26.07.2013 Views

irpa 11 guidelines for authors on the preparation of the full papers

irpa 11 guidelines for authors on the preparation of the full papers

irpa 11 guidelines for authors on the preparation of the full papers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Design by <strong>the</strong> M<strong>on</strong>te Carlo Method <strong>of</strong> <strong>the</strong> Filter <str<strong>on</strong>g>for</str<strong>on</strong>g> Fluorescence Glass Dosimeters<br />

K. Ejiri 1♣ , K. Minami 1 , M. Shimo 1 , K.Terada 2 , S. Maeda 2 , Y. Takeuchi 2 ,<br />

H. Toyama 3 and K. Katada 3<br />

1 Faculty <strong>of</strong> Radiological Technology, Fujita health university school <strong>of</strong> health sciences,<br />

E-mail: kejiri@fujita-hu.ac.jp<br />

2 Fujita health university hospital,<br />

3 Department <strong>of</strong> Radiology,Fujita health university school <strong>of</strong> medicine,<br />

Toyoake, Japan<br />

Abstract. Sensitivity compensati<strong>on</strong> filters <str<strong>on</strong>g>for</str<strong>on</strong>g> fluorescence glass dosimeters corresp<strong>on</strong>ding to measurement <strong>of</strong><br />

an effective dose or a dose equivalent were designed using <strong>the</strong> M<strong>on</strong>te Carlo simulati<strong>on</strong> code <strong>of</strong> Electr<strong>on</strong> Gamma<br />

Shower versi<strong>on</strong> 4 (EGS4). Dose Ace GD-300 series made in Asahi Techno Glass Company was used as<br />

materials <str<strong>on</strong>g>for</str<strong>on</strong>g> creating <strong>the</strong> simulati<strong>on</strong> model <strong>of</strong> <strong>the</strong> fluorescence glass dosimeter. Tin (Sn, Z= 50) was adopted as<br />

<strong>the</strong> filter material. EGS4 <str<strong>on</strong>g>for</str<strong>on</strong>g> ma<strong>the</strong>matically simulati<strong>on</strong> was used <str<strong>on</strong>g>for</str<strong>on</strong>g> getting energy absorpti<strong>on</strong> characteristics <strong>of</strong><br />

<strong>the</strong> glass element. First, a basic model equipped with <strong>the</strong> filter with uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m thickness was created, next, to this<br />

model <strong>the</strong> simulati<strong>on</strong> which irradiates 100 milli<strong>on</strong> phot<strong>on</strong>s <strong>of</strong> single energy uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly was carried out, and nine<br />

characteristics in <strong>the</strong> phot<strong>on</strong> energy range <strong>of</strong> 0.01-10 MeV were obtained by <strong>the</strong> nine different filter thicknesses<br />

(0-7.5mm), respectively. Syn<strong>the</strong>tic characteristics were made from <strong>the</strong>se nine characteristics using <strong>the</strong> weighted<br />

average method, and <strong>the</strong> load coefficients were experientially set that <strong>the</strong>se syn<strong>the</strong>tic characteristics resemble <strong>the</strong><br />

characteristics required <str<strong>on</strong>g>for</str<strong>on</strong>g> measurements <strong>of</strong> <strong>the</strong> effective dose or <strong>the</strong> dose equivalent. In <strong>the</strong> process <strong>of</strong> design <strong>of</strong><br />

a practical use filter model, <strong>the</strong>se coefficients were used in order to determine <strong>the</strong> area <strong>of</strong> each thickness part <strong>of</strong><br />

<strong>the</strong> filter which covers an effective domain <strong>of</strong> <strong>the</strong> glass element. Although <strong>the</strong> characteristic <strong>of</strong> <strong>the</strong> practical use<br />

filter model checked by <strong>the</strong> M<strong>on</strong>te Carlo method had a difference to <strong>the</strong> characteristic required <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong><br />

measurement <strong>of</strong> an effective dose or a dose equivalent, in <strong>the</strong> phot<strong>on</strong> energy range <strong>of</strong> 0.03-1.0 MeV, <strong>the</strong> error<br />

was less than ±5%. This method that applied M<strong>on</strong>te Carlo simulati<strong>on</strong> to development <strong>of</strong> a filter <str<strong>on</strong>g>for</str<strong>on</strong>g> fluorescence<br />

glass dosimeters is suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> getting to know <strong>the</strong> detailed energy absorpti<strong>on</strong> characteristics <strong>of</strong> <strong>the</strong> glass<br />

element, and is effective in <strong>the</strong> design <strong>of</strong> <strong>the</strong> filters.<br />

