31.07.2013 Views

phytochemistry and bioassay for natural weed control

phytochemistry and bioassay for natural weed control

phytochemistry and bioassay for natural weed control

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THESIS<br />

PHYTOCHEMISTRY AND BIOASSAY FOR NATURAL WEED<br />

CONTROL COMPOUNDS FROM Ageratum conyzoides L.<br />

BUAKHAO HONGSACHUM<br />

GRADUATE SCHOOL, KASETSART UNIVERSITY<br />

2008


THESIS<br />

PHYTOCHEMISTRY AND BIOASSAY FOR NATURAL WEED CONTROL<br />

COMPOUNDS FROM Ageratum conyzoides L.<br />

BUAKHAO HONGSACHUM<br />

A Thesis Submitted in Partial Fulfillment of<br />

the Requirements <strong>for</strong> the Degree of<br />

Master of Science (Botany)<br />

Graduate School, Kasetsart University<br />

2008


ACKNOWLEDGEMENTS<br />

I wish to express my grateful appreciation <strong>and</strong> deeply indebted to my chairman,<br />

Associate Professor Srunya Vajrodaya, <strong>for</strong> her valuable advice, encouragement <strong>and</strong><br />

stimulating <strong>and</strong> helpful suggestion throughout the course of my graduate study at<br />

Department of Botany, Faculty of Science, Kasetsart University <strong>and</strong> <strong>for</strong> completely<br />

writing of this thesis. I would like to sincerely grateful to Associate Professor<br />

Sureeya Tantiwiwat, my major advisor, <strong>for</strong> her kindly encouragement, valuable<br />

suggestion <strong>and</strong> helpful assistance. I gratefully thank Associate Professor Poontariga<br />

Harinasut, my minor advisor from Department of Biochemistry, Faculty of Science,<br />

Kasessart University, <strong>for</strong> her valuable suggestion <strong>and</strong> also Associate Professor Decha<br />

Wiwatwitaya, the Graduate School representative from Department of Forest Biology,<br />

Faculty of Forestry, Kasetsart University <strong>for</strong> his valuable comments.<br />

I would like to deeply indebted to ledturers at Department of Botany, Faculty of<br />

Science, Kasetsart University <strong>for</strong> their encouragement <strong>and</strong> helpful suggestion. I am heartfelt<br />

thank to my friends at Department of Botany, Faculty of Science, Kasetsart University, <strong>for</strong><br />

their assistance <strong>and</strong> encouragement. I would like to especially thank to Miss Somnuk<br />

Promdang, my pen sister at the laboratory, <strong>for</strong> her helpful suggestion <strong>and</strong> encouragement<br />

throughout this thesis. My appreciation is also extended to the Department of Chemistry,<br />

Faculty of Science, Kasetsart University <strong>for</strong> supporting of some instrumentations<br />

Grateful acknowledgement is made to Development <strong>and</strong> Promotion of Science<br />

<strong>and</strong> Technology Talented Project (DPST Project) <strong>for</strong> dissertation supported fund<br />

throughout my study <strong>and</strong> research.<br />

Finally, I am especially appreciated my parents, Mr. Roemma <strong>and</strong> Mrs. Kampon<br />

Hongsachum <strong>and</strong> my sisters, Miss Kw<strong>and</strong>ao, Miss Pawadee <strong>and</strong> Miss Kesinee<br />

Hongsachum, <strong>for</strong> their love <strong>and</strong> encouragements.<br />

Buakhao Hongsachum<br />

April 2008


TABLE OF CONTENTS<br />

Page<br />

TABLE OF CONTENTS i<br />

LIST OF TABLES ii<br />

LIST OF FIGURES iv<br />

LIST OF ABBREVIATIONS vii<br />

INTRODUCTION 1<br />

OBJECTIVES 3<br />

LITERATURE REVIEW 4<br />

MATERIALS AND METHODS 38<br />

Materials 38<br />

Methods 43<br />

RESULTS AND DISCUSSION 50<br />

CONCLUSION AND RECOMMENDATION 107<br />

Conclusion 107<br />

Recommendation 108<br />

LITERATURE CITED 109<br />

APPENDIX 127<br />

i


LIST OF TABLES<br />

Table Page<br />

1 Selected ethno pharmacological applications of A. conyzoides L. 7<br />

2 Pharmacological activities of A. conyzoides L. 12<br />

3 Biological activities of A. conyzoides L. on insects 14<br />

4 Biological activities of A. conyzoides L. on microbial 16<br />

5 Allelopathy of A. conyzoides L. 18<br />

6 Mono- <strong>and</strong> sequiterpenes from A. conyzoides L. 20<br />

7 Chromenes, benzofurans <strong>and</strong> coumarins from A. conyzoides L. 22<br />

8 Flavonoids from A. conyzoides L. 27<br />

9 Alkaloids from A. conyzoides L. 33<br />

10 Triterpenes <strong>and</strong> sterols from A. conyzoides L. 35<br />

11 Phytochemical screening of POP1a, POP2a, POP3a, POP1b,<br />

POP2b, POP3b <strong>and</strong> callus 63<br />

12 Secondary metabolite screening on TLC plates of POP1a, POP2a,<br />

POP3a, POP1b, POP2b, POP3b <strong>and</strong> callus 69<br />

13 Secondary metabolites survey in lipophilic crude extracts of A.<br />

conyzoides L. 71<br />

14 Rf values of the compound detected from A. conyzoides L.<br />

lipophilic crude extracts detected under long wave length UV light 74<br />

15 Column chromatography in<strong>for</strong>mation of lipophilic extract of<br />

POP1b 87<br />

16 Germination percentage of cultivated plants at 3,5 <strong>and</strong> 7 days 92<br />

17 Seedling growth of cultivated plants at the 7 th date 93<br />

18 Germination percentage of <strong>weed</strong>s at 3,5 <strong>and</strong> 7 days 99<br />

19 Seedling growth of <strong>weed</strong>s at the 7 th date 100<br />

20 Effect of the lipophilic crude extract from A. conyzoides L. on<br />

seed germination <strong>and</strong> seedling growth of tested seed 104<br />

ii


Appendix Table<br />

LIST OF TABLES (Continued)<br />

1 Retention time (Rt) <strong>and</strong> UV spectrum of peak detected from<br />

HPLC chromatogram 131<br />

2 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Oryza sativa L. cultivar Hom Mali 105 at 95%<br />

significant level 133<br />

3 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Brassica chinensis L. var. chinensis at 95%<br />

significant level 134<br />

4 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Ipomoea aquatica Forssk. at 95% significant<br />

level 135<br />

5 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Tridax procumbens L. at 95% significant level 136<br />

6 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Mimosa pigra L. at 95% significant level 137<br />

7 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Cenchrus echinatus L. at 95% significant level 138<br />

8 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Echinochloa colona (L.) Link at 95%<br />

significant level 139<br />

iii


LIST OF FIGURES<br />

Figure Page<br />

1 Ageratum conyzoides L. herbarium specimen 6<br />

2 Phytochemical method 48<br />

3 Alkaloidal test by using Dragendorff’s reagent 51<br />

4 Coumarins test by using 10% NaOH 54<br />

5 Unsaturated lactone ring test by using Kedde’s reagent 56<br />

6 Unsaturated lactone ring test by using Raymond’s reagent 57<br />

7 Steroid <strong>and</strong> triterpenoid test by using Libermann-Burchard test 59<br />

8 Flavonoid test by using Cyanidin test 61<br />

9 Flavonoid test by using FeCl3 solution 62<br />

10 Alkaloid detection from POP1a (1a), POP2a (2a), POP3a (3a),<br />

POP1b (1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus 66<br />

11 Terpenoid detection from POP1a (1a), POP2a (2a), POP3a (3a),<br />

POP1b (1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus 67<br />

12 Coumarin detection from POP1a (1a), POP2a (2a), POP3a (3a),<br />

POP1b (1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus 68<br />

13 Unsaturated lactone ring detection from POP1a (1a), POP2a (2a),<br />

POP3a (3a), POP1b (1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus 70<br />

14 TLC pattern of POP1a (1a), POP2a (2a), POP3a (3a), POP1b (1b),<br />

POP2b (2b), POP3b (3b) <strong>and</strong> callus under long wavelength<br />

(365 nm) UV light 72<br />

15 TLC pattern of POP1a (1a), POP2a (2a), POP3a (3a), POP1b (1b),<br />

POP2b (2b), POP3b (3b) <strong>and</strong> callus after treated with iodine crystal 73<br />

