17.10.2012 Views

The Power Ring Energy Storage Flywheel

The Power Ring Energy Storage Flywheel

The Power Ring Energy Storage Flywheel

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Power</strong> <strong>Ring</strong><br />

<strong>Energy</strong> <strong>Storage</strong><br />

<strong>Flywheel</strong><br />

Mike Ricci<br />

10-16-2007<br />

www.launchpnt.com<br />

1


Conventional High Speed <strong>Flywheel</strong><br />

Conventional High Speed <strong>Flywheel</strong><br />

Carbon fiber rim<br />

Spokes or hub connect rim to shaft<br />

Small diameter, small gap bearings<br />

on shaft<br />

Motor/generator on shaft<br />

Difficult to scale design up:<br />

Hub must be flexible to allow for centrifugal stretching of rim, yet<br />

must support large rim mass<br />

Resonances in rim-flexible hub structure can be excited by rotor and<br />

lead to unstable operation<br />

2


<strong>Power</strong> <strong>Ring</strong> Architecture<br />

Hub-Less Rim<br />

Patented “Shear force” PM bearing on inner surface<br />

Upper VCA coils<br />

Upper VCA magnets<br />

Radial Displacement<br />

sensor (1 of 2)<br />

Top Touchdown Bearing<br />

elements<br />

Upper Bearing<br />

Magnetic rings<br />

Nominal 2 mm<br />

levitation gap<br />

Motor Stator<br />

2 kW/Hr technology<br />

demonstrator<br />

Motor<br />

Rotor Pole<br />

Hubless<br />

Carbon<br />

Fiber Rim<br />

40 cm OD, 28 kg carbon<br />

fiber rim<br />

Axial Displacement<br />

Sensor (1 of 3)<br />

Bottom touchdown<br />

Bearing elements<br />

Bottom VCA coils and magnets<br />

Bottom Magnetic<br />

Bearing<br />

3


Eventual Goal<br />

Eventual Goal<br />

2000 to 3000 kg rim<br />

2 m in diameter, 1 m tall<br />

250 kW/Hr storage<br />

4


Launchpoint Design Process<br />

Launchpoint Design Process<br />

Concept Evaluation<br />

Model analytically<br />

Verify/Validate with FEA/simulation tools<br />

Iterate analysis optimization and FEA validation<br />

Experimental Validation of Subsystems<br />

Further optimize (nonlinear, difficult to analyze<br />

situations) with FEA or other simulation tool<br />

5


Concept Evaluation<br />

Concept Evaluation<br />

Quick evaluation of different design solution<br />

concepts<br />

Analytical equations / basic physics<br />

Simple simulation/FEA models at non-optimal design<br />

points<br />

“Proof of concept” calculations and simulations<br />

6


Analytical Models<br />

Analytical Models<br />

Model analytically<br />

search design space, evaluate different conceptual<br />

designs<br />

get design starting point<br />

Fast optimization possible<br />

understand basic relationships, physics, constraints<br />

on problem<br />

7


Simulation-- Verification<br />

Simulation-- Verification<br />

Verify/Validate analysis with FEA/simulation tools<br />

since equations usually not right first time (or even<br />

second!)<br />

Identify incorrect approximations<br />

Identify phenomena not modeled in analysis<br />

8


Concept Design Iteration<br />

Concept Design Iteration<br />

Iterate between analysis optimization and FEA<br />

validation<br />

Debug/refine analytical models<br />

Parametric features of Ansoft Maxwell extremely useful<br />

here…<br />

9


Final Design Optimization<br />

Final Design Optimization<br />

Further optimize (nonlinear, difficult to analyze<br />

situations) with FEA or other simulation tools<br />

Slow optimization possible since starting near optimum<br />

Toroidal motor design, optimize magnet ID<br />

Optimum in this case has saturated iron core, which was a<br />

“disallowed” solution for analytical models<br />

10


Permanent Magnet Levitation<br />

Permanent Magnet Levitation<br />

�Unstable / Not passively stable– Earnshaw’s Law<br />

UNSTABLE<br />

STABLE<br />

.UNSTABLE<br />

.UNSTABLE<br />

UNSTABLE<br />

STABLE<br />

STABLE<br />

STABLE<br />

11


Active Stabilization of Unstable System<br />

Active Stabilization of Unstable System<br />

Inverted pendulum dynamics (unstable system) control<br />

Standard “text book” controls problem<br />

Routinely solved in PM bearings for rotors<br />

<strong>Power</strong> <strong>Ring</strong> has multiple degrees of freedom which<br />

