30.07.2013 Views

AEROSOL over CLOUD - IUP

AEROSOL over CLOUD - IUP

AEROSOL over CLOUD - IUP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

POLARIZATION &<br />

ANISOTROPY of<br />

REFLECTANCES for<br />

ATMOSPHERIC<br />

SCIENCES coupled with<br />

OBSERVATIONS from a<br />

LIDAR<br />

PARASOL<br />

• LOA/CNRS/Lille<br />

• LATMOS/CNRS/Paris 6<br />

• LMD/CNRS/Paris 6<br />

• LSCE/CNRS/CEA/Paris<br />

Collaborations:MODIS/CALIPSO/NASA<br />

CNES/Toulouse (Level 1)<br />

CGTD/CNRS/CNES/U. Lille (Level 2, 3, 4)


Directional<br />

Measurements<br />

QuickTime et un<br />

décompresseur H.264<br />

sont requis pour visionner cette image.<br />

Wide FOV CCD Camera with 1600 km swath width<br />

•+/- 43 degrees cross track - +/- 51degrees along track<br />

Spectral<br />

Measurements<br />

9 spectral bands: 443-1020nm<br />

3 are polarized (490, 670, 865 nm)<br />

• Spatial resolution : 6.2 km x 5.3 km<br />

• No onboard calibration system - Inflight vicarious calibration :<br />

–2-3% absolute calibration accuracy<br />

–1% spectral calibration accuracy<br />

–1% polarization calibration accuracy


Over Ocean,the POLDER instrument carries enough<br />

informations to discriminate between three different<br />

modes of particles:<br />

• fine mode (pollution or biomass burning),<br />

• spherical coarse mode (maritime),<br />

• non-spherical coarse mode (dust) (when<br />

geometrical conditions are suitable).<br />

Over land, the POLDER instrument uses the polarized<br />

radiances for getting:<br />

• fine mode (pollution or biomass burning),<br />

• the corresponding angström exponent.


One single NS model = Volten et al.<br />

R = ρ 670 /ρ 865 ; DLm = quality of the fit.<br />

The fraction of AOD due to major natural and anthropogenic<br />

components : fine mode, and a coarse mode with a combination of<br />

hydrated spherical particles and of non spherical particles (dust).<br />

Upper: Total radiances<br />

Lower: Polarized radiances<br />

Dots: measurements<br />

Lines: retrieval<br />

Herman et al., 2004


Why polarization is useful for aerosol remote sensing <strong>over</strong> land:<br />

L<br />

sol<br />

p<br />

• is low compared to atmospheric contribution<br />

• is spectrally independent<br />

• is more uniform<br />

• can be roughly estimated from surface classification<br />

Maximum variation of the surface<br />

polarization from Beijing to<br />

Xianghe ~ 2.0×10 -3 at 110°-120° After atmospheric corrections from AERONET<br />

