30.07.2013 Views

elasticity

elasticity

elasticity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Elasticity<br />

Constitutive Relation<br />

53<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

The descriptions of stress and strain individually are<br />

independent of the material.<br />

The connection between stress and strain is a<br />

description of the particular material being studied.<br />

This connection is called the constitutive relation or<br />

the stress-strain relation.<br />

An elastic material is one where the stress is a unique<br />

function of the strain and vice versa. An elastic solid<br />

has the following properties:<br />

The displacements and strains are independent of<br />

the history of loading<br />

When we remove the applied loads, the body<br />

returns to a unique relaxed state.


strain<br />

Elasticity<br />

54<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Example of an Elastic Medium: there is a unique<br />

relation between stress and strain.<br />

stress<br />

Inelastic medium: non-unique relation that may<br />

depend on rate or loading history.<br />

strain<br />

stress


Elasticity<br />

55<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Linear Elastic Material: Hookean Solid<br />

A special case is when the stresses and strains are<br />

linearly related:<br />

σij = Σ cijkl εkl kl<br />

stiffnesses<br />

(moduli)<br />

εij = Σ Sijkl σkl kl<br />

compliances<br />

Since there are 9 stress components and 9 strain<br />

components, there are 81 elastic constants.<br />

However, because of the symmetry of stress and<br />

strain, plus some other thermodynamic conditions<br />

there are at most 21 independent constants.<br />

c ijkl<br />

S ijkl<br />

The elastic stiffness and compliances are<br />

exactly equivalent. They are tensor inverses of each<br />

other.


Elasticity<br />

56<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Isotropic Linear Elastic Solid<br />

For an isotropic material, only two unique<br />

constants are needed.<br />

c ijrs = λδ ij δ rs + µ δ ir δ js + δ is δ jr<br />

in simpler form:<br />

σ ij = λδ ij ε kk +2µε ij<br />

where λ and µ are the Lamé constants. µ is also<br />

known as the shear modulus.


Elasticity<br />

57<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Linear Isotropic Elasticity: the Bulk Modulus<br />

Hooke’s Law<br />

σij = λεααδij +2µεi or<br />

σxx = λεαα +2µεxx σyy = λεαα +2µεyy By adding the first three equations:<br />

σ 0 = 1<br />

3 σ αα =<br />

σ zz = λε αα +2µε zz<br />

σ xy =2µε xy<br />

σ yz =2µε yz<br />

σ xz =2µε xz<br />

σαα =3λ +2µ εαα<br />

For convenience we define<br />

K=<br />

3λ +2µ<br />

3<br />

σ0 =Kεαα<br />

3λ +2µ<br />

3<br />

ε αα<br />

Here, K is the bulk modulus and gives the ratio of<br />

hydrostatic stress to volumetric strain.


Elasticity<br />

σ xx = λε αα +2µε xx<br />

σ yy = λε αα +2µε yy<br />

σ zz = λε αα +2µε zz<br />

σ xy =2µε xy<br />

σ yz =2µε yz<br />

σ xz =2µε xz<br />

58<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Linear Isotropic Elasticity: the Shear Modulus<br />

In a simple shear experiment, only a single shear<br />

strain εxy is non-zero.<br />

ε xy<br />

Then Hooke’s law states:<br />

σ xy<br />

σ xy =2µε xy<br />

µ is the shear modulus, which gives the ratio of<br />

shear stress to shear strain.<br />

y<br />

x


σ xx = λε αα +2µε xx<br />

σ yy = λε αα +2µε yy<br />

σ zz = λε αα +2µε zz<br />

σ xy =2µε xy<br />

σ yz =2µε yz<br />

σ xz =2µε xz<br />

Elasticity<br />

59<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Linear Isotropic Elasticity: the Young’s Modulus<br />

In a uniaxial stress experiment,<br />

only the axial normal stress<br />

is non-zero.<br />

Then from Hooke’s law we can derive:<br />

σ xx =<br />

But it is convenient to define<br />

E=<br />

σxx<br />

µ 3λ +2µ<br />

λ + µ<br />

σxx =Eεxx<br />

µ 3λ +2µ<br />

λ + µ<br />

ε xx<br />

σ xx<br />

This is Young’s modulus, which gives the ratio of<br />

axial stress to axial strain in a uniaxial stress state.<br />

y<br />

x<br />

z


Elasticity<br />

60<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Linear Isotropic Elasticity: the Poisson’s Ratio<br />

