17.10.2012 Views

Presentation - Analysis of High-speed Differential Line on PCB ...

Presentation - Analysis of High-speed Differential Line on PCB ...

Presentation - Analysis of High-speed Differential Line on PCB ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>High</str<strong>on</strong>g>-<str<strong>on</strong>g>speed</str<strong>on</strong>g> <str<strong>on</strong>g>High</str<strong>on</strong>g> <str<strong>on</strong>g>speed</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g> <strong>on</strong> <strong>PCB</strong> using HFSS<br />

2002. 10. 1<br />

Terahertz Interc<strong>on</strong>necti<strong>on</strong> and Package Laboratory<br />

KAIST (Korea Advanced Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology)<br />

Seungy<strong>on</strong>g Baek (? ??)<br />

Homepage : http://tera.kaist.ac.kr


Research Fields at TERA Lab. (in the view <str<strong>on</strong>g>of</str<strong>on</strong>g> Motherboard)<br />

Twisted Pair <strong>on</strong> <strong>PCB</strong>/Chip<br />

Modular Jack<br />

EMI<br />

Signal line across Split plane design<br />

Spread Spectrum Clock Driver<br />

C<strong>on</strong>nector Modeling<br />

Power Plane Design<br />

Mixed Mode Power Plane Modeling<br />

Split Power System Modeling<br />

MESH Plane Modeling<br />

Via Modeling<br />

Crosstalk Modeling<br />

Single <str<strong>on</strong>g>Line</str<strong>on</strong>g> Modeling<br />

ESD<br />

Embedded Passive Modeling<br />

SMT Comp<strong>on</strong>ent Modeling<br />

SATA<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g> Modeling<br />

BGA Modeling<br />

Adaptive Output Driver<br />

2/31<br />

Meander LINE<br />

Memory Module Design<br />

RAMBUS<br />

WLP


C<strong>on</strong>tents<br />

� Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Signaling Scheme<br />

� Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Signaling Scheme by Fabricati<strong>on</strong> Error<br />

� Impedance Change by Edge-Placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>High</str<strong>on</strong>g>-<str<strong>on</strong>g>speed</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g>s<br />

� An Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Impedance in <strong>PCB</strong>s Using Two Single-<br />

Ended Probes Only<br />

� C<strong>on</strong>clusi<strong>on</strong><br />

3/31


Introducti<strong>on</strong> – Frequency Increase<br />

Frequency [GHz]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

On-chip Local Clock<br />

(<str<strong>on</strong>g>High</str<strong>on</strong>g>-performance)<br />

1<br />

Chip-to-Board<br />

(<str<strong>on</strong>g>of</str<strong>on</strong>g>f-chip) Speed (high-performance, for peripheral buses)<br />

0<br />

2000 2002 2004 2006 2008<br />

Year<br />

2010 2012 2014<br />

Ref.) ITRS (Internati<strong>on</strong>al Technology Roadmap for Semic<strong>on</strong>ductors), 2000, SIA<br />

� Off-chip data rate should move to the range <str<strong>on</strong>g>of</str<strong>on</strong>g> Gb/s-per-pin<br />

? increased complexity and cost due to massive parallelism<br />

4/31


Introducti<strong>on</strong> – Power Supply Voltage Decrease<br />

Power Supply Voltage [V]<br />

2.1<br />

1.8<br />

1.5<br />

1.2<br />

0.9<br />

0.6<br />

0.3<br />

Minimum logic V dd (V)<br />

for minimum power<br />

Minimum logic V dd (V)<br />

for maximum performance<br />

0<br />

2000 2002 2004 2006 2008 2010 2012 2014<br />

Year<br />

Ref.) ITRS (Internati<strong>on</strong>al Technology Roadmap for Semic<strong>on</strong>ductors), 2000, SIA<br />

� Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> power supply voltage<br />

? power dissipati<strong>on</strong>, transistor channel length, reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> gate dielectric<br />

5/31


Why <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Signaling?<br />

� Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Crosstalk between Circuits<br />

� Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Simultaneous Switching Noise (SSN)<br />

� Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EMI<br />

� Minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Comm<strong>on</strong>-mode noise<br />

� Design <str<strong>on</strong>g>of</str<strong>on</strong>g> Low-voltage, Low-power<br />

⇒ <str<strong>on</strong>g>High</str<strong>on</strong>g>-<str<strong>on</strong>g>speed</str<strong>on</strong>g> digital circuit<br />

6/31


Objective<br />

� Using HFSS simulati<strong>on</strong> and Testing,<br />

� A Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Signaling Scheme by Fabricati<strong>on</strong> Error<br />

� A Dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Impedance Change by Edge-Placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>High</str<strong>on</strong>g>-<str<strong>on</strong>g>speed</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g>s<br />

� An Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> New Test Method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g>s Using Two Single-<br />

Ended Probes Only<br />

7/31


Process Variati<strong>on</strong> Problem in <str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g> Scheme<br />

Seungyoung Ahn, Albert Chee W. Lu, Wei fan, lai L Wai, and Joungho Kim, “Soluti<strong>on</strong> Space <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Interc<strong>on</strong>nects<br />

for Low Voltage <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Signaling ( LVDS) Applicati<strong>on</strong>s”, IEEE 10th Topical Meeting <strong>on</strong> Electrical Performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Electr<strong>on</strong>ic Packaging (EPEP2001), pp. 297-330, Bost<strong>on</strong>, USA, Oct. 2001.<br />

? w<br />

? s<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g>-Mode<br />

� Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricati<strong>on</strong> error : (? w, ? s) > (? h)<br />

Comm<strong>on</strong>-Mode<br />

� Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricati<strong>on</strong> error ? field change ? variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical characteristics<br />

� Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical characteristics by fabricati<strong>on</strong> error<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g>-mode > Comm<strong>on</strong>-mode<br />

? h<br />

8/31


Device Under Test<br />

DUT Width Space Width ? ?<br />

#1<br />

#2<br />

#3<br />

#4<br />

#5<br />

100 µm 125 µm –20 %<br />

112.5 µm<br />

125 µm<br />

137.5 µm<br />

150 µm<br />

125 µm<br />

125 µm<br />

125 µm<br />

125 µm<br />

–10 %<br />

0 %<br />

10 %<br />

20 %<br />

� ??? ? 10%? ?? ??? ???.<br />

???<br />

� ?? ??? ??? ???? ???? ??<br />

DUT Width Space Space ? ?<br />

#6<br />

125 µm<br />

125 µm<br />

125 µm<br />

125 µm<br />

125 µm<br />

100 µm –20 %<br />

112.5 µm<br />

125 µm<br />

137.5 µm<br />

150 µm<br />

???? ???? Signal line? Width? Space? ±10%, ±20% ? ?.<br />

#7<br />

#8<br />

#9<br />

#10<br />

9/31<br />

–10 %<br />

0 %<br />

10 %<br />

20 %


Characteristic Parameters – 1.Characteristic Impedance (Z 0 )<br />

Voltage (V)<br />

±20% <str<strong>on</strong>g>of</str<strong>on</strong>g> Width variati<strong>on</strong> for <str<strong>on</strong>g>Differential</str<strong>on</strong>g>-mode signaling<br />

Circuit Simulati<strong>on</strong> (? ? TDR Setup) Full-wave simulati<strong>on</strong><br />

4.9 % reflecti<strong>on</strong><br />

Time (ns)<br />

� Z <str<strong>on</strong>g>Differential</str<strong>on</strong>g>-mode (100 Ohm) ˜ Z Cable (50×2 = 100 Ohm) ? ? Matching.<br />

� Width? (20%) � Reflecti<strong>on</strong> ? ? (4.9 %)<br />

1 + Γref<br />

1 + Γ<br />

ΔZ<br />

= Z ref − Z = 100 × −100<br />

× ? ??, Z0 ? (10.3 %)<br />

1 − Γref<br />

1 − Γ<br />

� 4.9% reflecti<strong>on</strong> � 10.9% Z0 ?? (full-wave Simulati<strong>on</strong>),<br />

