30.07.2013 Views

UHECRs and Multiple Shock Acceleration in Active Galactic ... - TAUP

UHECRs and Multiple Shock Acceleration in Active Galactic ... - TAUP

UHECRs and Multiple Shock Acceleration in Active Galactic ... - TAUP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>UHECRs</strong> <strong>and</strong> <strong>Multiple</strong> <strong>Shock</strong> <strong>Acceleration</strong><br />

<strong>in</strong> <strong>Active</strong> <strong>Galactic</strong> Nuclei Jets<br />

Ath<strong>in</strong>a Meli<br />

(IFPA, University of Liege, Belgium)<br />

Peter L. Biermann<br />

(Max-Planck Institute for Radioastronomy, Bonn, Germany)<br />

12 th <strong>TAUP</strong> 2011, Munich


Outl<strong>in</strong>e<br />

• Cosmic ray spectrum - sources<br />

• AGN Jets <strong>and</strong> multiple shocks<br />

• <strong>Shock</strong> acceleration mechanism – non relativistic/relativistic<br />

• Simulation method <strong>and</strong> study results<br />

• Summary <strong>and</strong> conclusions


Cosmic ray spectrum


E (dN/dE)<br />

[T. Gaisser 2005]<br />

~E -2.7<br />

LHC<br />

knee<br />

1 part m -2 yr -1<br />

~E -3<br />

Ankle<br />

1 part km -2 yr -1<br />

Auger<br />

TA<br />

~E -2.7<br />

Toe<br />

1 part km -2 cent -1


Ultra High Energy Cosmic Rays: At the ‘toe’


Ultra High Energy Cosmic Rays: At the ‘toe’


Relativistic sources


<strong>Active</strong> <strong>Galactic</strong> Nuclei<br />

Black hole<br />

L ~ 10 46 erg/s<br />

Γ ~ 10-50<br />

E max ~ 10 19-21 eV<br />

e.g. Lynden-Bell ’69,<br />

Meier ’03, Georganopoulos<br />

’05,<br />

Marcher et al. ’08, ‘10 etc


AGN Jets<br />

Individual or multiple shock acceleration<br />

PSK1510<br />

(Marscher et al.<br />

’08,’10)<br />

S<strong>and</strong>ers, 1983<br />

Bridle&Perley, 1984<br />

Melrose&Pope, 1993<br />

Jones et al., 2001<br />

Tregillis et al., 2004<br />

Agudo et al. 2001<br />

Marscher et al., 2008, 2010<br />

Walker et al., 2008<br />

Britzen et al., 2008<br />

Keppens et al., 2008<br />

Becker&Biermann, 2009<br />

Nakamura et al., 2010


Diffusive shock acceleration<br />

• Test particle - diffusion - n acceleration shock cycles<br />

E<br />

n ( x + 1) ⋅ E0<br />

• Energy ga<strong>in</strong>: fraction of <strong>in</strong>itial energy<br />

• Average energy ga<strong>in</strong> per collision:<br />

n<br />

=<br />

ΔE<br />

= E − E = x⋅<br />

E<br />

< ΔE<br />

/ E >≅ ( 2V<br />

/ c)<br />

• Lead<strong>in</strong>g to a power-law energy behaviour<br />

∞<br />

i=<br />

n<br />

n(<br />

E)<br />

−σ<br />

( 1−<br />

P ) = ... ∝<br />

N(<br />

> E)<br />

= ∑ E<br />

σ = (r+2)/(r-1), r = V1/V2 = (γ +1) / ( γ -1)<br />

esc<br />

for mono-atomic gas:<br />

γ =5/3 r = 4 E -2<br />

Note: for non-relativistic shocks σ is ‘constant’ ,<br />

<strong>in</strong>dependent of scatter<strong>in</strong>g media or shock <strong>in</strong>cl<strong>in</strong>ation<br />

0<br />

0<br />

Probability of scatter<strong>in</strong>g x av.no. scatter<strong>in</strong>gs x ΔE<br />

Upstream Downstream<br />

(e.g. Krymskii ‘77, Bell ’78, Drury ’83 )