complicates matters substantially<br />

12


Halbach Array of PM<br />

Halbach Array of PM<br />

Halbach* array doubles field strength by focusing all field on<br />

one side<br />

NdFeB magnet prices have exponentially dropped since the<br />

invention of NdFeB in the 1980’s<br />

Short pole pitch gives stiff suspension<br />

* Invented by Klaus Halbach of Lawrence Berkeley National Laboratory<br />

13


Bearing Design<br />

Mathcad initial design analysis<br />

FEA Validation<br />

Passive Suspension Magnetics<br />

7.43<br />

6.19<br />

4.95<br />

3.71<br />

2.48<br />

1.24<br />

0<br />

1.24<br />

2.48<br />

3.71<br />

Vertical Dimensions (mm)<br />

4.95<br />

6.19<br />

245 247.14 249.29 251.43 253.57 255.71257.86 260<br />

7.43<br />

Radial Dimensions (mm)<br />

Stator Suspension magnets<br />

Rotor Suspension Magnets<br />

trace 5<br />

trace 6<br />

14


PM Bearing Design Validation<br />

PM Bearing Design Validation<br />

Maxwell 2D FEA<br />

Experiment<br />

Predicted Array forces using Hc = 4850 Oe for Reance F65<br />

5<br />

0<br />

5<br />

Force (N)<br />

0 2 4 6 8 10 12 14<br />

10<br />

Offset (mm)<br />

MathCad Axial Force<br />

MathCad Radial Force<br />

FEA prediction Axial<br />

FEA prediction Radial<br />

Experimental Axial<br />

Experimental Radial<br />

15


Voice Coil Actuator Design<br />

MathCAD initial design optimization<br />

Maxwell 3D validation<br />

Suspension Voice Coil Actuator Design<br />

22.28<br />

14.56<br />

6.84<br />

Axial Dimension (mm)<br />

0.88<br />

8.6<br />

190 195 200 205 210 215 220<br />

16.32<br />

Radial Dimension (mm)<br />

Rotor Permanent Magnets<br />

Rotor Magnetization Direction<br />

Stator Coil Sections<br />

Stator Current Direction<br />

Vert Actuator Coil Sect<br />

Vert Actuator Current Direction<br />

16


Voice Coil Actuator<br />

Voice Coil Actuator<br />

Subsystem testing<br />

17


Suspension Dynamics<br />

Suspension Dynamics<br />

Translation to height coupling<br />

Translation to tilt coupling<br />

18


Suspension Dynamics<br />

Suspension Dynamics<br />

System “Launch” is design driver for control system<br />

“Launch” from power-off position is peak power for<br />

actuators<br />

Largest displacement/travel is also during launch<br />

Nonlinear bearing effects will complicate the launch<br />

dynamics<br />

Need to reduce risk/uncertainty associated with<br />

control system<br />

19


Control Design<br />

Control Design<br />

Start with simple model for feasibility<br />

Linear controller model<br />

Mathcad analytical model of bearings<br />

Linearized cross coupling<br />

<strong>The</strong>n move to full non-linear system simulation<br />

Can hope that simple linear controller will still work<br />

If not, design non-linear control system<br />

Use non-linear system simulation to validate<br />

controller design<br />

20


System Simulation<br />

System Simulation<br />

Use Simplorer for system dynamimcs simulation<br />

Initially use simple linear math model for bearing forces<br />

For nonlinear model, link Maxwell 3D force data with time<br />

domain Simplorer dynamics simulation<br />

Eventually power electronics will be included in model for<br />

analysis of component stresses during transient event<br />

simulations (such as launch).<br />

21


Non-Linear Bearing Model<br />

Non-Linear Bearing Model<br />

Parametric Ansoft Maxwell 3D model<br />

Gap Offset<br />

Base Model<br />

Z offset<br />

Tilt<br />

22


DSO – Distributed Solve Option<br />

DSO – Distributed Solve Option<br />

Host<br />

…<br />

Nodes<br />

…<br />

Number of Variations: 252<br />

Complete Solution Time : 13.6 days<br />

Computation Characteristics<br />

HP Cluster: 8 cpu’s<br />

41 Hr 30 min<br />

Real time<br />

CPU type: Intel Xeon<br />

2.6 GHz<br />

8 Gig RAM<br />

5.3<br />

Speed-up factor<br />

700,000 elements<br />

Mesh size<br />

OS: Windows XP<br />

23


Distributed Solve<br />