Z 0 (Ohm)<br />

140<br />

120<br />

100<br />

80<br />

10.9 %<br />

100 125 150<br />

Width (µm)<br />

10/31


Characteristic Parameters – 1.Characteristic Impedance (Z 0 )<br />

±20% <str<strong>on</strong>g>of</str<strong>on</strong>g> Width variati<strong>on</strong> for Comm<strong>on</strong>-mode signaling<br />

Circuit Simulati<strong>on</strong> (? ? TDR Setup) Full-wave simulati<strong>on</strong><br />

Voltage (V)<br />

4.8 % reflecti<strong>on</strong><br />

Time (ns)<br />

� Z Comm<strong>on</strong>-mode (33Ohm) > Z Cable (50/2=25Ohm)? ? ?? Mismatching<br />

� Width? (20%) � Reflecti<strong>on</strong> ? ? (4.8 %)<br />

� 4.8% reflecti<strong>on</strong> � 10.9 % Z 0 ?? (full-wave Simulati<strong>on</strong>)<br />

Z 0 (Ohm)<br />

70<br />

50<br />

30<br />

10<br />

10.9 %<br />

100 125 150<br />

Width (µm)<br />

11/31


Characteristic Parameters – 1.Characteristic Impedance (Z 0 )<br />

±20% <str<strong>on</strong>g>of</str<strong>on</strong>g> Space variati<strong>on</strong> for <str<strong>on</strong>g>Differential</str<strong>on</strong>g>-mode signaling<br />

Circuit Simulati<strong>on</strong> (? ? TDR Setup) Full-wave simulati<strong>on</strong><br />

Voltage (V)<br />

1.8 % reflecti<strong>on</strong><br />

Time (ns)<br />

� Z <str<strong>on</strong>g>Differential</str<strong>on</strong>g>-mode (100 Ohm) ˜ Z Cable (50×2 = 100 Ohm) ? ? Matching.<br />

� Space? (20%) � Reflecti<strong>on</strong> ? ? (1.8 %)<br />

Z 0 (Ohm)<br />

� 1.8% reflecti<strong>on</strong> � 3.2% Z 0 ?? (full-wave Simulati<strong>on</strong>)<br />

140<br />

120<br />

100<br />

80<br />

3.2 %<br />

100 125 150<br />

Space (µm)<br />

12/31


Characteristic Parameters – 1.Characteristic Impedance (Z 0 )<br />

Voltage (V)<br />

±20% <str<strong>on</strong>g>of</str<strong>on</strong>g> Space variati<strong>on</strong> for Comm<strong>on</strong>-mode Signaling<br />

Circuit Simulati<strong>on</strong> (? ? TDR Setup) Full-wave simulati<strong>on</strong><br />

1.1 % reflecti<strong>on</strong><br />

Time (ns)<br />

Z 0 (Ohm)<br />

70<br />

50<br />

30<br />

10<br />

2.6 %<br />

100 125 150<br />

Space (µm)<br />

� Z Comm<strong>on</strong>-mode (33 Ohm) > Z Cable (50/2=25 Ohm) ? ? ?? Mismatching<br />

� Space? (20%) � Reflecti<strong>on</strong> ? ? (1.1 %)<br />

� 1.1% reflecti<strong>on</strong> � 2.6% Z 0 ?? (full-wave Simulati<strong>on</strong>)<br />

13/31


Effect by Edge Placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g><br />

Seungy<strong>on</strong>g Baek, Derek Kam, B<strong>on</strong>gcheol Park, Jung-Gun Byun, Cheol-Seung Choi, and Joungho Kim, “Increased Radiated<br />

