br />

45, 32 and 22nm FDSOI). To push the boundaries even further, our group is also exploring circuit designs<br />

exploiting the properties <strong>of</strong> next-generation and alternative switching devices such as FinFETs, spinbased<br />

transistors, and nano-mechanical relays.<br />

5. UnPad and eWallpaper<br />

The unPad is a vision <strong>of</strong> the future w<strong>here</strong> pads and other handheld devices cease to be necessary. The pad<br />

disappears, but its functionality (plus more) stays—in the form <strong>of</strong> unpackaged communication,<br />

computation, and storage. People seamlessly interact with data, the environment and one another through<br />

an interconnected set <strong>of</strong> sensor, actuators, and computing and storage devices. Sensors and actuators in<br />

the environment are used as input/output devices, and along with computing, storage, and communication<br />

bandwidth, will be commissioned on the fly as needed to provide the desired functionality. As a person<br />

moves through their environment, say from home to car and then to their <strong>of</strong>fice, a set <strong>of</strong> their data moves<br />

with them, and the sensors and actuators in whatever environment they happen to occupy are clustered in<br />

an ad hoc way to support whatever services are currently needed. This strong sense <strong>of</strong> seamless mobility,<br />

and the opportunistic assembly and allocation <strong>of</strong> resources is what has been missing in earlier similar<br />

visions such as ubiquitous computing. Our research at BWRC forms the basis <strong>of</strong> what is needed to fulfill<br />

the unPad vision.<br />

The unPad vision presents many technical challenges. We envision an infrastructure that dynamically<br />

matches the needs <strong>of</strong> the user to available resources, thus creating a “virtual device”. Such a vision is a<br />

significant deviation from current wireless systems networking in terms <strong>of</strong> data streaming and control.<br />

Discovery plays a key role, as does the need to continuously bundle local functionality in creating<br />

services. The infrastructure must exploit locality to maximize total system communication capacity and<br />

minimize energy consumption. The dynamic configuration requires sophisticated resource management<br />

and policies for conflict resolution. We envision a hierarchical wireless region-based model: from the<br />

human-body level, to the room, to the building, to an entire block, etc. However, this clustering would be<br />

dynamically changing, as a person's spatial domain <strong>of</strong> interest changes. In some cases the domains will<br />

be “virtual” instead <strong>of</strong> physical, to handle long-distance communication modes such as tele-presence.<br />

Peer-to-peer connections within zone (similar to WiFi Direct or FlashLinq) will be used. Whenever<br />

present, the fixed wired infrastructure can be a complement to wireless.<br />

iii


6. Advanced Spectrum Utilization<br />

The goal <strong>of</strong> this group is to fundamentally change the operation <strong>of</strong> wireless communication systems.<br />

Explosive growth <strong>of</strong> wireless communications over the last decade and reliance on mobile telephones for<br />

daily voice and data communication, and <strong>of</strong>ten for first contact in case <strong>of</strong> emergency, has become<br />

pervasive. Present methods <strong>of</strong> frequency allocation combined with a reliance on rigid infrastructure<br />

threaten to halt this growth. By enabling secondary use <strong>of</strong> spectrum on an opportunistic basis, ubiquitous,<br />

robust and agile wireless systems can be realized that are able to support further traffic growth. As such, it<br />

will enable the extension <strong>of</strong> wireless data-rates and coverage for many decades to come and open the door<br />

for exciting new applications to emerge.<br />

This set <strong>of</strong> projects will lay the theoretical foundation, develop the necessary systems knowledge and<br />

demonstrate prototype test beds for a new kind <strong>of</strong> a wireless system, which will operate in a very broad<br />

frequency spectrum with bands <strong>of</strong> operation that can be dynamically allocated. Additionally, this group<br />

will investigate methods for optimal use <strong>of</strong> spatial diversity to enable continued capacity growth <strong>of</strong><br />

wireless systems by operating at the limits <strong>of</strong> available multiplexing and diversity gains. One <strong>of</strong> the<br />

concepts that would enable the reuse <strong>of</strong> frequency bands is a Connectivity Broker—an agent embedded in<br />

the wireless infrastructure that communicates over a virtual control channel—to support diversity <strong>of</strong> radio<br />

technologies as well as innovative rules <strong>of</strong> cooperation. The concept <strong>of</strong> secondary use <strong>of</strong> the spectrum in<br />

combination with advanced cooperation between system components is revolutionary, and it is enabled by<br />

advances in fundamental communications and networking theory and continued improvements in<br />

integrated circuit technology.<br />

7. Integrated <strong>Wireless</strong> Systems and Applications<br />

High-value products such as aerospace engines and semiconductor fabrication equipment will continue to<br />

expand in sophistication and include even more sensing and closed-loop control. The trend towards the<br />

deployment <strong>of</strong> wireless sensor nodes and networks (WSNs) will continue due to lower cost and flexibility<br />