16 Chemical profiles <strong>and</strong> UV spectra of POP1a <strong>and</strong> POP1b 77<br />

17 Chemical profiles <strong>and</strong> UV spectra of POP2a <strong>and</strong> POP2b 78<br />

18 Chemical profiles <strong>and</strong> UV spectra of POP3a <strong>and</strong> POP3b 79<br />

19 Chemical profiles <strong>and</strong> UV spectra of POP1a, POP2a <strong>and</strong> POP3a 81<br />

20 Chemical profiles <strong>and</strong> UV spectra of POP1b, POP2b <strong>and</strong> POP3b 82<br />

iv


LIST OF FIGURES (Continued)<br />

Figure Page<br />

21 Chemical profiles <strong>and</strong> UV spectra of callus, POP1a <strong>and</strong> POP1b 84<br />

22 Chromatogram comparison of callus <strong>and</strong> POP1a 85<br />

23 Chromatogram comparison of callus <strong>and</strong> POP1b 86<br />

24 Drusses crystal isolated <strong>and</strong> purified from fraction C 88<br />

25 HPLC chromatogram <strong>and</strong> UV spectrogram of the crystal 89<br />

26 Oryza sativa L. cultivar Hom Mali 105 seedling treated with<br />

A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date 94<br />

27 Brassica chinensis L. var. chinensis seedling treated with<br />

A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date 95<br />

28 Ipomoea aquatica Forssk. seedling treated with A. conyzoides<br />

extracts <strong>and</strong> herbicides at the 7 th date 96<br />

29 Tridax procumbens L. seedling treated with A. conyzoides<br />

extracts <strong>and</strong> herbicides at the 7 th date 101<br />

30 Mimosa pigra L. seedling treated with A. conyzoides extracts<br />

<strong>and</strong> herbicides at the 7 th date 102<br />

31 Cenchrus echinatus L. seedling treated with A. conyzoides<br />

extracts <strong>and</strong> herbicides after the 7 th date 103<br />

Appendix Figure<br />

1 Three populations of A. conyzoides L. 140<br />

2 MPLC Instrumentation 141<br />

3 Agilent Technologies Instrumentation 142<br />

4 TLC in<strong>for</strong>mation (under 254 nm UV light) of eighteen fractions<br />

collected from Column Chromatography 143<br />

5 TLC in<strong>for</strong>mation (under 365 nm UV light) of eighteen fractions<br />

collected from Column Chromatography 144<br />

v


LIST OF FIGURES (Continued)<br />

Appendix Figure Page<br />

6 Dragendorff’s reagent detection of fraction D combined from<br />

Column Chromatography 145<br />

7 TLC chromatogram of crystal from fraction C developing in<br />

dichloromethane:ethyl acetate:methanol (75:20:5) solvent system 146<br />

8 TLC chromatogram of crystal from fraction C developing in<br />

dichromethane solvent system 147<br />

9 TLC chromatogram of crystal from fraction C developing in<br />

benzene:chloro<strong>for</strong>m (7:3) solvent system 148<br />

10 TLC chromatogram of crystal from fraction C developing in<br />

chloro<strong>for</strong>m:acetone (9:1) solvent system 149<br />

vi


LIST OF ABBREVIATIONS<br />

A. = Ageratum<br />

No = number<br />

BKF = Bangkok Forestry Herbarium<br />

TLC = Thin layer chromarography<br />

mm = millimeter<br />

cm = centimeter<br />

cm 2 = centimeter square<br />

nm = nanometer<br />

µ = micron/micrometer<br />

˚C = degree Celsius<br />

UV = ultraviolet<br />

Rf = retardation factor<br />

g = gram<br />

ml = milliter<br />

MPLC = medium pressure liquid chromatography<br />

HPLC = high per<strong>for</strong>mance liquid chromatography<br />

min. = minute<br />

M = molar<br />

N = normal<br />

AR = analytical reagent<br />

MeOH = methanol<br />

Ø = diameter<br />

MΩ = mega ohm<br />

POP = population<br />

cc = column chromatography<br />

IR = infrared<br />

NMR = nuclear magnetic resonance<br />

MS = mass spectrometry<br />

conc. = concentrated<br />

vii


LIST OF ABBREVIATIONS (Continued)<br />

g/l = gram per liter<br />

% = percent<br />

CRD = complete r<strong>and</strong>omized design<br />

ANOVA = analysis of variance<br />

CV = coefficient of variance<br />

Rt = retention time<br />

λmax = lambda max<br />

sh = shoulder<br />

DMRT = Duncan’s multiple range test<br />

GERM = germination<br />

viii


PHYTOCHEMISTRY AND BIOASSAY FOR NATURAL WEED<br />

CONTROL COMPOUNDS FROM Ageratum conyzoides L.<br />

INTRODUCTION<br />

Careless use of synthetic chemical is the main cause of environmental problem<br />

in Thail<strong>and</strong>. In 2002, Department of Agriculture reported that Thail<strong>and</strong> imported<br />

large commercial chemicals up to 50,331 tons (11,341 million Baht) <strong>and</strong> herbicides<br />

are the largest amount (31,879 tons, 6,101 million Baht).<br />

Herbicides are contaminated in the groundwater <strong>and</strong> soil in many agricultural<br />

regions over Thail<strong>and</strong>. Water pollution is the major problem in the country. Soil<br />

pollution <strong>and</strong> soil erosion is a concern in many regions. Weed resistance to herbicides<br />

continues to grow, <strong>and</strong> the problem of herbicides residues in food has yet to be<br />

resolved. The use of herbicides implies a risk of accumulation of residues in<br />

conventionally cultivated plant foods. It was concluded that far from all conventionally<br />

grown fruits <strong>and</strong> vegetables contain herbicide residues <strong>and</strong> if they contain herbicides,<br />

the maximum residue limits are far from exceeded<br />

Because of these concerns, some farmers have begun to adopt sustainable<br />

farming practices with the goals of reducing input coats, preserving the resource base,<br />

<strong>and</strong> protecting human health. The sustainable systems are more deliberately integrate<br />

<strong>and</strong> take advantage of <strong>natural</strong>ly occurring beneficial interactions between organisms.<br />

The practice farming method attempts to use organic system, such as apply the<br />

advantage of plant competition. The study in term of ‘allelopathy’ become interesting<br />

<strong>for</strong> the researchers that now realize the important of allelopathy in the world’s<br />

agricultural <strong>and</strong> <strong>for</strong>estry supplies.<br />

Allelopathy is the reaction of plants producing secondary metabolites called<br />

allelochemical that affect to other plants neighboring them. The effect can be both<br />

inhibited <strong>and</strong> promoted the growth of plants. In Thail<strong>and</strong>, many of the plant species<br />

have been analyzed <strong>and</strong> identified as containing biologically active secondary<br />

1


compounds derived from polyketide pathway <strong>and</strong> mevalonic acid pathway. These<br />

secondary compounds are such as sesquiterpene lactone, phenolic compound, terpene,<br />

alkaloid, etc. And those plants species may be common plant in the country, <strong>and</strong> even<br />

<strong>weed</strong>s that seem useless but may play an important role to reduce other disadvantage<br />

<strong>weed</strong>s <strong>and</strong> become <strong>natural</strong> <strong>weed</strong> <strong>control</strong> in the future.<br />

2


OBJECTIVES<br />

1. To investigate the secondary metabolites from Ageratum conyzoides L.<br />

2. To investigate biological activities of the secondary metabolites from<br />

Ageratum conyzoides L<br />

3


LITERATURE REVIEWS<br />

Ageratum was derived from the Greek words ‘a geras’, meaning non-aging,<br />

referring to the longevity of the whole plant. Conyzoides one on the other h<strong>and</strong> was<br />

derived from ‘konyz’ the Greek name of Inula helenium which the plant resembles.<br />

(Kissmann <strong>and</strong> Groth, 1993)<br />

Ageratum conyzodes L. belongs to the family Asteraceae tribe Eupatoriae.<br />

This family is well marked in their characteristics <strong>and</strong> can not be confused with any<br />

other. A large majority of the plants in this family are herbaceous while trees <strong>and</strong><br />

shrubs were comparatively rare. The genus Ageratum consists of approximately thirty<br />

species but only a few species have been phytochemically investigated (Burkill,<br />

1985).<br />

The synonyms of A. conyzoides include A. album Stend, A. caeruleum Hort.<br />

ex Poir., A. coeruleum Desf., A. cordifolium Roxb., A. hirsutum Lam., A. humile<br />

Salisb., A. latifolium Car., A. maritimum H.B.K., A. mexicanum Sims., A. obtusifolium<br />

Lam., A. odoratum Vilm. <strong>and</strong> Cacalia mentrasto Vell. (Jaccoud, 1961).<br />

In Thail<strong>and</strong>, local names of A. conyzoides L. were listed as follow: Tapsuea<br />

lek (Sing Buri), Thiam mae haang (Loei), Saap raeng saap kaa (Chiang Mai), Yaa<br />

saap haeng (Chiang Mai) <strong>and</strong> Yaa saap raeng (Ratchaburi) (Smitin<strong>and</strong>, 1980).<br />

Johnson (1971) classified A. conyzoides into two subspecies, latifolium <strong>and</strong><br />

conyzoides. Subsp. latifolium is found in the entire USA continental <strong>and</strong> subsp.<br />

conyzoides has a pantropical distribution. The basic chromosome number is 2n = 20<br />

but <strong>natural</strong> tetraploids are found. A. conyzoides subsp. latifolium is diploid while A.<br />

conyzoides subsp. conyzoides is tetraploid.<br />

Backer <strong>and</strong> van den Brink (1968) described the genus Ageratum L. are erect<br />

herb in the smelling of cumarine Lower leaves arrangement are opposite, petioled,<br />

serrate-crenate above the entire base, penninerved or subtrinerved, higher ones<br />

4


alternate, petiolate, ovate, dentate or serate. Heads corymbose or loosely peniculate,<br />

homogamous, discoid, many flowered. Involucre campanulate, imbricate, bracts 2-3<br />

seriates, linear, acute to acuminate, sub equal; receptacle flat or nearly so, naked or<br />

with caduceus scales. Corollas all tubular, equal, regular, the limb 5-fid. Anthers with<br />

<strong>and</strong> apical appendage, the base entire, obtuse. Style-arms long, slender, obtuse <strong>and</strong><br />

pubescent at the apex. Achenes oblong, 5-angular. Pappus uniseriate, of 5 short free<br />

or connate scales, or of 10-20 narrow acuminate unequal scales.<br />

Ageratum conyzodes L. is an annual branching erect herb with grows to<br />

approximately 1 m. in height. The stems <strong>and</strong> leaves are covered with fine white hairs,<br />

the leaves are petiolate, ovate up to 7.5 cm long, the apex acute, the base truncate to<br />

rounded, rarely cordate, the margins crenate. The inflorescence is purple to white<br />

head, less than 6 mm across <strong>and</strong> arrange in close terminal corymbs of 8-15 heads.<br />

Involucres are campanulate, the bracts are 2-3 seriate, linear, sub equal, acute,<br />

sparsely pilose outside; corollas are all tubular, 1-1.5 mm long, the limb 5-cleft. The<br />

fruits are linear-oblong black achene with 5-angled <strong>and</strong> are easily dispersed while the<br />

seed are photoblastic <strong>and</strong> often lost within 12 months; pappus are 5 short scales, the<br />

scales are often serrate below ending in a long awn (Backer <strong>and</strong> van den Brink, 1968).<br />

A. conyzoides L. are native to tropical America. It is now found in all warm<br />

<strong>and</strong> subtropical areas of the world that is very common in West Africa <strong>and</strong> some parts<br />

of Asia <strong>and</strong> South America. It is usually found in waste places, rice fields, gardens,<br />

old cultivations, low secondary growth <strong>for</strong>ests, <strong>for</strong>est-edges, roadsides, water courses<br />

etc., where there is ample exposure to sunlight (Dung et al., 1996). It has a particular<br />

odor likened in Australia to that of a male goat <strong>and</strong> hence its name ‘goat <strong>weed</strong>’ or<br />

billy goat <strong>weed</strong>’ (Okunade, 2002).<br />

A. conyzoides L. was beneficial in conventional medicine all cover the tropical<br />

areas. The biological activities of the plant have been undertaken. Some of the<br />

significant ethno pharmacological applications of A. conyzoides L. were shown in Table<br />