Distributed Solve<br />

24


Simplorer System Dynamics Model<br />

Simplorer System Dynamics Model<br />

®<br />

Axis Forces<br />

Actuator<strong>Power</strong><br />

EQU<br />

ICA:<br />

Simulation properties:<br />

Step width max 5u<br />

Step width min 5n<br />

Simulation end time 0.5<br />

Actuaators<br />

Coil Command<br />

Generation<br />

with Lo-Pass<br />

CONST<br />

Rigid Body<br />

with<br />

PM Bearing<br />

CONST<br />

CONST<br />

CONST<br />

Actuator F<br />

(Inputs)<br />

CONST<br />

Axis Force<br />

Command<br />

CONST<br />

CONST<br />

CONST<br />

Disturbance<br />

CONST<br />

State Output<br />

Kgain<br />

25


Simplorer Linearized PM Bearing Model<br />

Bearing is simulated as simple linear gains for coupling and cross<br />

coupling of motions and forces.<br />

MathCad used to derive gain values.<br />

GAIN<br />

10<br />

Kxx/2<br />

R<br />

10<br />

GAIN<br />

Fr<br />

Kfx/2<br />

GAIN<br />

GAIN<br />

Kxf/2<br />

Hb<br />

10<br />

GAIN<br />

10<br />

Tphi<br />

Kffx/2-Hb^2*Kxx/2<br />

Phi<br />

10<br />

GAIN<br />

10<br />

Fz<br />

Kzz/2<br />

Z<br />

CONST<br />

CONST<br />

gravity*R_mass/2<br />

.00252<br />

26


Simplorer Nonlinear PM Bearing<br />

Simplorer Nonlinear PM Bearing<br />

Lookup table from Maxwell DSO solution– returns forces and torques<br />

from displacement and tilt input<br />

X displacement, Y tilt<br />

10 Fx<br />

10<br />

Xbrg<br />

10 Ty<br />

Fr<br />

Tphi<br />

R<br />

Phi<br />

10<br />

PhiY<br />

Fz<br />

Z<br />

10<br />

Z<br />

GAIN<br />

Y displacement, X tilt<br />

10 Fy<br />

Fr<br />

R<br />

10<br />

Ybrg<br />

10 Tx<br />

Tphi<br />

Phi<br />

GAIN<br />

10<br />

PhiX<br />

10 Fz<br />

GAIN<br />

Fz<br />

Z<br />

-1<br />

0.5<br />

27


Linearized Model Results<br />

Simulation of launch from 2mm startup offset<br />

100.00<br />

4.00m<br />

75.00<br />

3.00m<br />

50.00<br />

2.00m<br />

25.00<br />

PhiX<br />

Actuator<br />

Forces<br />

PhiY<br />

0<br />

1.00m<br />

-25.00<br />

0<br />

-50.00<br />

-80.00<br />

-1.00m<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

4.00m<br />

1.00m<br />

800.00u<br />

3.00m<br />

600.00u<br />

2.00m<br />

X<br />

Z<br />

400.00u<br />

Y<br />

1.00m<br />

200.00u<br />

0<br />

0<br />

-1.00m<br />

-200.00u<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

28


Nonlinear Model Results<br />

Simulation for small offset -- Controller still worked (shown)<br />

Controller failed to remain stable and launch with a full 2mm startup offset<br />

30.00u<br />

17.20<br />

-50.00u<br />

10.00<br />

-100.00u<br />

PhiX<br />

5.00<br />

-150.00u<br />

PhiY<br />

0<br />

-200.00u<br />

Actuator<br />

Forces<br />

-250.00u<br />

-5.00<br />

-10.00<br />

-324.00u<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

-16.40<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

2.42m<br />

24.00u<br />

2.42m<br />

2e-020<br />

-20.00u<br />

2.42m<br />

X<br />

Z<br />

Y<br />

-40.00u<br />

2.41m<br />

-60.00u<br />

2.41m<br />

-80.00u<br />

2.41m<br />

-100.50u<br />

5.00n 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

0 100.00m 200.00m 300.00m 400.00m 500.00m<br />

Time (s)<br />

29


Small Scale Prototype<br />

PM Bearings successfully tested<br />

Active Control system electronics being fabricated<br />

30


Conclusions<br />

Naïve linear controller will not be adequate for<br />

system startup/launch transient<br />

Nonlinear system model will be used to evaluate<br />

and test proposed controller designs before<br />

implementing in hardware.<br />

31


Thanks:<br />

This work has been supported by grants from<br />

US Navy<br />

NYSERDA (New York State <strong>Energy</strong> Research and<br />

Development)<br />

NSF<br />

DOE<br />

OSD (US Navy Office of Scientific Development)<br />

Thanks to Ansoft for their support<br />

Liyan Qu<br />

Julius Saitz<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!