<strong>of</strong> such systems. As a result, the many sub-assemblies <strong>of</strong> these high-value products will be densely<br />

packed with wireless sensor nodes for the purpose <strong>of</strong> fine-grained monitoring over the whole lifetime <strong>of</strong><br />

the product. Even modestly complex products such as the pumps and motors in the cooling/air cleaning<br />

systems <strong>of</strong> a semiconductor fab need better monitoring than is common today. Better monitoring and<br />

sustainment efforts can be achieved with condition–based monitoring platforms that combine energy<br />

harvesting, energy storage, sensors, and wireless communication. Condition monitoring research extends<br />

beyond industrial machinery and currently includes societal infrastructure associated with the smart grid,<br />

water, and gas pipelines. To enable this research, an adaptable wireless node architecture has been<br />

developed around the Texas Instruments eZ430-RF2500 wireless development platform. The node can be<br />

configured to accept harvested energy from the in<strong>here</strong>nt mechanical vibrations <strong>of</strong> industrial machinery,<br />

AC energized conductors, or a battery. The standard node configuration includes a digital accelerometer<br />

and pressure sensor, but it can accept additional sensor inputs as well. Independent research continues on<br />

energy harvesting, energy storage, sensors (current, voltage, pressure), and condition monitoring, but each<br />

research component can be combined, tested, and realistically deployed using the adaptable node<br />

architecture based on the TI eZ430-RF2500 wireless development platform. These research condition<br />

monitoring nodes combining the various technologies are currently being deployed on industrial<br />

machinery and gas pipelines to collect data that will enable mapping <strong>of</strong> the unique signatures <strong>of</strong> specific<br />

machine or infrastructure failures.<br />

iv


BWRC FACULTY & SCIENTIFIC DIRECTORS<br />

Elad Alon<br />

Associate Pr<strong>of</strong>essor <strong>of</strong> Electrical Engineering and Computer<br />

Sciences<br />

E-mail: elad@berkeley.edu<br />

<strong>Research</strong> Web Page: http://www.eecs.berkeley.edu/~elad<br />

Pr<strong>of</strong>essor Alon received the B.S., M.S., and Ph.D. degrees in<br />

Electrical Engineering from Stanford <strong>University</strong>. He joined the<br />

faculty at the <strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Berkeley</strong> in January 2007.<br />

He has held visiting positions at Cadence, Xilinx, Oracle Labs,<br />

Intel, AMD, Rambus, HP, and IBM, w<strong>here</strong> he worked on digital,<br />

analog, and mixed-signal integrated circuits for computing, test and<br />

measurement, and high-speed communications. His research<br />

interests are in energy-efficient integrated systems, including the<br />

circuit, device, and optimization techniques used to design them.<br />

Bob Brodersen<br />

Pr<strong>of</strong>essor Emeritus <strong>of</strong> Electrical Engineering and Computer<br />

Sciences<br />

E-mail: rb@eecs.berkeley.edu<br />

<strong>Research</strong> Web Page:<br />

http://bwrc.eecs.berkeley.edu/People/Faculty/rb/<br />

A pioneer in the field <strong>of</strong> computer speech recognition and a leading<br />

authority in wireless communication. Pr<strong>of</strong>essor Brodersen received<br />

his Ph.D. from MIT in 1976 and was associated with the Central<br />

<strong>Research</strong> Laboratory, Texas Instruments until 1976, when he<br />

joined the EECS faculty at the <strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Berkeley</strong>.<br />

A member <strong>of</strong> the National Academy <strong>of</strong> Engineering, his research<br />

interests include communication systems, signal processing and<br />

design, layout, simulation, and testing <strong>of</strong> integrated circuits.<br />

v


Ali M. Niknejad<br />

Pr<strong>of</strong>essor <strong>of</strong> Electrical Engineering and Computer Sciences<br />