1.Introducti<strong>on</strong><br />

There is sensitivity dependability over phot<strong>on</strong> energy in a fluorescence glass dosimeter [1,2,3].<br />

There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, when <strong>the</strong> phot<strong>on</strong> which has a broad energy spectrum is carrying out incidence in<br />

measurement area, <strong>the</strong> compensati<strong>on</strong> filter <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>trolling sensitivity must be used. However, <strong>the</strong> filter<br />

supports <strong>on</strong>ly air absorbed dose, it is not suitable to measure an effective dose or a dose equivalent.<br />

Then, we investigated <strong>the</strong> energy absorbed in a fluorescence glass dosimeter at <strong>the</strong> various phot<strong>on</strong><br />

energies by <strong>the</strong> phot<strong>on</strong> transportati<strong>on</strong> M<strong>on</strong>te Carlo calculati<strong>on</strong> code, and searched <strong>the</strong> energy<br />

absorpti<strong>on</strong> characteristics <strong>of</strong> <strong>the</strong> dosimeter equipped with uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m thickness filters. We designed new<br />

filters based <strong>on</strong> <strong>the</strong>se characteristics, and examined whe<strong>the</strong>r <strong>the</strong>se characteristics would be suitable to<br />

measurement <strong>of</strong> an effective dose or a dose equivalent.<br />

2. Materials and Methods<br />

2.1. A dosimeter model and <strong>the</strong> M<strong>on</strong>te Carlo calculati<strong>on</strong> code<br />

As materials <str<strong>on</strong>g>for</str<strong>on</strong>g> creating <strong>the</strong> simulati<strong>on</strong> model <strong>of</strong> <strong>the</strong> fluorescence glass dosimeter, GD-300 series <strong>of</strong><br />

Dose Ace made in Asahi Techno Glass was adopted. Tin (Sn: Z=50) was used as <strong>the</strong> quality <strong>of</strong> <strong>the</strong><br />

material <strong>of</strong> <strong>the</strong> sensitivity compensati<strong>on</strong> filter. Electr<strong>on</strong> Gamma Shower versi<strong>on</strong> 4 with LSCAT<br />

(following "EGS4") [4,5] which is <strong>the</strong> M<strong>on</strong>te Carlo calculati<strong>on</strong> code added <strong>the</strong> low-energy phot<strong>on</strong>scattering<br />

expansi<strong>on</strong> functi<strong>on</strong> improved by Y. Namito et al. was used <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> development <strong>of</strong> <strong>the</strong> filter.<br />

2.2. Design procedure <strong>of</strong> <strong>the</strong> compensati<strong>on</strong> filter<br />

♣ Present address: Fujita Health University Schoool, Faculty <strong>of</strong> Health Sciences,1-98, Dengakugakubo,<br />

kutsukake-cho, Toyoake, 470-<str<strong>on</strong>g>11</str<strong>on</strong>g>92 (Japan)<br />

1


First, in order to acquire <strong>the</strong> characteristic <strong>of</strong> <strong>the</strong> glass dosimeter which equipping with a filter <strong>of</strong><br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m thickness, a basic model which covered <strong>the</strong> reading porti<strong>on</strong> <strong>of</strong> <strong>the</strong> glass element with a<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m thickness filter <strong>of</strong> Sn in <strong>the</strong> range <strong>of</strong> 0-0.75 mm was created, and this model was included in<br />

<strong>the</strong> EGS4 code <str<strong>on</strong>g>for</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>ming a phot<strong>on</strong> irradiati<strong>on</strong> simulati<strong>on</strong>. Next, <strong>the</strong> simulati<strong>on</strong> which irradiates<br />

m<strong>on</strong>ochromatic phot<strong>on</strong>s in <strong>the</strong> range <strong>of</strong> 0.01-10 MeV to <strong>the</strong> model was carried out, and <strong>the</strong> amount <strong>of</strong><br />

energy absorpti<strong>on</strong> in <strong>the</strong> dose reading porti<strong>on</strong> <strong>of</strong> <strong>the</strong> glass element was calculated. The characteristic <strong>of</strong><br />

