31.07.2013 Views

Emissions and Secondary Formation of Organic Aerosols in the ...

Emissions and Secondary Formation of Organic Aerosols in the ...

Emissions and Secondary Formation of Organic Aerosols in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Emissions</strong> <strong>and</strong> <strong>Secondary</strong> <strong>Formation</strong> <strong>of</strong> <strong>Organic</strong> <strong>Aerosols</strong><br />

<strong>in</strong> <strong>the</strong> Polluted Atmosphere<br />

Joost de Gouw<br />

NOAA Earth System Research Laboratory<br />

&<br />

CIRES, University <strong>of</strong> Colorado<br />

Boulder, Colorado<br />

With Data From:<br />

AMS Tim Bates, Trish Qu<strong>in</strong>n, Tim Onasch<br />

WSOC Rodney Weber, Amy Sullivan, Rick Peltier<br />

WAS Elliot Atlas<br />

PTR-MS Carsten Warneke, Lori Del Negro<br />

GC-MS Paul Goldan, Bill Kuster, M<strong>in</strong> Shao<br />

CO Eric Williams, Brian Lerner, Paul Murphy<br />

CO John Holloway


<strong>Emissions</strong> <strong>and</strong> <strong>Secondary</strong> <strong>Formation</strong> <strong>of</strong> <strong>Organic</strong> <strong>Aerosols</strong><br />

<strong>in</strong> <strong>the</strong> Polluted Atmosphere<br />

Joost de Gouw<br />

NOAA Earth System Research Laboratory<br />

CIRES, University <strong>of</strong> Colorado<br />

Boulder, Colorado<br />

Outl<strong>in</strong>e:<br />

1. <strong>Organic</strong> aerosol <strong>in</strong> urban plumes dur<strong>in</strong>g ICARTT<br />

2. Budget <strong>of</strong> anthropogenic SOA<br />

3. Carbonyl Sulfide as a tracer for biogenic SOA?


Motivation<br />

De Gouw [JGR 2005]:<br />

1. <strong>Organic</strong> aerosol <strong>in</strong> <strong>the</strong> NE<br />

U.S. mostly associated with<br />

urban emissions<br />

2. In most air masses:<br />

SOA >> POA<br />

3. Growth <strong>of</strong> SOA >> calculated<br />

from urban precursors<br />

NEAQS 2002<br />

How well does this description hold up for o<strong>the</strong>r data sets?


ICARTT 2004<br />

NOAA r/v Ronald H. Brown<br />

OM: Qu<strong>in</strong>n; CO: Williams<br />

OM <strong>and</strong> CO are correlated<br />

Ratio <strong>in</strong>creases with photo-chemical<br />

age (from toluene to benzene ratio)


From NEAQS 2002:<br />

OM versus Photochemical Age<br />

POA<br />

NEAQS equation works well for ICARTT data!<br />

SOA


Aircraft Measurements Dur<strong>in</strong>g ICARTT 2004<br />

NOAA WP-3D<br />

From: Sullivan [JGR 2006]<br />

Good correlation between watersoluble<br />

organic carbon (WSOC)<br />

<strong>and</strong> CO


Quasi-Lagrangian Study <strong>of</strong> SOA <strong>Formation</strong><br />

From: de Gouw [JGR submitted]<br />

Benzene is relatively <strong>in</strong>ert<br />

Similar ratio observed on<br />

both days (July 20 <strong>and</strong> 21)


Quasi-Lagrangian Study <strong>of</strong> SOA <strong>Formation</strong><br />

From: de Gouw [JGR submitted]<br />

Toluene is more reactive<br />

Much smaller ratio observed<br />

on 2 nd day (July 21)


Quasi-Lagrangian Study <strong>of</strong> SOA <strong>Formation</strong><br />

From: de Gouw [JGR submitted]<br />

WSOC is higher on 2nd day<br />

(July 21)<br />

Observed <strong>in</strong>crease:<br />

9 to 23 µgC m -3 ppmv -1<br />

similar to calculated † <strong>in</strong>crease:<br />

7 to 26 µgC m -3 ppmv -1<br />

† assum<strong>in</strong>g OM/WSOC=2.8


Growth <strong>of</strong> WSOC <strong>in</strong> Urban Plumes<br />

From: de Gouw [JGR submitted]<br />

Growth <strong>of</strong> WSOC <strong>in</strong> urban plumes consistent<br />

with equation derived from NEAQS


New Yields for Aromatic VOCs<br />

Expla<strong>in</strong> Larger Part <strong>of</strong> SOA<br />

Multiple field studies:<br />

SOA/CO ≈ 40 µg m -3 ppmv -1<br />

SOA yields from Se<strong>in</strong>feld & P<strong>and</strong>is [1998]:<br />