1.<br />

5


Figure 1 Ageratum conyzoides L. herbarium specimen<br />

6


Table 1 Selected ethno pharmacological applications of A. conyzoides L.<br />

Geological area Part used Indication References<br />

Africa, Asia <strong>and</strong><br />

South America<br />

whole<br />

plants<br />

Colombia Whole<br />

plants<br />

Folk remedies, purgative,<br />

febrifuge, Opthalmia,<br />

Colic, Ulcer, Wound<br />

dressing<br />

Insecticidal repellent or<br />

antifeedant properties<br />

India Root Possess anthelmintic <strong>and</strong><br />

antidysenteric properties<br />

Senagal - Anti-enteralgic<br />

Antipyretic<br />

Kenya whole<br />

plants<br />

Thail<strong>and</strong> Whole<br />

plant<br />

Central Africa whole<br />

plants<br />

Antiasthmatic<br />

Antispasmodic<br />

Haemostatic effects<br />

Juice from plant taken<br />

orally as carminative<br />

property<br />

Githens, 1948<br />

Pérez, 1953<br />

Chopra et al., 1956<br />

Kerhoro <strong>and</strong> Adam,<br />

1974<br />

Kokwaro, 1976<br />

Boonyarattanakornkit<br />

<strong>and</strong> Supawita, 1977<br />

Burned wound Durodola, 1977<br />

India - Treat pneumonia<br />

Cure wounds <strong>and</strong> burns<br />

Nigeria Leaves Skin diseases<br />

Wound healing<br />

Diarrhea<br />

Relieve pain<br />

Brazil Teas from<br />

plants<br />

Anti-inflammatory<br />

Analgesic, Antidiarrhoeic<br />

Durodola, 1977<br />

Okunade, 1981<br />

Corea, 1984<br />

7


Table 1 (Continued)<br />

Geological<br />

area<br />

Part used Indication References<br />

Cameroon Leaves Treat conjunctivitis,<br />

ophthalmia, headache <strong>and</strong><br />

otitis<br />

India - Bacteriocide,<br />

antidysenteric, antilithic<br />

Africa Whole plants Mental diseases<br />

Headaches<br />

Dyspnea<br />

Northeastern<br />

India<br />

Central<br />

Nigeria<br />

Leaves Applied on cuts <strong>and</strong><br />

injuries to stop bleeding,<br />

as an antidote <strong>for</strong><br />

snakebite<br />

Fresh leaves For body infection, neck<br />

pain,<br />

Kenya - Dermatological remedy<br />

(wound)<br />

Nepal Leaves Applied to cuts <strong>and</strong><br />

wounds <strong>for</strong><br />

antihemorragic <strong>and</strong><br />

antiseptic properties<br />

Vietnam - Treatment of<br />

gynecological disease<br />

India Whole plants Treat leprosy <strong>and</strong> as oil<br />

lotion <strong>for</strong> purulent<br />

opthalmia<br />

Brazil - Anti-inflammatory <strong>and</strong><br />

analgesic<br />

Sofowora, 1984<br />

Borthakur <strong>and</strong><br />

Baruah, 1987<br />

Adjonohoun et al.,<br />

1988<br />

Neogi et al., 1989<br />

Bhat et al., 1990<br />

Johns et al., 1990<br />

Bhattarai, 1991<br />

Dung <strong>and</strong> Loi, 1991<br />

Kasturi et al., 1973;<br />

Kirtikar <strong>and</strong> Badu,<br />

1991<br />

Elisabetsky <strong>and</strong><br />

Wannmacher, 1993<br />

8


Table 1 (Continued)<br />

Geological area Part used Indication References<br />

Madagascar Aerial parts Febrifuge Rasaonaivo et al.,<br />

1992<br />

The isl<strong>and</strong> of<br />

Mauritius<br />

Mauritiua <strong>and</strong><br />

Rodrigues<br />

India Aqueous<br />

extract of<br />

whole plants<br />

Leaves Release gas in stomach, cure<br />

diarrhea, skin infection<br />

Leaves Used as a diuretic in urinary<br />

diseases<br />

Treat colic, cold, fever,<br />

diarrhea, rheumatism,<br />

spasms, as a tonic<br />

Gurib-Fakim et<br />

al., 1993<br />

Gurib-Fakim et<br />

al., 1997<br />

Oliveira et al.,<br />

1993<br />

Nepal Leaves Juice applied on fresh cut Shrestha <strong>and</strong><br />

Joshi, 1993<br />

Gabon Leaves Eaten with cola fruit <strong>and</strong> salt<br />

to treat pain<br />

Tamil Nadu Leaves Antiinflammatory, diuretic,<br />

haemostatic<br />

India Leaves Chewed <strong>and</strong> applied over<br />

fresh cuts to stop bleeding<br />

<strong>and</strong> prevent infection<br />

Vietnam Whole<br />

plants<br />

Vietnam Whole<br />

plants<br />

Gynecological diseases<br />

Anti-inflammatory<br />

Anti-allergic<br />

Anti-inflammatory<br />

Anti-allergic<br />

Cure allergic rhibitis <strong>and</strong><br />

simisitic,post partum uterine<br />

haemorrhage<br />

Madagascar Leaves Juice as a coagulant,<br />

Tea <strong>for</strong> diarrhea<br />

Akendengue <strong>and</strong><br />

Louis, 1994<br />

Suresh et al., 1994<br />

Bh<strong>and</strong>ary et al.,<br />

1995<br />

Sharma <strong>and</strong><br />

Sharma, 1995<br />

Dung et al., 1996<br />

Novy, 1997<br />

9


Table 1 (Continued)<br />

Geological area Part used Indication References<br />

Brazil Leaves Treatment of malaria <strong>and</strong><br />

yellow fever<br />

Ming, 1999<br />

India Fresh leaves Anthelmintic properties Perumal Samy et<br />

al., 1999<br />

Nepal Leaves,<br />

aerial parts<br />

The tribals of<br />

Bangangte<br />

(Western<br />

Cameroon)<br />

Northwest<br />

Argentina<br />

Juice of<br />

whole plants<br />

Whole<br />

plants<br />

Treat cuts <strong>and</strong> wounds, <strong>for</strong><br />

stomach-ache<br />

Joshi <strong>and</strong> Joshi,<br />

2000<br />

Use <strong>for</strong> peptic ulcer Noumi, 2004<br />

Against cough by drunk as<br />

syrup during sickness<br />

Hilgert, 2001<br />

India Leaves Used <strong>for</strong> haemostat Kshirsagar <strong>and</strong><br />

Singh, 2001<br />

Brunei<br />

Darussalam<br />

Decoction<br />

of whole<br />

plants<br />

Brazil Aerial parts Tonic, stimulant,<br />

emmenagogue<br />

Kenya Leaves,<br />

roots<br />

India Whole<br />

plants<br />

Taken <strong>for</strong> cough <strong>and</strong> fever Holdsworth et al.,<br />

2001<br />

de Melo Junior et<br />

al., 2002<br />

Stomach ache Geissler et al.,<br />

2002<br />

Applied on tumour <strong>and</strong><br />

swelling, as an antidote to<br />

snakebite <strong>and</strong> stings<br />

Singh et al., 2002<br />

Vietnam Aerial parts Applied inflammation Ueda et al., 2002<br />

Ivory Coast Whole<br />

plants<br />

Against abdominal pain Diehl et al., 2004<br />

Cameroon Leaves Emetic effect Noumi, 2004<br />

10


Table 1 (Continued)<br />

Geological area Part used Indication References<br />

Mexico Aerial parts As hypoglycemic effect <strong>for</strong><br />

treat diabetes<br />

India Leaves Juice with leaves of<br />

Cocculus hirsutus taken to<br />

cure diarrhoea<br />

Andrade-Cetto <strong>and</strong><br />

Heinrich, 2005<br />

Ayyanar <strong>and</strong><br />

Ignacimuthu, 2005<br />

India Leaves As coagulant Jain et al., 2005<br />

Tanzania Seeds Treatment of epilepsy Moshi et al., 2005<br />

A. conyzoides received much attention from phytochemical viewpoint because<br />

of their plentiful of aromatic compounds. Many kinds of A. conyzoides essential oils<br />

possess wide varieties of biological activities. The biological activities in pharmacology<br />

were listed in Table 2. The activities affected on insects <strong>and</strong> microbial were listed in<br />

Table 3 <strong>and</strong> 4 respectively<br />

11


Table 2 Pharmacological activities of A. conyzoides L.<br />

Plant parts Solvents Biological activity References<br />

Leaves Aqueous extract Prevent coagulation of the<br />

whole blood<br />

Whole plants Aqueous extract Analgesic effect <strong>and</strong><br />

improvement in<br />

articulation mobility<br />

Whole plants Aqueous extract Analgesic activity <strong>and</strong> antiinflammatory<br />

action<br />

Akah, 1988<br />

Marques-Neto et<br />

al., 1988<br />

Silva <strong>and</strong> Vale,<br />

1991<br />

Leaves Aqueous extract Analgesic activity Abena et al., 1993<br />

Leaves Aqueous extract Analgesic action in rat Bioka et al., 1993<br />

Whole plants Aqueous extract Muscle relaxing activities Achola et al., 1994<br />