this model was obtained by breaking that absorpti<strong>on</strong> energy by <strong>the</strong> air Kama. This operati<strong>on</strong> was<br />

carried out to <strong>the</strong> o<strong>the</strong>r model to which <strong>the</strong> thickness <strong>of</strong> Sn filter was changed, and some different<br />

characteristic curves were collected. These characteristic curves were used <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> development <strong>of</strong> a<br />

practical filter model which gives a new characteristic required <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> measurement <strong>of</strong> an effective<br />

dose or a dose equivalent. The new characteristic was calculated by <strong>the</strong> method <strong>of</strong> weight averaging<br />

those characteristics with <strong>the</strong> suitable coefficients defined experientially. The coefficients were used<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> design <strong>of</strong> <strong>the</strong> practical filter, and determined <strong>the</strong> area <strong>of</strong> each part <strong>of</strong> a filter which covers <strong>the</strong><br />

dose reading part <strong>of</strong> <strong>the</strong> glass element. The glass dosimeter equipped with <strong>the</strong> new designed filter was<br />

built into <strong>the</strong> EGS4 code, and it was examined whe<strong>the</strong>r <strong>the</strong> characteristic <strong>of</strong> <strong>the</strong> glass element shows<br />

<strong>the</strong> target characteristic.<br />

2.3. Acquisiti<strong>on</strong> <strong>of</strong> <strong>the</strong> basic characteristic data based <strong>on</strong> a simulati<strong>on</strong><br />

The glass dosimeter model which equipped with <strong>the</strong> filter <strong>of</strong> uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m thickness as shown in <strong>the</strong><br />

following Figure 1 was created into <strong>the</strong> EGS4 code. Then, 100 milli<strong>on</strong> phot<strong>on</strong>s were equally irradiated<br />

from <strong>the</strong> 2 m away point <strong>of</strong> <strong>the</strong> model sides to <strong>the</strong> area <strong>of</strong> 3x3 cm 2 centering <strong>on</strong> <strong>the</strong> model, <strong>the</strong> energy<br />

absorpti<strong>on</strong> characteristic <strong>of</strong> <strong>the</strong> glass element was acquired <str<strong>on</strong>g>for</str<strong>on</strong>g> 42 kinds <strong>of</strong> phot<strong>on</strong> energy in <strong>the</strong> range<br />

<strong>of</strong> 0.01~10MeV. Moreover, nine kinds <strong>of</strong> thickness <strong>of</strong> a tin (Sn) filter was gradually changed with 0,<br />

0.1, 0.2,..., 0.7, and 0.75 mm, and <strong>the</strong> characteristic fi(x) (i=1to9) about each case was calculated,<br />

respectively. Where, x is phot<strong>on</strong> energy <strong>of</strong> a MeV unit.<br />

Sn<br />

Sn<br />

dose reading domain<br />

Sn<br />

hν hν<br />

Sn<br />

ABS<br />

ID No.<br />

glass element<br />

Fig.1.A compositi<strong>on</strong> figure <strong>of</strong> a basic model (<strong>the</strong> right is a short axis secti<strong>on</strong> and <strong>the</strong> left is a l<strong>on</strong>g axis<br />

secti<strong>on</strong>.), and phot<strong>on</strong> irradiati<strong>on</strong>.<br />

2.4. Compositi<strong>on</strong> <strong>of</strong> <strong>the</strong> characteristic corresp<strong>on</strong>ding to an effective dose or <strong>the</strong> dose equivalent<br />

The nine characteristics fi(x) (i=1 to 9) were multiplied by <strong>the</strong> coefficients ki and a new characteristic<br />

F(x) was compounded from those sums, as shown in following equati<strong>on</strong>.<br />

F(x)=k1f1(x)+k2f2(x)+ +k9f9(x) ---------- (1)<br />

where, k1, k2, , k9 were load coefficients which determined experientially and required <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

obtaining <strong>the</strong> new characteristic suited to an effective dose or a dose equivalent. The sum total <strong>of</strong> ki<br />