SOA/CO ≈ 3.7 µg m -3 ppmv -1<br />

New SOA yields from Ng [2007]:<br />

SOA/CO ≈ 14 µg m -3 ppmv -1<br />

Suggests 35% <strong>of</strong> SOA from measured<br />

aromatics<br />

Rema<strong>in</strong>der may come from:<br />

Unresolved VOCs [Lewis, 2000]?<br />

Semi-volatiles [Rob<strong>in</strong>son, 2007]?<br />

Biogenic VOCs?


Multiple field studies:<br />

∆SOA/∆CO ≈ 40 µg m -3 ppmv -1<br />

Global Anthropogenic CO<br />

(EDGAR) = 244 Tg y -1<br />

=> Global Anthropogenic SOA:<br />

8.0 Tg y -1<br />

Anthropogenic SOA:<br />

9% worldwide<br />

35% <strong>in</strong> <strong>the</strong> U.S.<br />

(Most biogenic VOCs <strong>and</strong><br />

fires <strong>in</strong> <strong>the</strong> tropics; most<br />

fossil-fuel use <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn hemisphere<br />

Importance <strong>of</strong> Anthropogenic SOA<br />

From: de Gouw [JGR submitted]


Teaser: Carbonyl Sulfide (OCS) as Biogenic Tracer?<br />

Problem:<br />

Biogenic VOCs are very short-lived<br />

A long-lived tracer would be useful to quantify biogenic SOA<br />

A potential solution?<br />

OCS is long-lived<br />

Variability <strong>of</strong> OCS over <strong>the</strong> U.S. is<br />

controlled by vegetation uptake<br />

[Montzka, JGR 2007]<br />

Here:<br />

Fit ICARTT data for WSOC, methanol <strong>and</strong> CO to:<br />

(after filter<strong>in</strong>g for biomass burn<strong>in</strong>g us<strong>in</strong>g acetonitrile)<br />

A + Bx(Acetylene-100pptv) + Cx(480pptv-OCS)<br />

Background Urban POA+SOA Biogenic SOA


WSOC:<br />

Bg = 0.25 µgC m -3<br />

Urban = 95%<br />

Biogenic = 5%<br />

Results <strong>of</strong> Multivariate Fits<br />

Methanol:<br />

Bg = 750 pptv<br />

Urban = 50%<br />

Biogenic = 50%<br />

CO:<br />

Bg = 85 ppbv<br />

Urban = 76%<br />

Biogenic 24%<br />

De Gouw [JGR 2005]: OM is 86% urban, 14% biogenic<br />

methanol is 62% urban, 38% biogenic


WSOC:<br />

Bg = 0.25 µgC m -3<br />

Urban = 95%<br />

Biogenic = 5%<br />

Results <strong>of</strong> Multivariate Fits<br />

Methanol:<br />

Bg = 750 pptv<br />

Urban = 50%<br />

Biogenic = 50%<br />

CO:<br />

Bg = 85 ppbv<br />

Urban = 76%<br />

Biogenic 24%<br />

Initial results suggest that WSOC is largely anthropogenic<br />

Not a def<strong>in</strong>itive argument, but ano<strong>the</strong>r piece <strong>of</strong> <strong>the</strong> puzzle


Summary<br />

Significant part <strong>of</strong> <strong>the</strong> regional variability <strong>in</strong> OM expla<strong>in</strong>ed by:<br />

1. relatively small, direct emissions from cities<br />

2. strong growth <strong>of</strong> SOA <strong>in</strong> urban plumes<br />

New yields for aromatic VOCs may expla<strong>in</strong> a significant part<br />

<strong>of</strong> SOA formation<br />

Anthropogenic SOA could be 35% <strong>of</strong> total OM <strong>in</strong> <strong>the</strong> U.S.<br />

Acknowledgements<br />

Chuck Brock, Ann Middlebrook, Fred Fehsenfeld, Michael Tra<strong>in</strong>er,<br />

Tom Ryerson, David Parrish

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!