Leaves Acetone/<br />

Methanol<br />

Aerial parts,<br />

roots<br />

Antiinflammatory; paw<br />

edema in mice<br />

Essential oil Anti-inflammatory,<br />

analgesic <strong>and</strong> antipyretic in<br />

mice <strong>and</strong> rats<br />

Methanol Neuromuscular blocking<br />

activity<br />

Suresh et al.,<br />

1994<br />

Abena et al., 1996<br />

Achola <strong>and</strong><br />

Munenge, 1997<br />

Whole plants Aqueous extract Myorelaxing activity Magalhães et al.,<br />

1997<br />

Leaves Water soluble<br />

fraction<br />

Aerial parts Petroleum ether,<br />

Dichloromethane,<br />

Ethyl acetate<br />

Analgesic <strong>and</strong> antiinflammatory<br />

activity in<br />

rats<br />

Magalhaes et al.,<br />

1997<br />

Antimalarial activity Madureira et al.,<br />

2002<br />

Whole plants Ethanol Exhibited DPPH<br />

scavenging <strong>and</strong> nitric oxide<br />

generation<br />

Shirwaikar et al.,<br />

2003<br />

12


Table 2 (Continued)<br />

Plant parts Solvents Biological activity References<br />

Aerial parts Ethanol Anti-inflammatory in<br />

Wistar albino rats<br />

Fresh leaves Methanol Demonstrated wound<br />

healing properties<br />

Moura et al., 2005<br />

Chah et al., 2006<br />

13


Table 3 Biological activities of A. conyzoides L. on insects<br />

Plant parts Solvents Biological activity References<br />

Fresh<br />

leaves<br />

Whole<br />

plant<br />

Whole<br />

plants<br />

Precocenes I<br />

<strong>and</strong> II<br />

Precocene I<br />

<strong>and</strong> II<br />

Accelerate larval<br />

metamorphosis, resulted in<br />

juvenile <strong>for</strong>m or weak <strong>and</strong> small<br />

adults of Musca domestica<br />

Antijuvenile hormone of<br />

Dysdercus flavidus<br />

Antijuvenile hormone of<br />

Sitophilus oryzae, Thlaspida<br />

japonica, Leptocarsia chinesis<br />

methanol Produce deficiency of juvenile<br />

hormone of sorghum pests<br />

(Chilo partellus)<br />

Petroleum<br />

ether<br />

Flowers Petroleum<br />

ether<br />

Whole<br />

plants<br />

Whole<br />

plants<br />

Induce morphogenetic<br />

abnormalities in the <strong>for</strong>mation of<br />

mosquitoes larvae (Culex<br />

quinquefasciatus, Aedes aegypt<br />

<strong>and</strong> Anopheles stephensi<br />

Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani,<br />

1986<br />

Fagoonee <strong>and</strong><br />

Umrit, 1981<br />

Lu, 1982<br />

Raja et al., 1987<br />

Sujatha et al.,<br />

1988<br />

Hexane Against Musca domestica larvae Gonzales et al.,<br />

1991<br />

Aqueous<br />

extract<br />

Against mosquitoes (Anopheles<br />

stephensi)<br />

Reduce larvae emergence of<br />

Meloidogyne incognita<br />

Methanol Suppress population of<br />

Anopheless stephensi at<br />

preimaginal stage<br />

Kamal <strong>and</strong><br />

Mehra, 1991<br />

Shabana et al.,<br />

1991<br />

Saxena <strong>and</strong><br />

Saxena, 1992<br />

14


Table 3 (Continued)<br />

Plant parts Solvents Biological activity References<br />

Whole<br />

plants<br />

Aqueous<br />

extract<br />

Essential oil<br />

(precocenes)<br />

Essential oil<br />

(precocenes)<br />

Leaves Distilled<br />

water<br />

Sheltered predators of spidermite<br />

(Panonychus citri,<br />

Phyllocoptruta oleivora,<br />

Brevipalpus phoenicis)<br />

Caused nymphal mortality of<br />

Schistocerca gregaria<br />

Toxicity on adults of cowpea<br />

weevil (Callosobruchus<br />

maculates)<br />

Cause mortality of the maize<br />

grain weevil (Sitophilus<br />

zeamais)<br />

Pu et al., 1990;<br />

Gravena et al.,<br />

1993; Liang et al.,<br />

1994<br />

Pari et al., 1998<br />

Gbolade et al.,<br />

1999<br />

Bouda et al., 2001<br />

15


Table 4 Biological activities of A. conyzoides L. on microbial<br />

Plant parts Solvents Biological activity References<br />

Whole<br />

plants<br />

Whole<br />

plants<br />

Whole<br />

plants<br />

Fresh<br />

leaves<br />

Whole<br />

plant<br />

Whole<br />

plant<br />

Ether <strong>and</strong><br />

chloro<strong>for</strong>m<br />

Against in vitro development<br />

of Staphylococus aureus<br />

Methanol Inhibit growth <strong>and</strong><br />

development of S. aureus,<br />

Bacillus subtilis, Escherichia<br />

coli <strong>and</strong> Pseudomonas<br />

aeruginosa<br />

Durodola, 1977<br />

Almagboul et al.,<br />

1985<br />

Aqueous extract Reduction of leprosy virus Gravena et al.,<br />

1993<br />

Essential oil Inhibit the growth of C<strong>and</strong>ida<br />

albicans SP-14, Cryptococcus<br />

neo<strong>for</strong>mas SP-16, Sclerotium<br />

rolfsii SP-5, Trichophyton<br />

mentagrophytes SP-12<br />

Essential oil Against fungi; Penicillium<br />

chrysogenum <strong>and</strong> P. javanicum<br />

Essential oil 100% inhibition of the<br />

mycelial growth <strong>and</strong><br />

germination of spores of<br />

Didymella bryoniae<br />

Distilled water Controlled the growth of<br />

Alkaligens viscolactis,<br />

Klebsiella aerogenas, Bacillus<br />

cerues <strong>and</strong><br />

Dichloromethane/<br />

Methanol<br />

Inhibit Plasmodium<br />

falciparum<br />

Pattnaik et al.,<br />

1996<br />

Ekundayo et al.,<br />

1988<br />

Fiori et al., 2000<br />

Perumal Samy et<br />

al., 1999<br />

Clarkson et al.,<br />

2004<br />

Methanol Against Tychophyton spp. Moody et al.,<br />

2004<br />

16


Table 4 (Continued)<br />

Plant parts Solvents Biological activity References<br />

Leaves Distilled<br />

water<br />

Against Epidermophyton<br />

floccosum <strong>and</strong> Trichophyton<br />

mentengrophytes<br />

Leaves Ethanol Inhibit E. coli, Microsporum<br />

canis, Trichophyton<br />

mentagrophytes<br />

Whole<br />

plants<br />

Leaves,<br />

stems, roots<br />

Ethanol Inhibit Streptococcus pyogenous<br />

<strong>and</strong> Neisseria gonorrhoea<br />

Cold/hot<br />

water,<br />

Methanol/<br />

Hexane<br />

Susceptibility of Staphylococcus<br />

aureus, Yersinia enterocolitica,<br />

Salmonella gallinarum <strong>and</strong><br />

Escherichia coli<br />

Leaves Acetone Against the plant pathogenic<br />

fungi, Aspergillus niger<br />

Mishra et al.,<br />

1991<br />

Vlietinck et al.,<br />

1995<br />

Geyid et al., 2005<br />

Okwori et al.,<br />

2007<br />

Widodo et al.,<br />

2008<br />

In <strong>natural</strong> ecosystem, many higher plants may hold stronger allelopathic<br />

potential <strong>and</strong> may exhibit a higher <strong>weed</strong> reduction. A. conyzoides L. was assessed to<br />

have a strong invasion capacity in plant communities, significantly reducing <strong>natural</strong><br />

growth of <strong>weed</strong>s in its vicinity. The allelopathic effects of A. conyzoides L.were<br />

listed in Table 5.<br />

17


Table 5 Allelopathy of A. conyzoides L.<br />

Plant parts Solvents Biological activity References<br />

Whole plants Volatile oil,<br />

aqueous<br />

extract<br />

Leaves, stem,<br />

roots<br />

Distilled<br />

water<br />

Leaves Distilled<br />

water<br />

Leaves Distilled<br />

water<br />

Leaves Distilled<br />

water<br />

Aerial parts Distilled<br />

water<br />

Aerial parts Distilled<br />

water<br />

Inhibit seedling growth of radish<br />

(Raphanus sativus L.), tomato ( )<br />

<strong>and</strong> ryegrass ( )<br />

Leaf extract inhibited radish<br />

germination <strong>and</strong> shoot <strong>and</strong> root<br />

length<br />

Leaf extract reduced dry weight of<br />

radish<br />

Inhibited germination <strong>and</strong> growth<br />

of Monochoria vaginalis,<br />

Echinochloa crus-galli <strong>and</strong><br />

Aeschynomene indica<br />

Promoted rice (Oryza sativa L.<br />

var. indica) growth: plant height,<br />

tiller number, panicle number,<br />

grain number <strong>and</strong> yield<br />

Controlled emergence of <strong>weed</strong>s in<br />

paddy field; Echinochloa<br />

oryzicola, Eleochalis acicularis,<br />

Linderna pyxidaria, Monochoria<br />

vaginalis <strong>and</strong> Rotala indica<br />

Inhibited germination of wheat<br />

(Triticum aestivum L.) <strong>and</strong> rice<br />

seeds<br />

Caused lower reduction of peanut<br />

seed (Arachis hypogaea L.)<br />

Kong et al.,<br />

1999<br />

Xuan et al.,<br />

2004<br />

Xuan et al.,<br />

2004<br />

Xuan et al.,<br />

2004<br />

Xuan et al.,<br />

2004<br />

Jha <strong>and</strong> Dhakal,<br />

1990<br />

Parasad <strong>and</strong><br />

Srivastava,<br />

1991<br />

18


Table 5 (Continued)<br />

Plant parts Solvents Biological activity References<br />

Whole plants Distilled<br />

water<br />

Whole plants Distilled<br />

water<br />

Controlled emergence of<br />

Monochoria vaginalis, Rotala<br />

indica, Marsilea quadrifolia,<br />

Leptochloa chinensis, Cyperus<br />

dif<strong>for</strong>mis, Sphenochlea<br />

zeylanica, Commelina diffusa,<br />

Dactyloctenium aegyptium <strong>and</strong><br />

Brachiaria mutica<br />

Promoted emergence of<br />

Fimbristylis miliacea,<br />

Murdannia keisak <strong>and</strong> Jussiaea<br />

decurrens<br />

Whole plants polyethylene Reduced growth of chickpea<br />

(Cicer arietinum)<br />

Hong et al.,<br />

2004<br />

Hong et al.,<br />

2004<br />

Batish et al.,<br />

2006<br />

Beside this, A. conyzoides L. were noted <strong>for</strong> being a profuse source of many<br />

compounds of phytochemical interest. Many interesting compounds isolated from the<br />

plant can categorize including mono- <strong>and</strong> sesquiterpenes (Table 6), chromene,<br />

benzofuran <strong>and</strong> coumarin (Table 7), flavonoids (Table 8), alkaloids (Table 9) <strong>and</strong><br />

Triterpenes <strong>and</strong> sterols (Table 10)<br />

19


Table 6 Mono- <strong>and</strong> sequiterpenes from A. conyzoides L.<br />

Compounds Plant parts References<br />

sabinene Whole plants Ekundayo et al., 1988<br />

camphene Aerial parts Dung et al., 1996<br />

cubebene Aerial parts Dung et al., 1996<br />

elemene Aerial parts Dung et al., 1996<br />

farnesol Aerial parts Dung et al., 1996<br />

β-farnesene Aerial parts Dung et al., 1996<br />

β-myrcene Aerial parts Dung et al., 1996<br />

β -pinene Whole plants Ekundayo et al., 1988;<br />

Dung et al., 1996<br />

α-pinene Whole plants Rao <strong>and</strong> Nigam, 1973;<br />

Dung et al., 1996;<br />

Ekundayo et al., 1988<br />

β -phel<strong>and</strong>rene Whole plants Ekundayo et al., 1988<br />

β-selinene Aerial parts Dung et al., 1996<br />

1,8-cineole Whole plants Ekundayo et al., 1988<br />

limonene Whole plants Ekundayo et al., 1988<br />

terpinen-4-ol Whole plants Ekundayo et al., 1988<br />

α-terpineol Whole plants Ekundayo et al., 1988<br />

α-terpinene Aerial parts Dung et al., 1996<br />

ocimene Whole plants Rao <strong>and</strong> Nigam, 1973<br />

eugenol Whole plants Rao <strong>and</strong> Nigam, 1973<br />

methyleugenol Whole plants Rao <strong>and</strong> Nigam, 1973<br />

20


Table 6 (Continued)<br />

Compounds Plant parts References<br />

β-caryophyllene Whole plants Ekundayo et al., 1988;<br />

Dung et al., 1996;<br />

Chalchat et al., 1997;<br />

Riaz et al., 1995; Nébié<br />

et al., 2004<br />

δ-cadinene Whole plants Rao <strong>and</strong> Nigam, 1973<br />

sesquiphell<strong>and</strong>rene Whole plants Ekundayo et al., 1988<br />

O<br />

H<br />

Caryophyllene epoxide<br />

H<br />

Whole plants Ekundayo et al., 1988;<br />

21


Table 7 Chromenes, benzofurans <strong>and</strong> coumarins from A. conyzoides L.<br />