2<br />

Sn


was standardized so that it was set to 1.0. Then, <strong>the</strong> ki were used <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> design <strong>of</strong> a filter with a new<br />

characteristic <strong>of</strong> <strong>the</strong> glass dosimeter.<br />

2.5. Creati<strong>on</strong> <strong>of</strong> a practical use filter model<br />

A practical use model c<strong>on</strong>sist <strong>of</strong> <strong>the</strong> combinati<strong>on</strong> <strong>of</strong> <strong>the</strong> various thickness filters were created, as<br />

shown in Figure 2. In this model, ki values were reflected in each size <strong>of</strong> <strong>the</strong> filter with various<br />

thicknesses. The characteristic <strong>of</strong> <strong>the</strong> practical use model was investigated by <strong>the</strong> EGS4 simulati<strong>on</strong>,<br />

and evaluated whe<strong>the</strong>r <strong>the</strong> characteristic resembled F(x).<br />

3.Results<br />

Sn<br />

Sn<br />

S<br />

kiS<br />

S<br />

dose reading domain<br />

3.1. The simulati<strong>on</strong> by <strong>the</strong> basic model<br />

Sn<br />

Sn<br />

ID No.<br />

Full length <strong>of</strong> an effective filter domain : 2S<br />

Length <strong>of</strong> each filter ingredient : kiS<br />

Full length <strong>of</strong> an effective filter domain : 2S<br />

Length <strong>of</strong> each filter ingredient : kiS<br />

Fig. 2. The compositi<strong>on</strong> figure <strong>of</strong> a practical use model.<br />

The characteristics fi(x) (i=1to9) <strong>of</strong> <strong>the</strong> glass dosimeter when changing filter thickness gradually based<br />

<strong>on</strong> <strong>the</strong> basic glass dosimeter model in Figure 1 are shown in Figure 3. In this figure, <strong>the</strong> relative<br />

resp<strong>on</strong>se is expressed so that <strong>the</strong> value <strong>of</strong> <strong>the</strong> characteristic f1(x) in 0.662MeV (gamma ray energy <strong>of</strong><br />

137 Cs) may become equal to 1.0.<br />

relative resp<strong>on</strong>se<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0.0mm, f1(x)<br />

0.1mm, f2(x)<br />

0.2mm, f3(x)<br />

0.3mm, f4(x)<br />

0.4mm, f5(x)<br />

0.5mm, f6(x)<br />

0.6mm, f7(x)<br />

0.7mm, f8(x)<br />

0.75mm, f9(x)<br />

0<br />

0.01 0.1<br />

phot<strong>on</strong> energy [MeV]<br />

1 10<br />

Fig.3. Characteristic curves fi (x) (i=1to9) <strong>of</strong> a glass element when changing <strong>the</strong> thickness <strong>of</strong> a<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m Sn filter to 0.0 to 7.5 mm.<br />

3


3.2. Compositi<strong>on</strong> <strong>of</strong> characteristic F(x) corresp<strong>on</strong>ding to an effective dose or a dose equivalent<br />

A compound characteristic F(x) was obtained by defining <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula (1). Six kinds<br />

<strong>of</strong> characteristics by this method are shown in Figure 4. Although <strong>the</strong> characteristics were not able to<br />

obtain sufficient approximati<strong>on</strong> to <strong>the</strong> c<strong>on</strong>versi<strong>on</strong> coefficients <strong>of</strong> ICRP in energy higher than 1.0MeV<br />

and lower than 0.03MeV, <strong>the</strong> approximati<strong>on</strong> were less than 5% <strong>of</strong> error in <strong>the</strong> middle energy<br />

range <strong>of</strong> 0.03-1.0MeV.<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

ICRP E/Ka<br />

E type F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP Hp(10,0°)/Ka<br />

Hp(10,0°) type F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP Hp(0.07,0°)/Ka<br />

Hp(0.07,0°) F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

ICRP H*(10)/Ka<br />

H*(10) type F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP H'(10,0°)/Ka<br />

H'(10,0°) type F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP H'(0.07,0°)/Ka<br />

H'(0.07,0°) F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

Fig.4. Comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> characteristics F(x)/Ka acquired by optimizing ki and <strong>the</strong> dose c<strong>on</strong>versi<strong>on</strong><br />

coefficients <strong>of</strong> <strong>the</strong> ICRP Publicati<strong>on</strong> 74.<br />