Fan et al., 2007<br />

Deuzé et al., 2001


Clear atmosphere (AOT=0.03) : reflectance<br />

at TOA is close to the surface values<br />

Clear atmosphere (AOT=0.08) : the reflectance<br />

at TOA is again close to the surface values<br />

<strong>AEROSOL</strong><br />

Hazy atmosphere : large aerosol contribution,<br />

1.0×10 -2 at 110°-120° for AOT=0.31<br />

Hazy atmosphere : aerosol contribution < 10 -3 for<br />

AOT =0.7<br />

Illustration for<br />

Biomass Burning<br />

Aerosols<br />

Limitation for some<br />

aerosol types:<br />

Illustration for<br />

Desert Aerosols<br />

Deuzé et al., 2001


LEVEL 3<br />

Total Fine Mode<br />

Non-Spherical Coarse: « Dust » Spherical Coarse: « maritime »<br />

PARASOL Optical thicknesses <strong>over</strong> Ocean Sept 2005


Years<br />

2005/6<br />

2006/7<br />

2007/8<br />

2008/9<br />

season<br />

AOD (accumulation mode)<br />

MAM JJA SON DJF


Benefits from Polarization:<br />

•Determination of the refractive index (real part),<br />

•The absorption (in the blue) and the altitude<br />

•Aerosols above a cloud deck<br />

New scheme that can work <strong>over</strong> land


Refractive index of the aerosols<br />

within the accumulation mode<br />

Spectral effect<br />

for the size<br />

determination,<br />

here:<br />

R = L 670/L 865<br />

Spectral ratio<br />

2,2<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

R 133<br />

R 145<br />

R 160<br />

P 133<br />

P 145<br />

P 160<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

1<br />

-0,2<br />

0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18<br />

Mean radius<br />

1<br />

0<br />

Polarization ratio<br />

around 110° at 670nm<br />

Refractive Index<br />

Polarization ratio<br />

Log-normal size distributions<br />

reff=0.07-0.13-0.17-0.22μm<br />

m=1.35-1.45-1.60


Refractive index of the large spherical mode:<br />

radiances<br />

Polarized<br />

radiances<br />

Based on the location of the rainbow<br />

observed in polarized light<br />

Polarized phase function q( Θ)<br />

0,2<br />

0,1<br />

-0,1<br />

-0,2<br />

0<br />

Coarse mode<br />

Spherical particles<br />

rmoy=0.75 μm-sigma=0.70<br />

λ=865 nm<br />

q 0.75mu 1.33<br />

q 0.75mu 1.37<br />

q 0.75mu 1.40<br />

q 0.75mu 1.45<br />

q 0.75mu 1.50<br />

80 100 120 140 160 180<br />

Scattering angle Θ<br />

(145°/155°) the refractive index<br />

is estimated to be 1.35±0.02<br />

Exact Reff value is not crucial


490nm<br />

POLARIZED RADIANCE<br />

0,0360<br />

0,0340<br />

0,0320<br />

0,0300<br />

0,0280<br />

0,0260<br />

0,0240<br />

0,0220<br />

0,0200<br />

ω 0 = 0.860, 0.880, 0.902, 0.925, 0.947, 0.974<br />

reff = 0.2µm<br />

Molecular<br />

Absorption<br />

Scattering angle: 102°<br />

0,02 0,04 0,06 0,08 0,10 0,12 0,14<br />

no surface<br />

Z=0.5km<br />

Z=1.5km<br />

Z=2.5km<br />

Z=3.5km<br />

Z=4.5km<br />

Z=5.5km<br />

Z=6.5km<br />

Z=7.5km<br />

Z=8.5km<br />

Z=9.5km<br />

Z=10.5km<br />

AOD(490nm)=0.5<br />

m'=0.020<br />

m'=0.015<br />

m'=0.025<br />

m'=0.010<br />

m'=0.030<br />

m'=0.005<br />

RADIANCE<br />

Z=1.5km<br />

AOD(490nm)=1.0<br />

Z=3.5km<br />

Z=5.5km<br />

Aerosol Properties<br />

are extrapolated in<br />

the blue<br />

Z km<br />

4.0<br />

3.0<br />

Altitude:<br />

<strong>over</strong> land<br />

and ocean<br />

3.5


June 2006 - December 2008<br />

Comparison with CALIOP <strong>over</strong> land


QuickTime et un<br />

décompresseur TIFF (non compressé)<br />

sont requis pour visionner cette image.<br />

<strong>AEROSOL</strong> <strong>over</strong> <strong>CLOUD</strong><br />

*LIDAR Alt from 5km Cloud Layer product<br />

Case study: Aug. 18 2006<br />

CALIOP<br />

PARASOL<br />

MODIS


865nm<br />

Detection (and quantification) of aerosol layers above cloud<br />

Waquet et al., 2009<br />

Inversion: Lidar/Parasol/Modis<br />

AOT<br />

Lidar PATH


f j * - PARASOL data:<br />

Angular measurements (~15 angles) of<br />

- Intensity (λ = 0.49; 0.67; 0.87; 1.02 μm)<br />

- Polarization (λ = 0.49; 0.67; 0.87 μm)<br />

A Priori Constraints limiting derivatives (e.g. Dubovik 2004) of<br />

- for aerosols (e.g. in AERONET, Dubovik and King 2000) :<br />

- aerosol size distribution variability <strong>over</strong> size range;<br />

- spectral variability of complex refractive index;<br />

- for surface (e.g. in AERONET/satellite retrievals, Sinuyk et al. 2007) :<br />

- spectral variability of BRF/ PBRF parameters.<br />

New inversion scheme<br />

Both bi-directional intensity and polarization reflectance and aerosols are retrieved simultaneously<br />