MeO<br />

H<br />

Compounds Plant parts References<br />

7-methoxyageratochromene (Precocene I)<br />

MeO<br />

MeO<br />

O<br />

O<br />

Me<br />

Me<br />

Me<br />

Me<br />

Ageratochromene (Precocene II)<br />

MeO<br />

O<br />

MeO<br />

Encecalin<br />

6-vinyl-7-methoxy-2,2-dimethylchromene<br />

O<br />

O<br />

Me<br />

Me<br />

Me<br />

Me<br />

Whole plants Dung et al., 1996;<br />

W<strong>and</strong>ji et al.,<br />

1996; Pham et al.,<br />

1976; Nébié et<br />

al., 2004; Quijano<br />

et al., 1982; Pari<br />

et al., 1998<br />

Whole plant Dung et al., 1996;<br />

Nébié et al.,<br />

2004; Pham et al.,<br />

1976; Quijano et<br />

al., 1982; Pari et<br />

al., 1998<br />

Whole plant<br />

Ekundayo et al.,<br />

1988; Gonzalez et<br />

al., 1991a<br />

Whole plant Ekundayo et al.,<br />

1988; Gonzalez et<br />

al., 1991a<br />

22


Table 7 (Continued)<br />

∆ 3<br />

∆ 3<br />

∆ 3<br />

∆ 3<br />

MeO<br />

O<br />

H<br />

O<br />

Compounds Plant parts References<br />

O<br />

Dihydroencecalin<br />

O<br />

Me<br />

Me<br />

Me<br />

Me<br />

Dihydrodemethoxyencecalin<br />

,H<br />

O<br />

,HO<br />

O<br />

Demethoxyencecalin<br />

Demethylencecalin<br />

O<br />

O<br />

Me<br />

Me<br />

Me<br />

Me<br />

Whole plant Ekundayo et al.,<br />

1988<br />

Whole plant Ekundayo et al.,<br />

1988<br />

Whole plant Ekundayo et al.,<br />

1988<br />

Whole plant Ekundayo et al.,<br />

1988<br />

23


Table 7 (Continued)<br />

HO<br />

HO<br />

MeO<br />

MeO<br />

Compounds Plant parts References<br />

O<br />

Me<br />

C<br />

O<br />

i-Pr<br />

2-(1´-oxo-2´-methylpropyl)-2methyl-6,7-dimethoxychromene<br />

HO<br />

O<br />

OH<br />

O<br />

2,2-dimethylchromene-7-O-βglucopyranoside<br />

MeO<br />

MeO<br />

O<br />

O<br />

Me<br />

Me<br />

6-(1-methoxyethyl)-7-methoxy-2,2dimethylchromene<br />

MeO<br />

O<br />

H<br />

O<br />

Me<br />

Me<br />

6-(1-hydroxyethyl)-7-methoxy-2,2dimethylchromene<br />

Me<br />

Me<br />

Whole plant Pari et al., 1998<br />

Whole plant Ahmad et al.,<br />

1999<br />

Aerial part Gonzalez et al.,<br />

1991a<br />

Aerial part Gonzalez et al.,<br />

1991a<br />

24


Table 7 (Continued)<br />

Me<br />

Me<br />

MeO<br />

Et<br />

O<br />

Compounds Plant parts References<br />

O<br />

Me<br />

Me<br />

6-(1-ethoxyethyl)-7-methoxy-2,2dimethylchromene<br />

O<br />

O 1'<br />

2'<br />

4'<br />

H<br />

3'<br />

MeO<br />

5'<br />

6-angeloyloxy-7-methoxy-2,2dimethylchromene<br />

O OMe<br />

MeO<br />

MeO<br />

O<br />

MeO<br />

Encecanescin<br />

O<br />

O<br />

i-Pr<br />

2-(2´-methylethyl)-5,6-dimethoxybenzofuran<br />

Me<br />

O<br />

Me<br />

Me<br />

Me<br />

Aerial part Gonzalez et al.,<br />

1991a<br />

Aerial part Gonzalez et al.,<br />

1991a<br />

Aerial part Gonzalez et al.,<br />

1991a<br />

Whole plant Pari et al., 1998<br />

25


Table 7 (Continued)<br />

Me<br />

O<br />

HO<br />

Compounds Plant parts References<br />

O<br />

OH<br />

14-hydroxy-2Hβ,3-dihydroeuparine<br />

MeO<br />

OMe<br />

O<br />

O<br />

Me<br />

i-Bu<br />

3-(2´-methylpropyl)-2-methyl-6,8dimethoxychrom-4-one<br />

MeO<br />

MeO<br />

O<br />

O<br />

Me<br />

CH=CMe 2<br />

2-(2´-methoxyprop-2´-enyl)-2-methyl-6,7dimethoxychroman-4-one<br />

Whole plant Ahmed et al.,<br />

1999<br />

Whole plant Pari et al., 1998<br />

Whole plant Pari et al., 1998<br />

26


Table 8 Flavonoids from A. conyzoides L.<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

OMe<br />

Compounds Plant parts References<br />

O<br />

OMe O<br />

OMe<br />

nobiletin<br />

O<br />

OMe O<br />

OMe<br />

OMe<br />

5´-methoxynobiletin<br />

O<br />

OMe O<br />

Ageconyflavone A<br />

O<br />

OMe<br />

H<br />

OMe<br />

OMe<br />

O<br />

H<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986; Gonzalez et<br />

al., 1991b<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986; Adesogan<br />

<strong>and</strong> Okunade,<br />

1979; Gonzalez et<br />

al., 1991b<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986<br />

27


Table 8 (Continued)<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

Compounds Plant parts References<br />

O<br />

OMe O<br />

Ageconyflavone B<br />

O<br />

OMe O<br />

Ageconyflavone C<br />

OMe<br />

O<br />

OMe O<br />

Linderoflavone B<br />

OMe<br />

OMe<br />

O<br />

OH<br />

H<br />

OH<br />

OMe<br />

O<br />

H<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986; Gonzalez et<br />

al., 1991b<br />

28


Table 8 (Continued)<br />

MeO<br />

MeO<br />

H<br />

Compounds Plant parts References<br />

O<br />

OMe O<br />

O<br />

O<br />

OMe<br />

5,6,7,5´-tetramethoxy-3´,4´-methylene<br />

dioxyflavone<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

O<br />

OMe O<br />

H<br />

Sinensetin<br />

O<br />

OMe O<br />

OMe<br />

OMe<br />

OMe<br />

H<br />

OMe<br />

OMe<br />

5,6,7,3´,4´,5´-hexamethoxyflavone<br />

whole plant Gonzalez et al.,<br />

1991b<br />

Whole plant Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986; Gonzalez et<br />

al., 1991b<br />

Whole plant,<br />

aerial part<br />

Gonzalez et al.,<br />

1991b; Vyas <strong>and</strong><br />

Mulch<strong>and</strong>ani.<br />

1986; Gonzalez et<br />

al., 1984<br />

29


Table 8 (Continued)<br />

H<br />

MeO<br />

OMe<br />

Compounds Plant parts References<br />

O<br />

OMe O<br />

OMe<br />

5,6,8,3´,4´,5´-hexamethoxyflavone<br />

MeO<br />

MeO<br />

HO<br />

OMe<br />

O<br />

OMe O<br />

Eupalestin<br />

O<br />

OH O<br />

Quercetin<br />

OH<br />

O<br />

OH<br />

O<br />

OMe<br />

OMe<br />

OMe<br />

OH<br />

aerial part Gonzalez et al.,<br />

1991b<br />

aerial part Gonzalez et al.,<br />

1991b; Gonzalez<br />

et al., 1984;<br />

Adesogan <strong>and</strong><br />

Okunade, 1979<br />

Whole plant Gill et al., 1978<br />

30


Table 8 (Continued)<br />

HO<br />

HO<br />

HO<br />

Compounds Plant parts References<br />

O<br />

OH O<br />

O<br />

OH<br />

Quercetin-3-rhamnopyranoside<br />

O<br />

OH O<br />

Kaempferol<br />

O<br />

OH O<br />

OH<br />

H<br />

OH<br />

rhamnopyranosyl<br />

Kaempferol-3-rhamnopyranoside<br />

O<br />

H<br />

OH<br />

OH<br />

rhamnopyranosyl<br />

Whole plant Gill et al., 1978<br />

Whole plant Gill et al., 1978<br />

Whole plant Gill et al., 1978<br />

31


Table 8 (Continued)<br />

lysonarypoculg<br />

Compounds Plant parts References<br />

O<br />

OH O<br />

O<br />

H<br />

OH<br />

glucopyranosyl<br />

Kaempferol-3,7-diglucopyranoside<br />

HO<br />

(H 3C) 2C=HC-H 2C<br />

O<br />

O O<br />

HO<br />

Rha-( 1-5)-Rha 5,7,2´,4´-tetrahydroxy-6,3´-di-<br />

(3,3-dimethylallyl)-isoflavone 5-Οα-L-rhamnopyranosyl-(1→4)α-L-rhamnopyranoside<br />

OH<br />

CH 2-CH=C(CH 3) 2<br />

Whole plant Gill et al., 1978;<br />

Nair et al., 1977<br />

Stems Yadara <strong>and</strong><br />

Kumar, 1999<br />

32


Table 9 Alkaloids from A. conyzoides L.<br />

OH O<br />

N<br />

Compounds Plant parts References<br />

H 3C CH 3<br />

O<br />

HO<br />

OH<br />

CH 3<br />

Lycopsamine (pyrrolizidine alkaloids)<br />

HO O<br />

O<br />

O<br />

N<br />

Whole plant Wiedenfeld<br />

<strong>and</strong> Roder,<br />

1991; Horie et<br />

al., 1993<br />

1,2-desilropirrolizidinic whole plant Horie et al.,<br />

1993<br />

H 3C CH 3<br />

O<br />

HO<br />

OH<br />

CH 3<br />

Echinatine (pyrrolizidine alkaloids)<br />

O<br />

H<br />

H<br />

H<br />

H<br />

O<br />

(+)-sesamin<br />

H<br />

O<br />

O<br />

Whole plant Wiedenfeld<br />

<strong>and</strong> Roder,<br />

1991<br />

Whole plant Gonzalez et<br />

al., 1991b<br />

33


Table 9 (Continued)<br />

HO<br />

H 3C<br />

HO<br />

CH 3<br />

AcO<br />

Compounds Plant parts References<br />

Caffeic acid<br />

H<br />

N<br />

O<br />

HN<br />

O<br />

COOH<br />

Aurantiomide acetate<br />

CH 3<br />

Phytol<br />

CH 3<br />

CH 3<br />

OH<br />

Whole plant Nair et al.,<br />

1977<br />

Whole plant Sur et al.,<br />

1997<br />

Whole plant Vera, 1993<br />

34


Table 10 Triterpenes <strong>and</strong> sterols from A. conyzoides L.<br />

HO<br />

HO<br />

O<br />

Compounds Plant parts References<br />

H H H<br />

Friedelin<br />

β -Sitosterol<br />

∆ 22 Stigmatosterol<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

35


Table 10 (Continued)<br />

HO<br />

HO<br />

HO<br />

Compounds Plant parts References<br />

∆ 22 Brassicasterol<br />

Dihydrobrassicasterol<br />

∆ 22 Spinasterol<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

36


Table 10 (Continued)<br />

HO<br />

Compounds Plant parts References<br />

Dihydrospinasterol<br />

Whole plant Dubey et al., 1989;<br />

Horng et al., 1976;<br />

Hui <strong>and</strong> Lee, 1971<br />

37


1. Plant Materials<br />

METERIALS AND METHODS<br />

Materials<br />

1.1 Plant materials <strong>for</strong> phytochemical method<br />

Whole plants of A. conyzoides utilized in this study were collected from<br />

Trat Agro<strong>for</strong>estry Research Station, Kasertsart University Research <strong>and</strong> Development<br />