E-mail: niknejad@eecs.berkeley.edu<br />

<strong>Research</strong> Web Page: http://rfic.eecs.berkeley.edu/~niknejad/<br />

Pr<strong>of</strong>essor Ali M. Niknejad received the B.S.E.E. degree from the<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, Los Angeles, in 1994, and his Master’s<br />

and Ph.D. degrees in electrical engineering from the <strong>University</strong> <strong>of</strong><br />

<strong>California</strong>, <strong>Berkeley</strong>, in 1997 and 2000. He is currently a pr<strong>of</strong>essor<br />

in the EECS department at UC <strong>Berkeley</strong> and co-director <strong>of</strong> the<br />

<strong>Berkeley</strong> <strong>Wireless</strong> <strong>Research</strong> <strong>Center</strong> and the BSIM <strong>Research</strong><br />

Group. His research interests lie within the area <strong>of</strong> RF, mm-wave,<br />

and sub-THz for applications in medicine and wireless<br />

communications. Pr<strong>of</strong>. Niknejad is an IEEE Fellow and recipient<br />

<strong>of</strong> the 2012 ASEE Frederick Emmons Terman Award.<br />

Borivoje Nikolić<br />

Pr<strong>of</strong>essor <strong>of</strong> Electrical Engineering and Computer Sciences<br />

E-mail: bora@eecs.berkeley.edu<br />

<strong>Research</strong> Web Page: http://www.eecs.berkeley.edu/~bora/<br />

Pr<strong>of</strong>essor Nikolić has main interests in the implementation <strong>of</strong><br />

communications circuits and systems. He received his Dipl. Ing<br />

and M.Sc. degrees in Electrical Engineering from the <strong>University</strong> <strong>of</strong><br />

Belgrade, Yugoslavia in 1992 and 1994, respectively. He received<br />

a Ph.D. degree in Electrical and Computer Engineering from the<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, Davis in 1999. Before coming to<br />

<strong>Berkeley</strong>, he had appointments as a lecturer at the <strong>University</strong> <strong>of</strong><br />

Belgrade and with Silicon Systems, Inc., Texas Instruments<br />

Storage Products Group, San Jose, CA, w<strong>here</strong> he worked on disk<br />

drive signal processing electronics.<br />

vi


Jan Rabaey<br />

Donald O. Pederson Distinguished Pr<strong>of</strong>essor<br />

<strong>of</strong> Electrical Engineering and Computer Sciences<br />

Director <strong>of</strong> Multiscale Systems <strong>Center</strong> (MuSyC)<br />

E-mail: jan@eecs.berkeley.edu<br />

<strong>Research</strong> Web Page:<br />

http://bwrc.eecs.berkeley.edu/People/Faculty/jan/<br />

Pr<strong>of</strong>essor Rabaey is a leader in the domains <strong>of</strong> low power design<br />

technologies and methodologies. After receiving his Ph.D. degree<br />

in Applied Sciences from the Katholieke Universiteit Leuven,<br />

Belgium in 1983, he joined the <strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Berkeley</strong><br />

as a Visiting <strong>Research</strong> Engineer. From 1985 to1987 he was a<br />

research manager at IMEC, Belgium, and in 1987 he joined the<br />

faculty <strong>of</strong> the Electrical Engineering and Computer Science<br />

department <strong>of</strong> the <strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Berkeley</strong>. From 1999<br />

until 2002, he was the Associate Chair <strong>of</strong> the EECS department at<br />

UC <strong>Berkeley</strong>. He is the past director <strong>of</strong> the FCRP Gigascale<br />

Systems <strong>Research</strong> <strong>Center</strong> (GSRC) and the current director <strong>of</strong> the<br />

FCRP Multiscale Systems <strong>Center</strong> (MuSyC). An IEEE Fellow and<br />

recipient <strong>of</strong> the 2008 IEEE CAS Mac Van Valkenburg, the 2009<br />

EDAA Lifetime Achievement and the 2010 Semiconductor<br />

Industry Association <strong>University</strong> <strong>Research</strong>er Awards, his current<br />

research interests include the conception and design <strong>of</strong> nextgeneration<br />

wireless systems with a special focus on ubiquitous<br />

distributed systems.<br />

vii


John Wawrzynek<br />

Pr<strong>of</strong>essor <strong>of</strong> Electrical Engineering and Computer Sciences<br />