3.3. Load coefficients ki <strong>of</strong> F(x) corresp<strong>on</strong>ding to an effective dose or a dose equivalent<br />

measurement<br />

Lord coefficients ki <strong>of</strong> <strong>the</strong> characteristic F(x) corresp<strong>on</strong>ding to <strong>the</strong> measurement <strong>of</strong> an effective dose or<br />

a dose equivalent were shown in Table 1. In <strong>the</strong> work which obtains optimal F(x), all <strong>of</strong> <strong>the</strong> fi(x)<br />

did not need to be used, and fi(x) more than a half were not used <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> design <strong>of</strong> <strong>the</strong> filter.<br />

4


Table 1. Coefficients ki <strong>of</strong> <strong>the</strong> characteristic F(x) respectively developed <str<strong>on</strong>g>for</str<strong>on</strong>g> measurement <strong>of</strong> <strong>the</strong><br />

effective dose or <strong>the</strong> five kinds <strong>of</strong> dose equivalent.<br />

Load coefficient k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9<br />

Thickness <strong>of</strong> Sn<br />

filter [mm]<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.75<br />

E type 0.06 0.33 0.61 1.00<br />

H *(10) type 0.24 0.24 0.52 1.00<br />

H p(10,0°) type 0.25 0.22 0.40 0.13 1.00<br />

H '(10,0°) type 0.26 0.12 0.18 0.44 1.00<br />

H p(0.07,0°) type 0.30 0.04 0.24 0.42 1.00<br />

H '(0.07,0°) type 0.30 0.05 0.14 0.51 1.00<br />

E : effective dose, H : dose equivalent<br />

3.4. The characteristic Fp(x) <strong>of</strong> <strong>the</strong> practical use model obtained in <strong>the</strong> simulati<strong>on</strong> by EGS4<br />

By <strong>the</strong> method as shown in Fig. 2, a practical use model according to ki shown in Table 1 was built,<br />

<strong>the</strong> practical model was included in EGS4, and phot<strong>on</strong> irradiati<strong>on</strong> simulati<strong>on</strong> was carried out. In<br />

Figure 5, each <strong>of</strong> <strong>the</strong> six characteristic curves Fp(x) acquired in <strong>the</strong> simulati<strong>on</strong>s was approximated very<br />

well to <strong>the</strong> c<strong>on</strong>versi<strong>on</strong> coefficients <strong>of</strong> ICRP in <strong>the</strong> energy rage <strong>of</strong> 0.03-1.0MeV, respectively, and <strong>the</strong><br />

error was less than 5%r.<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP E/Ka<br />

E type Fp(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP Hp(10,0°)/Ka<br />

Hp(10,0°) type Fp(x)<br />

ICRP Hp(0.07,0°)/Ka<br />

Hp(0.07,0°) type Fp(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

resp<strong>on</strong>se [Sv/Gy]<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP H'(0.07,0°)/Ka<br />

H'(0.07,0°) type Fp(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP H*(10)/Ka<br />

H*(10) type Fp(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

ICRP H'(10,0°)/Ka<br />

H'(10,0°) type Fp(x)<br />

Fig.5. Comparis<strong>on</strong>s with <strong>the</strong> characteristics Fp(x) <strong>of</strong> <strong>the</strong> practical use filter models, and <strong>the</strong> dose<br />

c<strong>on</strong>versi<strong>on</strong> coefficients in <strong>the</strong> Publicati<strong>on</strong> 74 <strong>of</strong> ICRP.<br />

Total<br />

5


3.5 Comparis<strong>on</strong> with <strong>the</strong> characteristic F(x) <strong>of</strong> a basic model, and <strong>the</strong> characteristic Fp(x) <strong>of</strong> a<br />

practical use model<br />

In order to investigate <strong>the</strong> difference <strong>of</strong> <strong>the</strong> characteristic Fp(x) and <strong>the</strong> characteristic F(x), <strong>the</strong> ratio<br />

Fp(x)/F(x) was calculated. The details were shown in Fig. 6, in many calculating points, <strong>the</strong> ratios were<br />

less than 1.0±0.02, and <strong>the</strong> maximum ratio was 1.0+0.054.<br />

sensitivity ratio<br />

sensitivity ratio<br />

sensitivity ratio<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

E type model<br />

Fp(x)/F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

Hp(10,0°) type model<br />

Fp(x)/F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

Hp(007,0°) type model<br />

Fp(x)/F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

sensitivity ratio<br />

sensitivity ratio<br />

sensitivity ratio<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

H*(10) type model<br />

Fp(x)/F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

H'(10,0°) type model<br />

Fp(x)/F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

H'(0.07,0°) type model<br />

Fp(x)/F(x)<br />

0.01 0.1 1 10<br />

phot<strong>on</strong> energy [MeV]<br />

Fig.6. Comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> syn<strong>the</strong>tic characteristic F(x) created from <strong>the</strong> combinati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

characteristics from <strong>the</strong> basic model, and <strong>the</strong> characteristic Fp(x) <strong>of</strong> <strong>the</strong> practical use model based <strong>on</strong><br />