Single - Pixel Retrieval:<br />

QuickTime et un<br />

décompresseur TIFF (LZW)<br />

sont requis pour visionner cette image.<br />

*<br />

f j<br />

∗<br />

0j = F ⎧<br />

⎪ ⎛<br />

j<br />

⎨ ⎜<br />

⎩ ⎪ ⎝<br />

a j - Parameters to be retrieved:<br />

-Aerosol propetries:<br />

- size distribution; - real refractive index- altitude<br />

- imaginary refractive index; - particle shape<br />

-Surface properties (<strong>over</strong> land):<br />

- BRF parameters; -BPRF parameters<br />

D j<br />

⎞<br />

⎟<br />

⎠<br />

a j +<br />

Δ j m<br />

a<br />

Δ j<br />

Multi-term LSM Multi-Pixel Solution:<br />

Multi-Pixel a priori constraints (e.g.Dubovik et al. 2008):<br />

- limited spatial variability of each aerosol /surface parameter<br />

- limited temporal variability of each aerosol /surface<br />

parameter<br />

NOTE: degree of variability constraints (smoothnes) can be<br />

different and adequately chosen for each parameter<br />

Dubovik et al., 2009


B<br />

QuickTime and a<br />

TIFF (Uncompressed) decompressor<br />

are needed to see this picture.<br />

Retrieved parameters:<br />

Refractive index (réel): 1.53-1.55<br />

Non-spherical fraction: 97%<br />

Aerosol layer altitude (width 1.5 km): 0.4 km (Jan 1); 0.5 km (Jan 3)<br />

0.7 km (Jan 5); 1.2km (Jan 6)<br />

Aerosol Optical Thickness<br />

Preliminary results from PARASOL <strong>over</strong> a bright surface ( Banizoumbou, Niger)<br />

PARASOL: 4 PIXELS<br />

North 13 0 30 ’’, East 2 0 36 ’’; North 13 0 30 ’’, East 2 0 43 ’’<br />

North 13 0 36 ’’, East 2 0 36 ’’. North 13 0 36 ’’, East 2 0 43 ’’<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Aerosol Optical Thickness <strong>over</strong> BANIZOUMBOU<br />

(January 1-6, 2007)<br />

0.44 AERONET<br />

0.67 AERONET<br />

0.87 AERONET<br />

1.02 AERONET<br />

0.44 PARASOL<br />

0.67 PARASOL<br />

0.87 PARASOL<br />

1.02 PARASOL<br />

0<br />

1 2 3 4 5 6 7<br />

Days: 1- 6 of January, 2007<br />

Single Scattering Albedo<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

Absorption of Aerosol <strong>over</strong> BANIZOUMBU<br />

(January 1-6, 2007)<br />

0.8<br />

Jan 1, AERONET<br />

Jan 3, AERONET<br />

Jan 5, AERONET<br />

Jan 6, AERONET<br />

0.75<br />

Jan 1, PARASOL<br />

Jan 3, PARASOL<br />

Jan 5, PARASOL<br />

0.7<br />

Jan 6, PARASOL<br />

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1<br />

Wavelengths, μm<br />

Surface Albedo<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

January 3, 2007<br />

January 6, 2007<br />

Surface albedo <strong>over</strong> BANIZOUMBU<br />

(January 1-6, 2007)<br />

MODIS<br />

PARASOL<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

Wavelengths, μm


PARASOL data are available: New instrument<br />

Level 1 data :http://parasol-polder.cnes.fr/<br />

PARASOL aerosol and cloud products are available on line at<br />

http://www.icare.univ-lille1.fr/<br />

PARASOL is slowly leaving the A-Train<br />

New instrument: Extension to MIR channels (1.6 and<br />

2.1µm) and to UV (0.36µm)


The debate : How good (or<br />

bad) are the present aerosol<br />

products <strong>over</strong> ocean?


AOD P =a x AOD M + b (0.25°x0.25° resolution; 52 months)


Red dots: AERONET oceanic sites<br />

4206 Coincident measurements: 03/2005-06/2008


Backup slides


AOT of PARASOL/POLDER-2<br />

AOT of PARASOL<br />

VALIDATION: land<br />

AOT of AERONET Fine Mode (r≤0.3µm)<br />

Ångström Exponent of PARASOL<br />

Ångström Exponent of PARASOL<br />

Ångström Exponent of AERONET Fine Mode<br />

AOT of AERONET Fine Mode (r≤0.3µm) Ångström Exponent of AERONET Fine Mode


Total AOT 670 nm<br />

Fine Mode AOT 550nm<br />

GSFC [Anthropogenic] Hamburg<br />

Parasol MODIS<br />

MODIS give very good results for total AOT.<br />

Parasol and MODIS fine mode AOT are excellent<br />

Parasol MODIS<br />

Bréon et al. 2009/GEOMON<br />

AOD COMPARISON BETWEEN MODIS or PARASOL with AERONET


Fine Mode AOT 550nm<br />

Total AOT 670 nm<br />

Mongu [Biomass Burning]<br />

Parasol MODIS<br />

Bréon et al. 2009/GEOMON<br />

MODIS gives<br />

good results<br />

for total AOT.<br />

Parasol fine<br />

mode AOT is<br />

excellent -<br />

MODIS is not<br />

as good<br />

AOD COMPARISON BETWEEN MODIS or PARASOL with AERONET


<strong>AEROSOL</strong> <strong>over</strong> <strong>CLOUD</strong> - Detection<br />

Difference in Cloud Top Pressure retrieval from O2 and Rayleigh Scattering.<br />

04 2005 08 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!