E-mail: johnw@eecs.berkeley.edu<br />

<strong>Research</strong> Web Page: http://www.cs.berkeley.edu/~johnw/<br />

Dr. John Wawrzynek is a Pr<strong>of</strong>essor <strong>of</strong> Electrical Engineering and<br />

Computer Sciences at the <strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Berkeley</strong>. He<br />

holds a Ph.D. and M.S. in Computer Science from the <strong>California</strong><br />

Institute <strong>of</strong> Technology, an M.S. in Electrical Engineering from the<br />

<strong>University</strong> <strong>of</strong> Illinois, Urbana/Champaign, and a BS in Electrical<br />

Engineering, from the State <strong>University</strong> <strong>of</strong> New York at Buffalo. He<br />

is a Faculty Scientist at Lawrence <strong>Berkeley</strong> National Laboratory,<br />

NERSC Division and a co-director at the <strong>Berkeley</strong> <strong>Wireless</strong><br />

<strong>Research</strong> <strong>Center</strong> (BWRC). His research projects include<br />

reconfigurable computing and computer architecture. He formed<br />

the <strong>Berkeley</strong> Reconfigurable Computing group and pioneered<br />

hardware architectures and programming models for hybrid systems<br />

combining reconfigurable arrays with conventional processors<br />

cores. He was principle investigator <strong>of</strong> the <strong>Research</strong> Accelerator for<br />

Multiple Processors (RAMP) project that developed FPGAs-based<br />

simulation systems for computer architecture research. He is<br />

currently PI <strong>of</strong> the <strong>Berkeley</strong> ISIS project addressing the need for<br />

rapid design space exploration and hardware/s<strong>of</strong>tware co-design for<br />

energy efficient many-core system development which is part <strong>of</strong> an<br />

interdisciplinary team on the application <strong>of</strong> FPGA computing<br />

technology to problems in systems biology. He currently teaches<br />

courses in digital design, computer architecture, VLSI system<br />

design, and reconfigurable computing. He was co-founder <strong>of</strong> Andes<br />

Networks, a company specializing in the design and manufacturing<br />

<strong>of</strong> accelerators for network security, and BEECube, Inc.,<br />

specializing in reconfigurable computing systems.<br />

viii


Paul K. Wright<br />

Pr<strong>of</strong>essor<br />

A. Martin Berlin Chair in Mechanical Engineering<br />

E-mail: pwright@bwrc.eecs.berkeley.edu<br />

<strong>Research</strong> Web Page: http://www.me.berkeley.edu/faculty/wright/<br />

Paul K. Wright is the Director for <strong>Center</strong> for Information<br />

Technology in the Interest <strong>of</strong> Society (CITRIS) at UC <strong>Berkeley</strong>. It<br />

serves four <strong>University</strong> <strong>of</strong> <strong>California</strong> campuses and hosts many<br />

multi-disciplinary projects on large societal problems, including<br />

healthcare, services and intelligent infrastructures such as energy,<br />

water and sustainability. Pr<strong>of</strong>essor Wright teaches in the<br />

Mechanical Engineering department, w<strong>here</strong> he holds the A. Martin<br />

Berlin Chair. He also serves as co-director <strong>of</strong> the <strong>Berkeley</strong><br />

Manufacturing Institute (BMI) and co-director <strong>of</strong> the <strong>Berkeley</strong><br />

<strong>Wireless</strong> <strong>Research</strong> <strong>Center</strong> (BWRC). From 1995 to 2005 he served<br />

as co-chair <strong>of</strong> the Management <strong>of</strong> Technology Program (a joint<br />

program with the Haas School <strong>of</strong> Business). His research and<br />

teaching are in high-tech product design and rapid manufacturing.<br />

Currently, he and his colleagues are designing and prototyping<br />

wireless systems for "Demand Response Power Management"<br />

throughout <strong>California</strong>, funded by PIER/CEC (the Public Interest<br />

Energy <strong>Research</strong> program <strong>of</strong> the <strong>California</strong> Energy Commission).<br />

Born in London, England, he attended Birmingham and Cambridge<br />

universities prior to attaining previous U.S. faculty positions at New<br />

York <strong>University</strong> and Carnegie Mellon <strong>University</strong>.<br />

ix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!