17.10.2012 Views

Presentation - Virtual Inductor Library: a new inductor design approach

Presentation - Virtual Inductor Library: a new inductor design approach

Presentation - Virtual Inductor Library: a new inductor design approach

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Virtual</strong> <strong>Inductor</strong> <strong>Library</strong> :<br />

a <strong>new</strong> <strong>inductor</strong> <strong>design</strong> <strong>approach</strong><br />

Alfred H. C. Tseng Ph.D.<br />

UMC/CRD_Logic/MM&RF


Outline<br />

� <strong>Virtual</strong> <strong>Inductor</strong> <strong>Library</strong> Implementation by<br />

EM Design Methodology (EMDM)<br />

� Results and Comparison<br />

� Other Applications by using EMDM<br />

� Conclusions<br />

2


How to Do <strong>Inductor</strong> Design ?<br />

� At first, referenced to foundry’s measured<br />

<strong>inductor</strong> library and scalable model library.<br />

� Designers iterate the following processes:<br />

� Designing test structures<br />

� Wafer processing<br />

� Measuring data<br />

� Modeling<br />

� If not satisfied, do again …<br />

“Time Time and Money are losing”<br />

losing<br />

3


UMC’s Innovative Approach<br />

- EM Design Methodology (EMDM)<br />

� In addition to existed measured and<br />

scalable model library.<br />

� We provide some extra features:<br />

� This “methodology” is to generate a process<br />

related information for EM simulator, then<br />

customers can <strong>design</strong> their own innovative<br />

<strong>inductor</strong>s with fast; accurate; and low-cost<br />

features.<br />

� Save prototype & test cycle-time.<br />

� Reduce R&D cost.<br />

4


UMC’s EMDM<br />

- What is our <strong>approach</strong> ?<br />

� General <strong>Inductor</strong> Design<br />

With real Si measured data<br />

3-D EM simulation data<br />

+ RF SPICE model<br />

3-D EM simulation to interpolate,<br />

then to output S-parameter<br />

3-D EM simulation to extrapolate,<br />

then to output S-parameter<br />

Parameter 2<br />

<strong>Inductor</strong> Pool<br />

Parameter 1<br />

*** Parameters : Di; W; S & N<br />

5


UMC’s EMDM<br />

- What is our <strong>approach</strong> ?<br />

�Customer’s Special <strong>Inductor</strong> Design<br />

Novel <strong>Inductor</strong><br />

Design<br />

Pattern ground<br />

shielding<br />

3-D EM<br />

Simulation<br />

Transformer or Stacked<br />

S-Parameter Designer<br />

6


UMC’s EMDM: Work Flow<br />

Working Flow<br />

UMC Process<br />

Technology profile<br />

SiO2<br />

Si<br />

M3<br />

M1<br />

M2<br />

2<br />

ε<br />

Testkey Layout<br />

Wafer<br />

Fabrication<br />

ICCAP<br />

Parameter Extraction<br />

3-D EM Simulation Circuit Simulation<br />

S-Parameter<br />

Ansoft HFSS<br />

Ansoft Designer<br />

7<br />

RF SPICE<br />

Model


UMC’s EMDM<br />

- What is the technology file?<br />

ε r<br />

ε r<br />

ε r<br />

ε r<br />

Conductivity<br />

Passivation<br />

Thickness<br />

M6 Thickness<br />

SiO 2 Thickness<br />

M5 Thickness<br />

SiO 2 Thickness<br />

Silicon<br />

Thickness<br />

Last Metal<br />

Second Top Metal<br />

8


UMC’s EMDM<br />

- What is the technology file?<br />

Material Physic Param Source<br />

Substrate T.K, Rs EDR<br />

STI T.K, Dielectrics EDR<br />

M1~6 T.K, Rs EDR<br />

ILD/IMD1~5 T.K, Dielectrics EDR<br />

Passivation T.K, Dielectrics EDR<br />

*** This unique technology file has been proved by comparing<br />

the simulation data with real silicon measured data.<br />

9


EMDM’s <strong>Inductor</strong> Design Flow<br />

All you need is to input geometric parameters:<br />

N Turns<br />

D Diameter<br />

W Width<br />

S Spacing<br />

T Top Metal thickness<br />

Seg Segments (ex. Octagonal, Circular)<br />

“A A friendly interface to <strong>design</strong>ers.”<br />

<strong>design</strong>ers.<br />

10


<strong>Virtual</strong> <strong>Inductor</strong> <strong>Library</strong> by EMDM<br />