<strong>Shock</strong>-drift acceleration


What we know about <strong>in</strong>dividual relativistic shock acceleration<br />

• Spectral <strong>in</strong>dex (σ) is not universal (observations confirm)<br />

• σ depends on: gamma flow speed, shock <strong>in</strong>cl<strong>in</strong>ation<br />

• σ critically depends on the scatter<strong>in</strong>g modes (turbulence of the media)<br />

• Relativistic shocks can generate a multitude of spectral forms (smooth,<br />

structured or concave)<br />

• Faster shocks generate flatter distributions:<br />

Sublum<strong>in</strong>al (quasi-parallel) shocks efficient accelerators ~10 21 eV (<strong>UHECRs</strong>)<br />

Superlum<strong>in</strong>al (quasi-perpendicular) shocks not efficient ~10 15 eV<br />

Large angle scatter<strong>in</strong>g (θ


<strong>Multiple</strong> relativistic shock acceleration


One can def<strong>in</strong>e a conical shock as a surface formed by a sheaf of plane<br />

oblique shocks all mak<strong>in</strong>g the same angle η to the upstream flow or jet axis<br />

(the flow upstream <strong>and</strong> downstream is always highly oblique on the surface of the shock)


Overlook<br />

Facts: The best power-law fit to <strong>UHECRs</strong> suggests an E -2.4 - E -2.7<br />

(de Marco & Stanev, 2006; Berez<strong>in</strong>ksy et al. 2009)<br />

Total power of : 10 48.5 x D 2 erg/sec<br />

1/3 of the total jet power can be supplied, then for <strong>UHECRs</strong><br />

max. power 10 42.5 erg/sec (CenA) <strong>and</strong> 10 44.5 erg/sec (M87)<br />

(Whysong & Antonucci, 2003; Adbo et al. 2009) ... <br />

Motivation/Proposal: <strong>Multiple</strong> shock acceleration (e.g. S<strong>and</strong>ers 1983)<br />

<strong>in</strong> jets (e.g. Marsher et al. 2008) with a s<strong>in</strong>gle particle<br />

<strong>in</strong>jection (e.g. Sunyaev 1970) depleted <strong>and</strong> flatter spectra<br />

may solve the acquir<strong>in</strong>g power problem, giv<strong>in</strong>g considerable<br />

<strong>in</strong>sights on the resulted primary cosmic ray spectra <strong>and</strong><br />

consequent radiation <strong>in</strong> AGN jets<br />

Meli & Biermann (2011)


Repeated conical shocks with open<strong>in</strong>g angles a, b, c, d, <strong>in</strong> an AGN jet<br />

Meli & Biermann (2011)


Simulation method*<br />

• Injection of relativistic particles upstream - scatter<strong>in</strong>g <strong>in</strong> respective fluid frames<br />

of four consecutive oblique shocks<br />

L = - λ p ln (r) (Cashwell & Everett, 1959)<br />

• R<strong>and</strong>om generation of phase:<br />

φ=2 x π x r<br />

• Probability to move a distance DL along the field l<strong>in</strong>es at pitch<br />

angle θ before it scatters: Prob(DL) = exp (-DL / λ)<br />

• Scatter<strong>in</strong>g can be treated via pitch angle diffusion approach<br />

(e.g. Kennel & Petscheck ’66, Forman et al. ’74, Jokipii ’87, Quenby & Meli ’05,<br />

Meli & Biermann ‘06)<br />

• Fully relativistic Lorentzian transformations<br />

κ =<br />

κ<br />

2<br />

|| cos ⊥<br />

ψ + κ s<strong>in</strong><br />

• Pesc (p < po) (probabilty of escape) Melrose & Pope (1993) - decompression effect<br />

*(based on the established relativistic numerical code of Meli & Quenby 2003)<br />

2<br />

ψ


An overall view of the proposed jet topology <strong>and</strong> geometries (not<br />

to scale) simulation framework (λ denotes the distance traveled by<br />

a particle proportional to its energy).


