25.07.2013 Views

On the Convergence and Correctness of Impulse-Based Dynamic ...

On the Convergence and Correctness of Impulse-Based Dynamic ...

On the Convergence and Correctness of Impulse-Based Dynamic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

- 10 -<br />

∆ vr( X)<br />

is <strong>the</strong> total change <strong>of</strong> <strong>the</strong> velocity <strong>of</strong> <strong>the</strong> point mass P r , if <strong>the</strong> impulses defined by X act<br />

on <strong>the</strong> PMS. We have to sum up <strong>the</strong> effects for all constraints in which P r is involved, i.e., for all<br />

constraints Ck : = ( ik, jk, dk)<br />

for which ik= r (positive sign) or jk= r (negative sign).<br />

The relative velocity P& jk − P&<br />

i on <strong>the</strong> constraint C<br />

k<br />

k is <strong>the</strong>refore changed by <strong>the</strong> value<br />

∆ w ( X): =∆v ( X) −∆ v ( X)<br />

.<br />

k jk ik<br />

Exp<strong>and</strong>ed, this results for a specific joint Cr = ( ir, jr, dr)<br />

in<br />

∆ w ( X): =∆v ( X) −∆ v ( X)<br />

=<br />

(4.4)<br />

r jr ir<br />

⎛ m ⎞ ⎛ m<br />

⎞<br />

= (1/ mj ) ⎜ sig( k, j ) (1/ ) ( , ) .<br />

r r Ak ⋅xk ⎟− mi ⎜ sig k i<br />

r<br />

r Ak ⋅xk<br />

⎟<br />

⎜∑ ⎟ ⎜∑ ⎟<br />

⎝ k= 1 ⎠ ⎝ k=<br />

1<br />

⎠<br />

With <strong>the</strong> introduced notation, we can now establish <strong>the</strong> required equations for <strong>the</strong> x k in that we<br />

attempt to satisfy (2.2):<br />

(4.5) ∀ k = 1,..., m: ( P −P )( P& − P& +∆ w ( X))<br />

= 0.<br />

jk ik jk ik k<br />

With <strong>the</strong> abbreviated notation (2.3) we obtain<br />

Ak ⋅ ( A& k +∆ wk( X)) = 0 ( k = 1,..., m)<br />

.<br />

We can now transfer <strong>the</strong> terms without X to <strong>the</strong> right side, <strong>and</strong> obtain a system <strong>of</strong> linear equations<br />

(4.6) Ak ⋅∆ wk( X) =−Ak ⋅ A& k ( k = 1,..., m)<br />

.<br />

For a specific joint C = ( i , j , d ) this results in <strong>the</strong> equation<br />

r r r r<br />

(4.7)<br />

⎛ m ⎞ ⎛ m<br />

⎞<br />

(1/ mj ) ⎜ sig( k, j ) (1/ ) ( , )<br />

r r ArAk ⋅xk ⎟− mi ⎜ sig k i<br />

r<br />

r ArAk ⋅ xk ⎟=−Ar<br />

⋅A&<br />

r<br />

⎜∑ ⎟ ⎜∑ .<br />

⎟<br />

⎝ k= 1 ⎠ ⎝ k=<br />

1<br />

⎠<br />

Since we are striving for an SLE <strong>of</strong> <strong>the</strong> form<br />

(4.8)<br />

⎛x1 ⎞ ⎛b1 ⎞<br />

⎜ ⎟ ⎜ ⎟<br />

⎜<br />

x2 ⎟ ⎜<br />

b2<br />

⎟<br />

M ⋅ X = M ⋅ ⎜. ⎟= ⎜. ⎟=<br />

B,<br />

⎜ ⎟ ⎜ ⎟<br />

⎜. ⎟ ⎜. ⎟<br />

⎜x ⎟ ⎜<br />

m b ⎟<br />

⎝ ⎠ ⎝ m⎠<br />

we must now extract <strong>the</strong> elements M[,] rs <strong>of</strong> <strong>the</strong> matrix M . (4.7) represents <strong>the</strong> r-th row <strong>of</strong> <strong>the</strong><br />

SLE. It <strong>the</strong>refore delivers all matrix elements M[,1... r m ] . Because <strong>of</strong><br />

M[,] r s = (1/ m ) sig(, s j ) A A − (1/ m ) sig(, s i ) A A<br />

<strong>the</strong> result for r ≠ s is<br />

j r r s i r r s<br />

r r

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!