<strong>the</strong> ki values.<br />

4. Discussi<strong>on</strong><br />

The latest phot<strong>on</strong> transportati<strong>on</strong> M<strong>on</strong>te Carlo calculati<strong>on</strong> code is very highly precise, and can per<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

a simulati<strong>on</strong> reliable if a user code is c<strong>on</strong>structed strictly. Moreover, since it is a simulati<strong>on</strong>, irradiati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s with difficult realizati<strong>on</strong> can be set up easily, and detailed in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> can be acquired<br />

compared with an irradiati<strong>on</strong> experiment. We applied <strong>the</strong> advantage <strong>of</strong> such a calculati<strong>on</strong> code to <strong>the</strong><br />

sensitivity compensati<strong>on</strong> filter design <str<strong>on</strong>g>for</str<strong>on</strong>g> fluorescence glass dosimeters, and tried <strong>the</strong> design <strong>of</strong> <strong>the</strong><br />

6


filter which can measure an effective dose or a dose equivalent. It was started from acquisiti<strong>on</strong> <strong>of</strong> basic<br />

data and <strong>the</strong> procedure <strong>of</strong> compositi<strong>on</strong> <strong>of</strong> <strong>the</strong> characteristic needed <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> dose measurement from <strong>the</strong><br />

data subsequently acquired, planning <strong>of</strong> <strong>the</strong> practical use model which can maintain <strong>the</strong> compounded<br />

characteristic, and evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> model per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <strong>the</strong> design. It was thought that this procedure<br />

was useful in order to be able to design a new filter certainly and to raise <strong>the</strong> efficiency <strong>of</strong> a filter<br />

design. The method <strong>of</strong> using <strong>the</strong> calculati<strong>on</strong> code <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> design does not need large-scale equipment,<br />

but can also save <strong>the</strong> time and ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t <strong>of</strong> an experiment. So, <strong>the</strong> effect which reduces <strong>the</strong> expense <strong>of</strong><br />

development sharply is expected. In <strong>the</strong> simulati<strong>on</strong> <strong>of</strong> <strong>the</strong> basic model, <strong>the</strong> details <strong>of</strong> <strong>the</strong> energy<br />

characteristic could be known and <strong>the</strong> filter was designed based <strong>on</strong> this basic data. In <strong>the</strong> practical use<br />

model, <strong>the</strong> characteristic as expected was obtained and it was suggested that this method can serve as a<br />

leading means <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>the</strong> design <strong>of</strong> a filter. For this designed filter model, <strong>the</strong> characteristic was examined<br />

in <strong>the</strong> phot<strong>on</strong> energy range <strong>of</strong> 0.01-10.0MeV. However, <strong>the</strong> energy range which can use <strong>the</strong> designed<br />

filter was narrowed by <strong>the</strong> phot<strong>on</strong> absorpti<strong>on</strong> characteristic which a tin filter has at 0.03-1.0MeV, and<br />

<strong>the</strong> utility value became low.In <strong>the</strong> domain in which phot<strong>on</strong> energy exceeds 1.0MeV(s), it was<br />

c<strong>on</strong>sidered as a cause in which shortage <strong>of</strong> filter thickness weakens sensitivity, and in <strong>the</strong> domain<br />

below 0.029 MeV with phot<strong>on</strong> energy lower than K absorpti<strong>on</strong> edge <strong>of</strong> tin, since <strong>the</strong> K absorpti<strong>on</strong> did<br />

not take place, <strong>the</strong> rise <strong>of</strong> partial sensitivity was observed. It was <strong>the</strong> result <strong>of</strong> reflecting <strong>the</strong> K<br />

absorpti<strong>on</strong> edge in this characteristic that <strong>the</strong> characteristic <strong>of</strong> a glass element became disc<strong>on</strong>tinuous at<br />