Institute, Trat province in the eastern part of Thail<strong>and</strong> in December 2004 <strong>and</strong> October<br />

2005. Botanical identification was achieved through comparison with specimens (No<br />

074019, 075554, 075556, 07179, 3159, 076326, 55755, 075552, 45867, 37342,<br />

075001, 075563 <strong>and</strong> 124878) deposited in the Bangkok Forestry Herbarium (BKF).<br />

Callus utilized in this experiment was obtained from less hairy-blue head A.<br />

conyzoides collected from Chantaburi Province in December 2003.<br />

1.2 Plant materials <strong>for</strong> biological activity test<br />

The seed of plants utilized in this study were both cultivated plants <strong>and</strong><br />

<strong>weed</strong>s. The cultivated plants were Ipomoea aquatica Forssk., Brassica chinensis L.<br />

var. chinensis <strong>and</strong> Oryza sativa L. cultivar Hom Mali 105. The <strong>weed</strong>s were Mimosa<br />

pigra L., Tridax procumbens L., Echinochloa colona (L.) Link <strong>and</strong> Cenchrus<br />

echinatus L.<br />

2. Instrumentations<br />

2.1 Labatory Instruments<br />

The instruments utilized in this study were rotary evaporator (Buchi<br />

Rotavapor R-114, R-205), UV cabinet (CN-6.T) with Ultraviolet radiation obligatory<br />

eye protection 254 nm <strong>and</strong> 365 nm (Vilber Lourmal serial number V01 5636),<br />

38


analyical balance (Mettler Toledo AG 204), oven (National EH 5741), deep freeze<br />

(Sanyo -85 ˚C), blender, desicator, TCL tank, filter paper (110 mm <strong>and</strong> 185 mm Ø<br />

Whatman No. 1) <strong>and</strong> glasswares such as burettes, pipettes, Erlenmeyer flask,<br />

Buchner funnel, separatory funnel, 6´´ diameter Petri dish, volumetric flask, beaker.<br />

2.2 Chromatographic Techniques<br />

2.2.1 Thin layer chromatography (TLC)<br />

Technique : one way, ascending<br />

Absorbent : silica gel 60 F254 (0.2 mm thickness, 20x20<br />

cm 2 Merck) supported on mirror plate<br />

Plate size : 10 cm x 20 cm <strong>and</strong> 20 cm x 20 cm<br />

Layer thickness : 250 µ<br />

Solvent system : dichloromethane : ethyl acetate : methanol<br />

(75:20:5)<br />

Distance : 15 cm<br />

Temperature : 25-30 ºC<br />

Detection : 254 nm <strong>and</strong> 365 nm UV light (Ultraviolet<br />

Radiation Obligatory eye protection: Vilber<br />

Lourmal serial No V01 5636)<br />

The position of a substance zone (spot) in a thin layer chromatogram<br />

can be described as Retardation Factor (Rf).<br />

Rf = distance of the substance zone from the starting line (cm)<br />

distance of the solvent front from the starting line(cm)<br />

(Hahn-Deinstrop, 1997)<br />

39


2.2.2 Dry column chromatography<br />

Column size : glass column 80 cm long, 1.7 cm wide<br />

(diameter inside the column)<br />

Absorbent : 60 g of silica gel 60 (0.2-0.5 mm, 35-70 mesh:<br />

Merck)<br />

Sample : 1 g of lipophilic extract<br />

Mobile phase : hexane, diethyl ether <strong>and</strong> methanol from<br />

95:5:0 to 0:0:100<br />

Fraction volume : 50 ml in Erlenmeyer flask<br />

Examination : TLC monitoring<br />

2.2.3 Medium pressure liquid chromatography (MPLC)<br />

MPLC technology : ISCO Type 9 optical unit<br />

Pump : The FMI lab pump model RP-D Fluid<br />

Column : glass column (400 x 40 mm)<br />

Absorbent : Lichroprep silica gel 60 (25-40 µm, 132 TA<br />

145390)<br />

Mobile phase : mixture of 5%, 10%, 15%, 30%, 50% <strong>and</strong><br />

70% ethyl acetate in hexane<br />

Flow rate : 30 ml/min<br />

Sample : 1 g<br />

Detector : absorbance/ fluorescence detector with wave<br />

length 254 nm: ISCO UA-5<br />

Fraction : collect the fraction eluted from column by<br />

chromatogram signal<br />

40


2.2.4 High Per<strong>for</strong>mance Liquid Chromatography (HPLC)<br />

2.3 Spectroscopy<br />

HPLC technology : Agilent 1100 series<br />

Detector : UV photodiode array detector 230 nm wave<br />

length<br />

Column : reverse phase ChromSepher 5 C18 column<br />

(250 x 4.6 mm; part number CP 29358)<br />

Sample : 10 mg/ml of lipophilic extract <strong>and</strong> 1 mg/ml of<br />

pure compound filtered with 13 mm x 0.45 µm<br />

Nylon filter (Iso-discTM N-13-4)<br />

Injection : 20 µl<br />

Flow rate : 1.0 ml/min<br />

Time : 30 mins<br />

Solvent system : methanol gradient 60%-100% (HPLC grade<br />

Merck) in aqueous buffer (0.015 M tetrabutyl<br />

ammonium hydroxide (C16H37NO, AR grade<br />

Fluka) <strong>and</strong> 0.015 M ortho-phosphoric acid<br />

(AR grade Merck), pH 3)<br />

Mobile phase : Time (Min) MeOH Buffer<br />

0.10 60 40<br />

17.00 90 10<br />

22.00 100 0<br />

28.00 100 0<br />

29.00 60 40<br />

2.3.1 Ultraviolet Spectroscopy<br />

Ultraviolet (UV) spectra were determined on Agilent 1100 series<br />

UV photodiode array detector 230 nm wave length at Scientific Instrumentation<br />

Center, Faculty of Science, Kasetsart University, Bangkok, Thail<strong>and</strong>.<br />

41


3. Chemicals<br />

The organic solvents utilized in extraction were methanol (CH3OH: AR grade<br />

Merck), chloro<strong>for</strong>m (CHCl3: AR grade Merck) <strong>and</strong> distilled water (H2O: 16 MΩ /cm,<br />

Millipore).<br />

The chemicals <strong>for</strong> chromatography were dichloromethane (CH3Cl2: AR grade<br />

Merck, Fisher), ethyl acetate (CH3COOC2H5: AR grade Merck, Fisher), hexane<br />

(CH3(CH2)4CH3: AR grade Merck, Labscan) <strong>and</strong> diethyl ether ((C2H5)2O: AR grade<br />

Merck).<br />

The reagent <strong>for</strong> phytochemical screening were Dragendorff’s reagent (bismuth<br />

sub nitrate (BiO(NO3).H2O: AR grade Merck), glacial acetic acid (CH3COOH: AR<br />

grade Merck), distilled water (H2O: 16 MΩ/cm Millipore) <strong>and</strong> potassium iodide (KI:<br />

AR grade Merck)), 10% Sodium hydroxide (NaOH: AR grade Mallinckrodt), Kedde’s<br />

reagent (3,5-dinitrobenzoic acid (C7H4N2O6 : AR grade Fluka), potassium hydroxide<br />

(KOH: AR grade Univar) <strong>and</strong> ethanol (C2H5OH: AR grade Merck)), Raymond’s<br />

reagent (1,3-dinitrobenzene (C6H4N2O4 : AR grade Fluka)), acetic anhydride, 97%<br />

sulfuric acid (H2SO4 : AR grade Fisher Scientific), hydrochloric acid (HCl: AR grade<br />

Merck), ferric chloride (FeCl3), anisaldehyde (C8H8O2 : AR grade Fluka), iodine<br />

crystals (May & Baker LTD Dagenham Engl<strong>and</strong>)<br />

The commercial herbicides utilized <strong>for</strong> seed germination <strong>and</strong> seedling growth<br />

tests were paraquat dichloride (glumoxone syngenta) <strong>and</strong> glyphosate<br />

isopropylammonium (glyphosate 48)<br />

42


Extractions<br />

Methods<br />

Three populations of A. conyzoides L.; less hairy-blue head (POP1), more<br />

hairy-blue head (POP2) <strong>and</strong> more hairy-white head (POP3) plants <strong>and</strong> calli from in<br />

vitro induction at Department of Botany, Faculty of Science, Kasetsart University<br />

were utilized in the experiment. The samples were collected twice, December 2004<br />

<strong>and</strong> October 2005, the populated were designated as:<br />

Collection 1:-<br />

less hairy-blue head : POP1a<br />

more hairy-blue head : POP2a<br />

more hairy-white head : POP3a<br />

Collection 2:-<br />

less hairy-blue head : POP1b<br />

more hairy-blue head : POP2b<br />

more hairy-white head : POP3b<br />

Air-dried whole plants of POP1a (236.67 g), POP2a (236.32 g), POP3a (30.33<br />

g), POP1b (372.70 g), POP2b (412.43 g) <strong>and</strong> POP3b (261.30 g) were cut into<br />

approximately 1 cm pieces <strong>and</strong> then crushed into powder. The plant powder <strong>and</strong><br />

callus were macerated with methanol <strong>for</strong> 7 days in the dark at room temperature, then<br />

the extracts were filtered through Whatman no. 1 filter paper <strong>and</strong> subsequently<br />

concentrated by using rotary evaporator at 37 °C af<strong>for</strong>ded dark green semi-solid crude<br />

extract. The concentrated crude extract was successively partitioned into two parts:<br />

hydrophilic extract <strong>and</strong> lipophilic crude extract with distilled water <strong>and</strong> chloro<strong>for</strong>m<br />

respectively. The lipophilic crude extract was then evaporated into dryness <strong>for</strong> further<br />

experiments.<br />

43


Lipophilic crude extract of POP1a (2.121 g), POP2a (3.487 g), POP3a (0.26 g),<br />

POP1b (8.086 g), POP2b (6.248 g) <strong>and</strong> POP3b (4.302 g) <strong>and</strong> callus (0.058 g) were<br />

screened by preliminary test <strong>and</strong> analyzed by using Thin Layer Chromatography (TLC)<br />

<strong>and</strong> High Per<strong>for</strong>mance Liquid Chromatography (HPLC), only POP1b lipophilic crude<br />

extract was utilized in <strong>bioassay</strong> test, separated <strong>and</strong> subsequently purified by using<br />

column chromatography <strong>and</strong> Medium Pressure Liquid Chromatography (MPLC).<br />

Phytochemical Screening (Preliminary Test)<br />

Portion of the lipophilic crude extract subjected <strong>for</strong> the biological screening<br />

was used <strong>for</strong> the identification of the major secondary metabolites employing the<br />

methodology outlined by Farnsworth (1966) as following;<br />

1. Screening <strong>for</strong> alkaloids<br />

The alkaloids nucleus could be detected by Dragendorff’s reagent. The<br />

lipophilic extract was dropped into a porcelain basin, dried by blower <strong>and</strong> added with<br />

a few drops of Dragendorff’s reagent. A change occurred with red-brown<br />

precipitations within several minutes indicated the presence of alkaloid nucleus.<br />