Emissi<strong>on</strong> and Impedance Change by Edge-Placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>High</str<strong>on</strong>g>-<str<strong>on</strong>g>speed</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> <str<strong>on</strong>g>Line</str<strong>on</strong>g>s <strong>on</strong> Printed Circuit Board,” 2002<br />

IEEE Internati<strong>on</strong>al Symposium <strong>on</strong> Electromagnetic Compatibility, vol 1, pp 200-204, Minnesota USA.<br />

? C<strong>on</strong>sider the effects by edge placement <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>speed</str<strong>on</strong>g> differential lines<br />

? Dem<strong>on</strong>strate differential mode impedance change by edge placement<br />

? Certificate variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiated emissi<strong>on</strong> using simulati<strong>on</strong> and measurement<br />

<str<strong>on</strong>g>Line</str<strong>on</strong>g> Width = 0.4mm<br />

Pitch=0.7mm<br />

Substrate Width=20mm<br />

Distance to edge (D)<br />

Height = 0.3mm<br />

Substrate<br />

length=80mm<br />

Test <strong>PCB</strong> with finite width ground<br />

14/31<br />

10mm<br />

0.8mm


Current density <str<strong>on</strong>g>of</str<strong>on</strong>g> differential pair (Simulati<strong>on</strong>)<br />

Substrate<br />

Air<br />

Trace 1 Trace 2 Trace 1 Trace 2<br />

Substrate<br />

(a) (b)<br />

Air<br />

10mm 1mm<br />

Current density when the distance to edge is 10mm Current density when the distance to edge is 1mm<br />

� When differential pair is located in the center <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>PCB</strong>, current density is balanced in case <str<strong>on</strong>g>of</str<strong>on</strong>g> (a)<br />

� The balance <str<strong>on</strong>g>of</str<strong>on</strong>g> current density is broken by edge placement in case <str<strong>on</strong>g>of</str<strong>on</strong>g> (b)<br />

15/31


<str<strong>on</strong>g>Differential</str<strong>on</strong>g> impedance change by edge placement (Simulati<strong>on</strong>)<br />

Impedance [ohm]<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> mode impedance<br />

25<br />

1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6<br />

Comm<strong>on</strong> mode impedance<br />

20<br />

10 9 8 7 6 5 4 3 2 1 0<br />

Distance to edge (D) [mm]<br />

� <str<strong>on</strong>g>Differential</str<strong>on</strong>g> mode impedance remains about 100Ω from 10mm to 2mm<br />

� <str<strong>on</strong>g>Differential</str<strong>on</strong>g> mode impedance suddenly falls <str<strong>on</strong>g>of</str<strong>on</strong>g>f when D is 1mm<br />

16/31


Measurement setup <str<strong>on</strong>g>of</str<strong>on</strong>g> differential impedance<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> TDR module 80E04 + Sampling Oscilloscape TDS 8000B<br />

( Reflected rising time= 30ps )<br />

Test <strong>PCB</strong><br />

50Ω terminati<strong>on</strong><br />

Test setup for measuring the differential mode impedance<br />

17/31


Measurement results – differential mode impedance<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> Impedance [ohm]<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

Distance to the edge (D) = 10mm<br />

Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 17%<br />

Distance to the edge (D) = 0.8mm<br />

44.4 44.6 44.8 45 45.2 45.4 45.6 45.8 46 46.2<br />

Time [ns]<br />

� Distance to the edge = 10mm � <str<strong>on</strong>g>Differential</str<strong>on</strong>g> mode impedance = 102Ω<br />

� Distance to the edge = 0.8mm � <str<strong>on</strong>g>Differential</str<strong>on</strong>g> mode impedance = 85Ω<br />

� The differential mode impedance suddenly falls <str<strong>on</strong>g>of</str<strong>on</strong>g>f to 85Ω when D = 0.8mm<br />

18/31


Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiated emissi<strong>on</strong> by edge placement<br />

Edge placement <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>speed</str<strong>on</strong>g> differential lines<br />

Balance <str<strong>on</strong>g>of</str<strong>on</strong>g> the differential lines is collapsed<br />