<strong>the</strong> phot<strong>on</strong> energy <strong>of</strong> 0.029MeV. These problems may be able to be c<strong>on</strong>quered by examining <strong>the</strong><br />

quality <strong>of</strong> <strong>the</strong> material <strong>of</strong> a filter, and are due to be examined fur<strong>the</strong>r from now <strong>on</strong>. Since <strong>the</strong> trial<br />

producti<strong>on</strong> <strong>of</strong> <strong>the</strong> practical use filter is not per<str<strong>on</strong>g>for</str<strong>on</strong>g>med now, <strong>the</strong> characteristic shown by actual<br />

measurement with <strong>the</strong> designed filter is not clear. However, <strong>the</strong> error <strong>of</strong> an old experience to an actual<br />

measurement and a simulati<strong>on</strong> is very small, and it is sure that this method can use <str<strong>on</strong>g>for</str<strong>on</strong>g> a design in a<br />

comparatively simple model like <strong>the</strong> design <strong>of</strong> a filter. Even if slight gap arose between <strong>the</strong><br />

measurement and <strong>the</strong> simulati<strong>on</strong>, from <strong>the</strong> energy range which <strong>the</strong> gap produced, if which <strong>of</strong> <strong>the</strong><br />

coefficients <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula (1) is adjusted, it can presume easily whe<strong>the</strong>r <strong>the</strong> characteristic improves.<br />

The technique which we adopted by this research does not need large-scale equipment in <strong>the</strong><br />

development stage <strong>of</strong> a filter, but if <strong>the</strong>re are a pers<strong>on</strong>al computer and a reliable M<strong>on</strong>te Carlo<br />

simulati<strong>on</strong> code, it can carry it out. It will greatly be used <str<strong>on</strong>g>for</str<strong>on</strong>g> development <strong>of</strong> various measuring<br />

instruments which need <strong>the</strong> new characteristic in <strong>the</strong> radiati<strong>on</strong> field by this technique in <strong>the</strong> near future.<br />

5.C<strong>on</strong>clusi<strong>on</strong><br />

Development <strong>of</strong> <strong>the</strong> sensitivity compensati<strong>on</strong> filter <str<strong>on</strong>g>for</str<strong>on</strong>g> glass dosimeters was tried using <strong>the</strong> reliable<br />

M<strong>on</strong>te Carlo calculati<strong>on</strong> code. Collecting required in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> through <strong>the</strong> gradual process from<br />

acquisiti<strong>on</strong> <strong>of</strong> basic data, <strong>the</strong> technique <strong>of</strong> us which compounds <strong>the</strong> target characteristic based <strong>on</strong> <strong>the</strong><br />

in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> carried out <strong>the</strong> purpose achievement, without inducing a big error in <strong>the</strong> specific phot<strong>on</strong><br />

energy range. Development <strong>of</strong> <strong>the</strong> filter corresp<strong>on</strong>ding to various doses is due to be tried from now <strong>on</strong><br />

in a different phot<strong>on</strong> energy range using <strong>the</strong> same technique.<br />

6.References<br />

1. Perry, J.A., Radiophotoluminescence in health physics, Series in Medical Physics and Biomedical<br />

engineering, (1987).<br />

2. Juto, N., The Large Scale Pers<strong>on</strong>al M<strong>on</strong>itoring Service Using The Latest Pers<strong>on</strong>al M<strong>on</strong>itor<br />

GLASS BADGE, Proceedings <strong>of</strong> AOCRP-1, Korea (2002)<br />

3. Piesch, E., Burgkhardt, B., and Vilgis, M., Progress in Phosphate Glass Dosimetry: Experiences<br />

and Routine M<strong>on</strong>itoring with a Modern Dosimetry System, Radiati<strong>on</strong> Protecti<strong>on</strong> Dosimetry, 47,<br />

409-414, (1993)<br />

4. Namito,Y., Hirayama, H., and Ban, S., Improvements <strong>of</strong> Low-energy Phot<strong>on</strong> Transport in<br />

EGS4sytem, Proceedings <strong>of</strong> The first internati<strong>on</strong>al Workshop <strong>on</strong> EGS4, KEK proceeding 97-16,<br />

2-50 , (1997)<br />

5. Nels<strong>on</strong>, W.R., Hirayama, H., and Rogers D.W.O., The EGS4 Code System, SLAC Report<br />

265(1985)<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!