Anyway, these might be false positive because of Dragendorff’s reagent<br />

2. Screening <strong>for</strong> coumarins<br />

The sample was dissolved with methanol in a flask. The flask was first<br />

covered with a piece of filter paper moistened with 10% sodium hydroxide, finally the<br />

filter paper was dried by blower <strong>and</strong> then examined under the UV light (365 nm). The<br />

appearance of yellow-green fluorescence after a short time indicated the presence<br />

of coumarin. In this study, the method was applied by dropping of the extract onto<br />

filter paper. When the extract dried, dropped 10% sodium hydroxide <strong>and</strong> then<br />

examined under the UV light (365 nm).<br />

44


3. Screening <strong>for</strong> unsaturated lactone ring<br />

For confirmation of unsaturated lactone ring, the test must be done<br />

paralelly, both test with Kedde’s reagent <strong>and</strong> the test with Raymond’s reagent. When<br />

the sample was dropped into porcelain basin, dried by blower <strong>and</strong> added with a few<br />

drops of Kedde’s <strong>and</strong> Raymond’s reagent. Positive test after dropping Kedde’s<br />

reagent, violet-pink color could be detected. Positive test after dropping Raymond’s<br />

reagent, violet-blue color could be detected.<br />

4. Screening <strong>for</strong> steroids <strong>and</strong> triterpenoids<br />

Libermann-Burchard (L-B) test: This method was used <strong>for</strong> testing of<br />

steroidal <strong>and</strong> triterpenoidal nucleus. The sample was dropped into a porcelain basin,<br />

dried by blower <strong>and</strong> added with a few drops of acetic anhydride followed by one drop<br />

of conc. sulfuric acid (conc. H2SO4). A change in color to blue or blue-green within a<br />

minute indicated the presence of steroidal nucleus whereas triterpenoidal nucleus gave<br />

the purple, pink or red color.<br />

5. Screening <strong>for</strong> flavonoids<br />

Cyanidin test: This method was used <strong>for</strong> testing of γ-benzopyrone nucleus. Put<br />

a small piece of magnesium ribbon into methanolic extract of sample <strong>and</strong> added few<br />

drops of conc. hydrochloric acid (conc. HCl). The presence of bubble color<br />

ranging from orange to red which indicated the presence of flovone, red to crimson<br />

indicated the presence of flavonol, crimson to magenta indicated the presence of<br />

flavanone <strong>and</strong> occasionally green or blue was a positive reaction <strong>for</strong> either aglycone<br />

or heteroside. Xanthone had also given the positive cyaniding reaction whereas<br />

chalcone <strong>and</strong> aurone would not give the positive testing.<br />

Another method used to test <strong>for</strong> flavonoids was ferric chloride (FeCl3).<br />

The sample was dropped into a porcelain basin, dried by blower <strong>and</strong> added with a few<br />

drops of ferric chloride. A change in color to blue-green within several minutes<br />

indicated the presence of flavonoids.<br />

45


All results of preliminary tests were compared with the results from TLC<br />

spraying technique<br />

Qualitative analyses<br />

1. TLC screening<br />

The TLC plates were subsequently sprayed with detecting reagents so as to<br />

screen major secondary compounds. This method allowed not only <strong>for</strong> detection of<br />

the compounds, but also <strong>for</strong> an estimate of the number present. These reagents were<br />

almost similar to those used <strong>for</strong> phytochemical sceening as following;<br />

For alkaloid detection, sprayed TLC plate by Dragendorff’s reagent.<br />

Positive test after spraying the reagent, red-orange color could be detected<br />

(Farnsworth, 1966).<br />

For terpenoid detection, sprayed TLC plate by Anisaldehyde-sulfuric acid<br />

<strong>and</strong> following by heating in oven at 100-105 ˚C <strong>for</strong> 5-10 miniutes. Positive test after<br />

spraying this reagent, colorful spot will occure varies on the compound; red (terpene),<br />

green (steroid), blue (phenol) <strong>and</strong> grey (sugar) (Merck, 1980).<br />

For unsaturated lactone ring detection, the test must be done pararelly by<br />

sprayed TLC plate both with Kedde’s reagent <strong>and</strong> with Raymond’s reagent. Positive<br />

test after spraying Kedde’s reagent, violet-pink color could be detected. Positive test<br />

after spraying Raymond’s reagent, violet-blue color could be detected (Farnsworth,<br />

1966).<br />

For coumarin detection, sprayed TLC plate by 10% NaOH. When the plate<br />

dried, exposed the plate under UV light at wavelength 365 nm. If coumarin was<br />

present, a yellow-green fluorescence appeared (Applied from Farnsworth, 1966).<br />

For general detection, put the TLC plate in iodine vapor chamber <strong>and</strong><br />

watched the spots appearing more clearly (Merck, 1980)<br />

46


2. Comparative analysis<br />

2.1 TLC<br />

A small spot of solution containing the sample was applied to a plate,<br />

about 1 cm from the base. The plate was then dipped in to solvent system <strong>and</strong> placed<br />

in a sealed container. Different compounds in the sample mixture traveled at different<br />

rates due to differences in solubility in the solvent, <strong>and</strong> due to differences in their<br />

attraction to the stationary phase<br />

2.2 HPLC<br />

Prepared 10 mg of samples in methanol (HPLC grade). The HPLC<br />

analysis was undertaken on Agilent 1100 series at Scientific Instrument Center,<br />

Faculty of Science, Kasetsart University.<br />

Separation <strong>and</strong> purification<br />

Lipophilic crude extract of POP1b were separately fractionated using dry<br />

column chromatography over silica gel eluting with hexane, hexane-ethyl acetate,<br />

ethyl acetate-methanol <strong>and</strong> methanol gradient. Combined the collected fractions from<br />

each extracts on the basis of their TLC patterns. Interesting fractions were further<br />

purified by MPLC technique subsequently recrystallized to give pure compound with<br />

diethyl ether.<br />

The structure of pure compound was elucidated by spectroscopy technique <strong>and</strong><br />

analyzed melting point by Melting point Apparatus (Fisher John apparatus serial<br />

number 4017)<br />

The flowchart of phytochemical method was showed in Figure 2<br />

47


H2O fraction<br />

(hydrophilic crude extract)<br />

Extraction<br />

Plant samples<br />

Figure 2 Phytochemical method<br />

Ground<br />

Macerated in MeOH <strong>for</strong> 7 days<br />

Filtered <strong>and</strong> evaporated<br />

Crude extract<br />

Partition between H2O <strong>and</strong> CHCl3<br />

TLC <strong>and</strong> HPLC analyses<br />

Separation <strong>and</strong> purification<br />

Roughly separation by dry CC<br />

MPLC<br />

CHCl3 fraction<br />

(lipophilic crude extract)<br />

Recrystallization<br />

Pure compound<br />

Structure elucidation <strong>and</strong> identification by melting<br />

point measure, UV, IR, NMR <strong>and</strong> MS<br />

Biotest<br />

Phytochemical screening<br />

48


Biological activities test<br />

To examine the inhibitory effect of the extract on seed germination <strong>and</strong><br />

seedling growth, lipophilic extract of less hairy-blue head (POP2b) was diluted to be<br />

0.25, 0.50, 1.0 <strong>and</strong> 2.0 g/l by methanol. The test was compared with chemical<br />

herbicide (paraquat dichloride <strong>and</strong> glyphosate).<br />

Cultivated plant <strong>and</strong> <strong>weed</strong> seeds were rinsed with distilled water. Oryza sativa<br />

L. cultivar Hom Mali 105, Cenchrus echinatus L. <strong>and</strong> Echinochloa colona (L.) Link<br />

were soaked in distilled water at 8 °C <strong>for</strong> 1 day. Ipomoea aquatica Forssk., Brassica<br />

chinensis L. var. chinensis <strong>and</strong> Tridax procumbens L. were soaked in distilled<br />

water at room temperature <strong>for</strong> 1 day <strong>and</strong> Mimosa pigra L. were soaked in distilled<br />

water at 100 °C <strong>and</strong> allowed to cool <strong>for</strong> 1 day. Twenty seeds were seeded on three<br />

germination blotter papers in each Petri dish <strong>and</strong> all treatments were replicated<br />

four times. The treatments were incubated at room temperature. Amount of<br />

germinated seeds in each Petri dish were counted at every 3, 5 <strong>and</strong> 7 days during<br />

incubation. Seedling growth was also recorded in shoot <strong>and</strong> root length at the last day<br />

of the experiment. Methanol without extract was used as a <strong>control</strong>. St<strong>and</strong>ard error<br />

was calculated based on four measurements of replicate dishes.<br />

Germination rate was expressed as percent of germinated seeds over total<br />

seeds seeded. The inhibition percentage of the study was calculated as follows:<br />

Germination percentage = Amount of germinated seeds x 100<br />

Amount of total seeds<br />

The experiment was designed as Complete R<strong>and</strong>omized Design (CRD). Data<br />

are presented as means <strong>and</strong> subjected to one-way analysis of variance (one-way ANOVA)<br />

followed by Duncan’s multiple range rest. All the statistical analysis was per<strong>for</strong>med<br />

using SPSS software version 13.0<br />

49


Extraction<br />

RESULT AND DISCUSSION<br />

In this experiment, the three-population dried plants of Ageratum conyzoides L.<br />

from two collections (Collection 1: POP1a, POP2a <strong>and</strong> POP3a; Collection 2: POP1b,<br />

POP2b <strong>and</strong> POP3b) <strong>and</strong> callus were ground <strong>and</strong> extracted with methanol <strong>for</strong> 7 days in<br />

total darkness at ambient temperature. The filtered extract was concentrated to be<br />

semi-solid residue giving the crude extract which was partitioned by chloro<strong>for</strong>m <strong>and</strong><br />

water. Combined chloro<strong>for</strong>m fractions were evaporated to dryness called lipophilic<br />

crude extract, dissolved in methanol, <strong>and</strong> stored at -80 ˚C until proceeding further.<br />

From crude methanolic extract of POP1a, POP2a, POP3a, POP1b, POP2b,<br />

POP3b <strong>and</strong> callus, the amount of 2.121 g, 3.487 g, 0.26 g, 8.086 g, 6.248 g, 4.302 g<br />

<strong>and</strong> 0.058 g of lipophilic crude extract was obtained respectively. These lipophilic<br />

crude extracts were analyzed the major secondary metabolites by phytochemical<br />

screening technique.<br />

Phytochemical screening<br />

1. Screening <strong>for</strong> alkaloids<br />

For detection of alkaloids in phytochemical screening, Dragendorff’s<br />

reagent was utilized as alkaloidal precipitants commonly used <strong>for</strong> the detection of<br />

general alkaloids. The positive reaction was that, heavy metal containing in the<br />

reagent (Bismuth (III)) would react to nitrogenous base in alkaloidal extracts <strong>and</strong> <strong>for</strong>m<br />

insoluble complex heavy metal salt as red-brown precipitation. The results of<br />

alkaloids screening were shown as Figure 3 <strong>and</strong> Table 11<br />

50


POP1a POP2a POP3a POP1b POP2b POP3b<br />

Be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test<br />

POP1a POP2a POP3a POP1b POP2b POP3b<br />

after test after test after test after test after test after test<br />

(positive test) (negative test) (negative test) (positive test) (negative test) (negative test)<br />