Balance <str<strong>on</strong>g>of</str<strong>on</strong>g> the current density is also broken<br />

Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> mode current<br />

Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiated emissi<strong>on</strong><br />

19/31


Radiated emissi<strong>on</strong> according to locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> differential pair<br />

150<br />

210<br />

Total electric field plot at 1GHz (V/m)<br />

120<br />

240<br />

90<br />

0.2<br />

0.6<br />

0.4<br />

60<br />

30<br />

180 0<br />

270<br />

300<br />

D=10mm (a)<br />

D=3mm (b)<br />

D=1mm (c)<br />

D=0.8mm (d)<br />

330<br />

Simulated total electric field at 1GHz<br />

MAX : 0.25V/m<br />

MAX : 0.522V/m<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

20/31<br />

10mm<br />

3mm<br />

1mm<br />

0.8mm


Measurement setup <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> emissi<strong>on</strong><br />

DC<br />

Power<br />

Supply<br />

100MHz<br />

Crystal<br />

Oscillator<br />

Spectrum Analyzer<br />

180°<br />

Phase Shifter<br />

Shielding Box<br />

180°<br />

0°<br />

Antenna<br />

Anechoic Chamber<br />

Radiated Emissi<strong>on</strong><br />

Test <strong>PCB</strong><br />

Test setup for measuring an amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiated emissi<strong>on</strong><br />

21/31


Measurement result – maximum radiated emissi<strong>on</strong><br />

dBm<br />

-55<br />

-60<br />

-65<br />

-70<br />

-75<br />

-80<br />

Maximum Spectrum (Peak-to-Peak envelop)<br />

D=10mm<br />

D=7mm<br />

D=5mm<br />

D=3mm<br />

-85<br />

100 200 300 400 500 600 700 800 900 1000<br />

Frequency [MHz]<br />

? The closer differential pair to the <strong>PCB</strong> edge, the more radiated emissi<strong>on</strong> occur<br />

? When the differential pair is placed at the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>PCB</strong>, the shielding effect<br />

by the ground plane is no l<strong>on</strong>ger effective<br />

22/31


C<strong>on</strong>venti<strong>on</strong>al Method 1: <str<strong>on</strong>g>Differential</str<strong>on</strong>g> TDR<br />

D<strong>on</strong>g Gun Kam, Heeseok Lee, Wo<strong>on</strong>ghwan Ryu, J<strong>on</strong>gho<strong>on</strong> Kim, B<strong>on</strong>gcheol Park, and Joungho Kim, "An Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> Impedance in <strong>PCB</strong>s Using Two Single-Ended Probes Only," IEEE Workshop <strong>on</strong> Signal Propagati<strong>on</strong> <strong>on</strong><br />

Interc<strong>on</strong>nects (SPI), 2002<br />

S. Corey, et al., “Electr<strong>on</strong>ic Package Characterizati<strong>on</strong> Using <str<strong>on</strong>g>Differential</str<strong>on</strong>g> TDR Techniques”,<br />

Proc. IEEE 9 th Topical Meeting <strong>on</strong> Electrical Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ic Packaging, 2000, pp. 172-174.<br />

� Only a small skew <str<strong>on</strong>g>of</str<strong>on</strong>g> TDR pulses can result in c<strong>on</strong>siderable error.<br />

B. J. Rubin, “Understanding Modeling and Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Transmissi<strong>on</strong> <str<strong>on</strong>g>Line</str<strong>on</strong>g>s”,<br />

Proc. IEEE 10 th Topical Meeting <strong>on</strong> Electrical Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ic Packaging, 2001, pp. 313-316<br />

� Its instrumentati<strong>on</strong> is expensive because <str<strong>on</strong>g>of</str<strong>on</strong>g> such difficulties as<br />

synchr<strong>on</strong>izing two TDR pulses.<br />

23/31


C<strong>on</strong>venti<strong>on</strong>al Method 2: Balun<br />

2-port VNA<br />

Balun DUT<br />

Balun<br />

� Balun = Power Splitter + Phase Shifter<br />

� It is very difficult to make broadband baluns.<br />

24/31


C<strong>on</strong>venti<strong>on</strong>al Method 3: Mixed-Mode Mixed Mode S-parameters<br />