Similarly, in the uniaxial stress state we can derive<br />

the ratio of lateral strain to axial strain:<br />

ε yy =–<br />

And it is convenient to define Poisson’s ratio:<br />

ν =<br />

λ<br />

2 λ + µ ε xx<br />

λ<br />

2 λ + µ<br />

ε yy =–νε xx<br />

Ideally ν must lie within the limits –1 ≤ ν ≤<br />

Practically it is almost always between<br />

when or<br />

We can interpret this as a fluid state or as an<br />

incompressible state.<br />

1 2<br />

0 ≤ ν ≤ 1 2<br />

ν → 1 µ → 0 K → ∞<br />

2


Elasticity<br />

Uniaxial Strain<br />

61<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Consider the case when displacements occur only in<br />

the x direction:<br />

This can occur in the laboratory by putting rigid<br />

lateral constraints, or in a plane P-wave.<br />

Then we can derive:<br />

σxx = λ +2µ εxx<br />

So we can define a new modulus M for this<br />

experiment that we will call the uniaxial strain<br />

modulus, or the “P-wave” modulus.<br />

M= K+ 4µ = λ +2µ<br />

3<br />

This gives the ratio of axial stress to axial strain in<br />

a uniaxial strain situation.<br />

x<br />

z


Mineral Density<br />

Quartz 2.6500<br />

Calcite 2.7100<br />

Dolomite 2.8700<br />

Clay (kaolinite) 1.5800<br />

Muscovite 2.7900<br />

Feldspar (Albite) 2.6300<br />

Halite 2.1600<br />

Anhydrite 2.9800<br />

Pyrite 4.9300<br />

Siderite 3.9600<br />

gas 0.00065000<br />

water 1.0000<br />

oil 0.80000<br />

densities in g/cm 3<br />

moduli in GPa<br />

velocities in km/s<br />

Elasticity<br />

62<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Examples of Elastic Moduli<br />

Young's Modulus<br />

95.756<br />

84.293<br />

116.57<br />

3.2034<br />

100.84<br />

69.010<br />

37.242<br />

74.431<br />

305.85<br />

134.51<br />

0.0000<br />

0.0000<br />

0.0000<br />

Bulk Modulus<br />

36.600<br />

76.800<br />

94.900<br />

1.5000<br />

61.500<br />

75.600<br />

24.800<br />

56.100<br />

147.40<br />

123.70<br />

0.00013000<br />

2.2500<br />

1.0200<br />

Shear Modulus<br />

45.000<br />

32.000<br />

45.000<br />

1.4000<br />

41.100<br />

25.600<br />

14.900<br />

29.100<br />

132.50<br />

51.000<br />

0.0000<br />

0.0000<br />

0.0000<br />

Vp<br />

6.0376<br />

6.6395<br />

7.3465<br />

1.4597<br />

6.4563<br />

6.4594<br />

4.5474<br />

5.6432<br />

8.1076<br />

6.9576<br />

0.44721<br />

1.5000<br />

1.1292<br />

Vs<br />

4.1208<br />

3.4363<br />

3.9597<br />

0.94132<br />

3.8381<br />

3.1199<br />

2.6264<br />

3.1249<br />

5.1842<br />

3.5887<br />

0.0000<br />

0.0000<br />

0.0000<br />

Poisson's Ratio<br />

0.063953<br />

0.31707<br />

0.29527<br />

0.14407<br />

0.22673<br />

0.34786<br />

0.24972<br />

0.27888<br />

0.15417<br />

0.31876<br />

0.50000<br />

0.50000<br />

0.50000<br />

C.1


λ+2µ /3<br />

Eµ<br />

3(3µ–E)<br />

λ 1+ν<br />

3ν<br />

µ 21+ν<br />

3 1–2ν<br />

λ<br />

µ 3λ+2µ<br />

λ+µ<br />

9K K–λ<br />

3K–λ<br />

9Kµ<br />

3K+µ<br />

1+ν 1–2ν<br />

ν<br />

2µ(1+ν)<br />

3K(1–2ν)<br />

Elasticity<br />

K–2µ /3<br />

µ E–2µ<br />

(3µ–E)<br />

3K 3K–E<br />

9K–E<br />

µ 2ν<br />

1–2ν<br />

3K ν<br />

1+ν<br />

63<br />

λ<br />

2 λ+µ<br />

λ<br />

3K–λ<br />

3K–2µ<br />

23K+µ<br />

E/(2µ)–1<br />

3K–E<br />

6K<br />

Stanford Rock Physics Laboratory - Gary Mavko<br />

Relationships Among Elastic Constants in an Isotropic Material<br />

K E λ ν M µ<br />

-<br />

-<br />

-<br />

-<br />

E<br />

3 1–2ν<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

Eν<br />

1+ν 1–2ν<br />

-<br />

-<br />

-<br />

-<br />

λ+2µ<br />

3K–2λ<br />

K+4µ /3<br />

µ 4µ–E<br />

3µ–E<br />

3K 3K+E<br />

9K–E<br />

λ 1–ν<br />

ν<br />

µ 2–2ν<br />

1–2ν<br />

3K 1–ν<br />

1+ν<br />

E 1–ν<br />

1+ν 1–2ν<br />

-<br />

3K–λ /2<br />

-<br />

-<br />

3KE<br />

9K–E<br />

λ 1–2ν<br />

2ν<br />

-<br />

3K 1–2ν<br />

2+2ν<br />

E<br />

2+2ν

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!