Simulation results


Γsh = 45, 15<br />

Γsh = 45, 15<br />

Meli & Biermann (2011)


Γsh = 45, 15<br />

Γsh = 45, 15


Γsh = 45, 15<br />

Γsh = 45, 15


Summary - Conclusions I<br />

• We performed simulations of multiple relativistic particle shock<br />

acceleration <strong>in</strong> AGN jets as an application to observations <strong>and</strong> theoretical claims<br />

• The first two shocks from an assumed repetitive shock sequence <strong>in</strong> an AGN jet,<br />

establish power-law spectra with σ ~ 2.7 - 2.2 (sublum<strong>in</strong>al) <strong>and</strong> σ ~ 2.8 - 2.4<br />

(superlum<strong>in</strong>al), reach<strong>in</strong>g energies up to ~10 17 eV (assum<strong>in</strong>g protons - no losses)<br />

• The follow<strong>in</strong>g two shocks of the sequence push the particle spectrum up <strong>in</strong> energy<br />

to ~10 20 eV , with flat distributions flatter than <strong>in</strong>dividual shocks. We observe a<br />

flux depletion at lower energies, form<strong>in</strong>g characteristic depleted spectra<br />

• With a smaller number of particles (s<strong>in</strong>gle <strong>in</strong>jection) one can achieve very high<br />

energies, thus the puzzl<strong>in</strong>g power problem of AGN fed <strong>in</strong>to the very high energy<br />

cosmic rays would not be necessary


Consequences - Conclusions II<br />

• A s<strong>in</strong>gle source (> 10 9 GeV) with<strong>in</strong> 50 Mpc: (Cen A is with<strong>in</strong> 3-5 Mpc, M87<br />

is with<strong>in</strong> 16-17 Mpc) additional losses to steepen the spectra (protons +<br />

heavier nuclei ? (e.g. Aloisio et al. 2011))<br />

• <strong>Multiple</strong> sources (> 10 9 GeV) with<strong>in</strong> 50Mpc: (which we do not see yet) <br />

spectral superposition requirement over the different shock profiles shown <strong>in</strong><br />

this work (note:there maybe many very high energy particle extragalactic sources,<br />

but it is hard to believe that they could all be sources of only heavy nuclei)<br />

• The results could expla<strong>in</strong> variabilities of gamma-ray or X-ray spectra<br />

observed <strong>in</strong> extragalactic sources (electrons accelerat<strong>in</strong>g <strong>and</strong> radiat<strong>in</strong>g),<br />

with<strong>in</strong> different time frames (observation angle) dur<strong>in</strong>g the acceleration<br />

sequence of more than one shocks<br />

Thank you


Back up slides


Normal SHOCK FRAME de-HT FRAME<br />

Left: A conical shock as viewed <strong>in</strong> the normal-shock-frame (NSH), where the vector of the upstream<br />

flow velocity is parallel to the shock normal. The magnetic field is oblique to the shock surface by<br />

default, so here, <strong>in</strong> order to facilitate our view clearer on the geometry of a conical shock <strong>in</strong> a Cartesian<br />

system, we show the case of the magnetic field vector (B), perpendicular to the jet axis thus <strong>in</strong>cl<strong>in</strong>ed to<br />

the shock normal. Right: The same conical shock as it viewed after the Lorentz transformation <strong>in</strong>to the<br />

de Hoffmann-Teller frame. In this frame the velocity vector is placed parallel to the vector of the<br />

magnetic field as was viewed <strong>in</strong> the frame above. By this transformation there is no electric field E <strong>in</strong><br />

this frame. View<strong>in</strong>g closely the topology <strong>in</strong> NSH , one sees that<br />

90 o = i + a <strong>and</strong> 90 o = ψ + i, then ψ = a.<br />

AGN Jet axis


One can def<strong>in</strong>e a conical shock as a surface formed by a sheaf of plane<br />

oblique shocks all mak<strong>in</strong>g the same angle η to the upstream flow or jet axis<br />

(the flow upstream <strong>and</strong> downstream is always highly oblique on the surface of the shock)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!