� For general <strong>inductor</strong> <strong>design</strong>, both real Si<br />

measurement data and 3D EM simulation data are<br />

used for the model extraction.<br />

� Since combining these two groups of raw data, we<br />

can extract RF SPICE model with higher accuracy.<br />

� This unique technology file can be faithfully<br />

represented Si process parameters.<br />

� Based on this calibrated technology file, <strong>design</strong>ers<br />

can implement their novel ideas, then obtain Sparameter<br />

for circuit simulation.<br />

11


Ansoft HFSS<br />

� Current version 9.0.<br />

� A true 3D electromagnetic-based <strong>design</strong><br />

tool.<br />

� Widely used in package; wave guide; and<br />

antenna.<br />

� UMC is the first foundry that provide the<br />

methodology for using 3D EM <strong>design</strong> tool to<br />

support RFIC <strong>design</strong>.<br />

12


EMDM Implement in Ansoft Tools<br />

Virtuoso<br />

AnsoftLink<br />

ACIS<br />

GDSII<br />

DXF<br />

Macros<br />

UMC<br />

Technology<br />

File<br />

Ansoft HFSS<br />

Ansoft Designer<br />

Inductance<br />

Quality Factor<br />

Self-Resonance<br />

etc<br />

13<br />

Matrix Parameters<br />

S-, Y-, Z-<br />

Power Plug-in


AnsoftLink for Virtuoso<br />

Easier than<br />

“Cut & Paste”<br />

14


Ansoft Designer<br />

15


Number of Turns<br />

– L & Q Comparison (1)<br />

Quality Factor<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

0.18-micro 1P6M <strong>Inductor</strong> N=5.5 comparison<br />

N5.5_s_Q<br />

N5.5_m_Q<br />

N5.5_s_L<br />

N5.5_m_L<br />

0 1 10 100<br />

Frequency[GHz]<br />

� Width= 10µm, Spacing= 2µm, Di= 85µm, Turns= 5.5, Al= 20KA<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Inductance[nH]<br />

16


Number of Turns<br />

– L & Q Comparison (2)<br />

Quality Factor<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

0.18-micro 1P6M <strong>Inductor</strong> N=4.5 comparison<br />

N4.5_s_Q<br />

N4.5_m_Q<br />

N4.5_s_L<br />

N4.5_m_L<br />

0 1 10 100<br />

Frequency[GHz]<br />

� Width= 10µm, Spacing= 2µm, Di= 85µm, Turns= 4.5, Al= 20KA<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Inductance[nH]<br />

17


Inner Diameter – L Comparison<br />

Inductance[nH]<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

0.18-micro 1P6M Inductance/diff diameter<br />

comparison<br />

D150_s_L<br />

D 85_s_L<br />

D150_m_L<br />

D 85_m_L<br />

D230_s_L<br />

D230_m_L<br />

0 1 10 100<br />

Frequency[GHz]<br />

� Fixed width= 15µm, Spacing= 2µm, Turns= 2.5 & Al= 20KA,<br />

Split Di: 85µm, 150µm and 230µm<br />

18


Increasing Metal Thickness (Al 30kA)<br />

- L & Q Comparison<br />

Quality Factor<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

0.18-micro 1P6M <strong>Inductor</strong> Case2 comparison<br />

Q_simulation<br />

Q_measurement<br />

L_simulation<br />

L_measurement<br />

0 1 10 100<br />

Frequency[GHz]<br />

� Width= 15µm, Spacing= 2µm, Di= 210µm, Turns= 5.5, Al= 30KA<br />

30<br />

27<br />

24<br />

21<br />

18<br />

15<br />

12<br />

9<br />

6<br />

3<br />

Inductance[nH]<br />

19


Pattern Ground Shielding – Deep Trench (1)<br />

4.0um<br />

� Using trench to reduce substrate loss.<br />

20


Pattern Ground Shielding – Deep Trench (2)<br />

Quality Factor<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

0.18-micro 1P6M <strong>Inductor</strong> with Deeptrench<br />

comparison<br />

DT_s_Q<br />

DT_m_Q<br />

DT_s_L<br />

DT_m_L<br />

0 1 10 100<br />

Frequency[GHz]<br />

� Width= 15µm, Spacing= 2µm, Di= 202µm, Turns= 5.5, Al= 30KA<br />

� With 4.0um deep trench PGS<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Inductance[nH]<br />

21


Other Applications by EDDM<br />

� Interconnect RF model extraction<br />

� Cross talk analysis in RF or high speed<br />

digital IC<br />

� Capacitor: MIM or MOM (fringing)<br />

� Internal antenna <strong>design</strong><br />

� Package modeling for IC <strong>design</strong><br />

22


Conclusions<br />

� Customer’s success is always our first priority.<br />

� UMC RF technology/<strong>design</strong> support is enhanced by<br />

providing an accurate and efficient methodology for<br />

<strong>inductor</strong> <strong>design</strong>.<br />

� EMDM can be extended to other applications in<br />

high frequency analysis.<br />

� Reducing development cycle-time and cost,<br />

customers can go into production much faster.<br />

� UMC is always seeking better and improved<br />

service for our customers.<br />

23


Please Fill Out the<br />

Survey Questionnaire<br />

Contact persons in UMC:<br />

H_C_Tseng@umc.com<br />

Bigchoug_Hung@umc.com<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!