S parameters<br />

D. E. Bockelman, “Combined <str<strong>on</strong>g>Differential</str<strong>on</strong>g> and Comm<strong>on</strong>-Mode Scattering Parameters: Theory and<br />

Simulati<strong>on</strong>”, IEEE Trans-MTT, Vol. 43, No. 7 (1995), pp. 1530-1539<br />

� Although it is theoretically perfect, it is very expensive.<br />

25/31


What’s What s the Matters with the C<strong>on</strong>venti<strong>on</strong>al Methods<br />

Balun<br />

Only narrow-band<br />

Need for<br />

de-embedding balun effect<br />

4-port Measurement<br />

Expensive<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> TDR<br />

Accurate synchr<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two TDR pulses is required<br />

Expensive<br />

26/31


Proposed Method<br />

� Two single-ended probes are c<strong>on</strong>nected to each signal traces<br />

with a metallic plane <strong>on</strong> the bottom layer floating.<br />

27/31


Measured Results<br />

� Device-Under-Test (DUT) : Coupled Microstrip <str<strong>on</strong>g>Line</str<strong>on</strong>g><br />

DUT<br />

#1<br />

#2<br />

#3<br />

W<br />

(width)<br />

3mm<br />

2mm<br />

1mm<br />

� Measured <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Impedance at 500MHz<br />

DUT<br />

#1<br />

#2<br />

#3<br />

Proposed<br />

Method<br />

67.1O (-1.0%)<br />

86.7O (-2.1%)<br />

126O (-2.3%)<br />

4-port<br />

Measurement<br />

67.8O<br />

88.6O<br />

129O<br />

S<br />

(space)<br />

2mm<br />

3mm<br />

4mm<br />

H<br />

(dielectric)<br />

28/31<br />

1mm<br />

1mm<br />

1mm<br />

Simulati<strong>on</strong><br />

(MoM)<br />

68.9O (+1.1%)<br />

91.1O (+2.8%)<br />

132O (+2.3%)


Full Wave Simulati<strong>on</strong> (Using Ans<str<strong>on</strong>g>of</str<strong>on</strong>g>t HFSS)<br />

DUT<br />

#1<br />

#2<br />

#3<br />

500 MHz<br />

72.9O (+7.5%)<br />

91.4O (+3.2%)<br />

126.8O (-1.7%)<br />

2 GHz<br />

72.3O (+6.6%)<br />

91.3O (+3.0%)<br />

126.5O (-1.9%)<br />

5 GHz<br />

73.2O (+8.0%)<br />

91.0O (+2.7%)<br />

126.8O (-1.7%)<br />

29/31<br />

Ref.<br />

67.8O<br />

88.6O<br />

129 O


The PROS and CONS <str<strong>on</strong>g>of</str<strong>on</strong>g> the Proposed Method<br />

Disadvantage<br />

Advantage<br />

<str<strong>on</strong>g>Differential</str<strong>on</strong>g> <strong>on</strong>ly<br />

Simple<br />

Cheap<br />

N<strong>on</strong>-invasive<br />

Practical !!!<br />

30/31


C<strong>on</strong>clusi<strong>on</strong><br />

? We have been researching Signal Integrity, Power/Ground Integrity<br />

and EMI in Tera Lab.<br />

? We introduced <str<strong>on</strong>g>Differential</str<strong>on</strong>g> Signaling Scheme<br />

� Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> differential line characteristics by fabricati<strong>on</strong> error<br />

� Change <str<strong>on</strong>g>of</str<strong>on</strong>g> differential impedance by edge placement<br />

� Proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> new test method <str<strong>on</strong>g>of</str<strong>on</strong>g> differential lines<br />

31/31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!