Figure 3 Alkaloidal test by using Dragendorff’s reagent<br />

51<br />

51


From the result, only less hairy-blue head Ageratum conyzoides (both<br />

POP1a <strong>and</strong> POP1b) was detected as red-orange precipitation, meaning that this<br />

population might contain of alkaloid, while the other two populations, more hairyblue<br />

head (POP2a <strong>and</strong> POP2b) <strong>and</strong> more hairy-white head (POP3a <strong>and</strong> POP3b),<br />

alkaloid were absent.<br />

Variability of results in alkaloid testing of plant material could be induced<br />

by a number of factors such as age, climate, habitat, plant part tested, season,<br />

chemical race of plants, etc. All of three A. conyzoides populations were collected<br />

together in the same habitat, however, there were some different characteristics;<br />

complexion (more <strong>and</strong> less hair), inflorescence color, even age. A few examples<br />

regarding these factors should serve to point out their importance. For example,<br />

Geijera salicifolia gave consistently better alkaloid tests as the broad leaf <strong>for</strong>m than<br />

the narrow leaf <strong>for</strong>m, even plants with the two characters were growing side by side in<br />

the field (Webb, 1949). In certain groups of plants, i.e. Compositae, alkaloids are<br />

often found only in or near the flower tops <strong>and</strong> in the Apocynaceae, alkaloids<br />

generally trend to concentrate in the root or bark (Raffauf <strong>and</strong> Flagler, 1960).<br />

Furthermore, other substances could give false-positive to Dragendorff’s<br />

reagent. These substances reported in the literature as false-positive alkaloid reactions<br />

are certain glycosides, carbohydrate, betalain, choline, purines, methylated amines,<br />

tannins <strong>and</strong> ammonium salts (Rosenthaler, 1930; Raffauf, 1962; Webb, 1949). To<br />

confirm the result, different types of alkaloidal precipitating reagent, i.e.,<br />

Bouchardat’s reagent, Hager’s reagent, Mayer’s reagent or Wagner’s reagent or<br />

different way to analyze should be found out, such as chromatography. Many<br />

investigators utilized 4 or 5 reagents in their screening of plant extracts, <strong>and</strong> only<br />

samples yielding precipitate with all reagents were considered to contain alkaloids<br />

(Farnsworth, 1966)<br />

However, this was similar to the finding of Okwori et al. (2007), who<br />

documented alkaloids containing in A. conyzoides L. by phytochemical screening.<br />

There were the studies finding alkaloids, especially pyrrolizidine alkaloids in A.<br />

conyzoides L. (Trigo et al., 1988; Wiedenfeld <strong>and</strong> Roder, 1991; Horie et al., 1993).<br />

52


2. Screening <strong>for</strong> coumarins<br />

Coumarins, which are benz-α-pyrone derivatives, is a group appearing<br />

most interesting because of their coagulation, estrogenic, thermal photosensizing,<br />

antibacterial, molluscacidal, anthelmintic, sedative <strong>and</strong> hypnotic, analgesic <strong>and</strong><br />

hypothermal effects (Bose, 1958; Soine, 1964). According to these interesting<br />

properties, coumarin was one of compounds should be analyzed be<strong>for</strong>e point out the<br />

biological activity of A. conyzoides lipophilic crude extract.<br />

Coumarin itself could be easily detected in the extract simply by 10%<br />

sodium hydroxide solution. Positive test is yellow-green fluorescence which could be<br />

detected after exposure to UV light at wavelength 365 nm within few minutes. The<br />

result of coumarin detection was shown in Figure 4 <strong>and</strong> Table 11.<br />

From Figure 4, under UV light wavelength 365 nm, the yellow-green<br />

fluorescence appeared in the lipophilic crude extracts of more hairy A. conyzoides.<br />

The detections were not different between blue head (POP2a <strong>and</strong> POP2b) <strong>and</strong> white<br />

head (POP3a <strong>and</strong> POP3b). On the other h<strong>and</strong>, the extract of less hairy plants (POP1a<br />

<strong>and</strong> POP1b) <strong>and</strong> even their callus did not show yellow-green fluorescence under UV<br />

light. It could be concluded that coumarin contain in A. conyzoides but only in more<br />

hairy populations. It has also been reported that A. conyzoides contained coumarins<br />

(Ladeira et al., 1987; Ming, 1999) from the phytochemical screening. Similarly,<br />

Widodo et al. (2008) have found coumarin from leaves of this plant species.<br />

This procedure, however, was applicable only to coumarin <strong>and</strong> related<br />

volatile compounds. Most methods that appear useful <strong>for</strong> coumarins detection were<br />

followed by chromatography of the extract <strong>and</strong> revelation of the coumarins with spray<br />

reagent such as phenylboric acid, β-aminoethyl ester (Stahl <strong>and</strong> Schorn, 1961), KOH<br />

<strong>and</strong> diazotized sulfanilic acid (Sundt <strong>and</strong> Saccardi, 1962).<br />

53


POP1a POP2a POP3a POP1b POP2b POP3b Callus<br />

Be<strong>for</strong>e test under UV light at wavelength 365 nm<br />

POP1a POP2a POP3a POP1b POP2b POP3b Callus<br />

(negative test) (positive test) (positive test) (negative test) (positive test) (positive test) (positive test)<br />

After test under UV light at wavelength 365 nm<br />

Figure 4 Coumarins test by using 10% NaOH<br />

54<br />

54


3. Screening <strong>for</strong> unsaturated lactone ring<br />

Kedde’s reagent <strong>and</strong> Raymond’s reagent were used <strong>for</strong> unsaturated lactone<br />

ring detection in this study. These reagents react with active methylene groups of<br />

unsaturated lactone (Farnsworth, 1966). These reagents give violet-pink <strong>and</strong> violetblue<br />

colors, respectively. The result of unsaturated lactone ring screening was shown<br />

in Figure 5-6 <strong>and</strong> Table 11.<br />

After testing with Kedde’s reagent, the color of all lipophilic crude extracts<br />

changed to be violet-pink, but disappeared within few minutes. By contrast, no color<br />

changes could be observed when tested with Raymond’s reagent. So, it could not be<br />

confirmed <strong>for</strong> unsaturated lactone ring contained in this extract. Nevertheless, there<br />

was no report <strong>for</strong> unsaturated lactone ring containing in A. conyzoides L.<br />

To confirm the result, different reagent such as Baljet’s reagent (Baljet,<br />

1918) <strong>and</strong> Legal’s reagent (Legal, 1948) should be tested paralelly.<br />

55


POP1a POP2a POP3a POP1b POP2b POP3b<br />

Be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test<br />

POP1a POP2a POP3a POP1b POP2b POP3b<br />

after test after test after test after test after test after test<br />

(positive test) (positive test) (positive test) (positive test) (positive test) (positive test)<br />

Figure 5 Unsaturated lactone ring test by using Kedde’s reagent 56<br />

56


POP1a POP2a POP3a POP1b POP2b POP3b<br />

Be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test<br />

POP1a POP2a POP3a POP1b POP2b POP3b<br />

after test after test after test after test after test after test<br />

(negative test) (negative test) (negative test) (negative test) (negative test) (negative test)<br />

Figure 6 Unsaturated lactone ring test by using Raymond’s reagent 57<br />

57


4. Screening <strong>for</strong> steroid <strong>and</strong> triterpenoid<br />

For steroid <strong>and</strong> triterpenoid, the Libermann-Burchard (L-B) test was used<br />

to detect these classes of compounds. According to Farnsworth (1966), blue or bluegreen<br />

colors are <strong>for</strong>med in the L-B test with steroid <strong>and</strong> red, pink or purple colors<br />

with triterpenoids.<br />

From this experiment, the changing in blue-green color occured with all<br />

lipophilic crude extracts of A. conyzoides. So it could be interpreted that steroid<br />

contained in all populations of A. conyzoides (Figure 7) agreed with literature review<br />

mentioned in Table 10 as well.<br />

However, many investigators noted that there was variation in the colors<br />

produced, depending on the manner in which the test was conducted. For example,<br />

Simes et al. (1959) stated that triterpenoid gave blue-green color in solution, but if the<br />

test is applied directly to solid material, the colors were only purple or violet.<br />

Whereas Wall et al. (1954) used chloro<strong>for</strong>m extracts of plant material, pointed out<br />

those interfering substances such as carotene <strong>and</strong> xanthophylls produce immediate<br />

color change in the L-B test, as also do the saturated sterols.<br />

58


POP1a POP2a POP3a POP1b POP2b POP3b<br />

Be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test<br />

POP1a POP2a POP3a POP1b POP2b POP3b<br />

after test after test after test after test after test after test<br />

(positive test) (positive test) (positive test) (positive test) (positive test) (positive test)<br />

Figure 7 Steroid <strong>and</strong> triterpenoid test by using Libermann-Burchard test<br />

59<br />

59


5. Screening <strong>for</strong> flavonoid<br />

A number of specific color reactions <strong>for</strong> various types of flavonoids have<br />

been reported that could be adapted to screening large numbers of plant samples, but<br />

specificity of a sort was usually not desirable <strong>for</strong> the initial testing. One of the most<br />

useful general tests was called cyanidin reaction utilized in this screening. The<br />

Cyanidin test would detect compounds having the γ-benzopyrone nucleus<br />

(Farnsworth, 1966). Lipophilic crude extract was added a small piece of magnesium<br />

ribbon, followed by the dropwise addition of conc. HCl. Bubble color ranging from<br />

orange to red (flavones), red to crimson (flavonols), crimson to magenta (flavanones)<br />

<strong>and</strong> green to blue (aglycone or heteroside). However, subject to variation in intensity<br />

depending on the concentration of flavonoid present in the sample (Geissman, 1955)<br />

From the result (Table 11 <strong>and</strong> Figure 8) showed positive test of less hairy-blue<br />

head A. conyzoides (POP1a <strong>and</strong> POP1b) as orange bubble whereas there was not<br />

present in more hair populations both blue <strong>and</strong> white head indicated that the lipophilic<br />

crude extract of less hairy-blue head population contained flavone. The flavone<br />

bearing of A. conyzoides was according to Table 8 in review literature enumerated<br />

many types of flavone such as Ageconyflavone A, B <strong>and</strong> C (Vyas <strong>and</strong> Mulch<strong>and</strong>ani.<br />

1986). Previous studied of this plant in screening test also showed positive result <strong>for</strong><br />

flavonoids (Vajrodaya, 1986; Okwori et al., 2007).<br />

Flavonoid detection by using ferric chloride showed negative results with all<br />

lipophilic crude extracts (Figure 9). However, this screening method was used <strong>for</strong><br />

free OH group detection. So it could be interpreted that there was no free OH group<br />

in the lipophilic crude extracts of A. conyzoides L.<br />

60


POP1a POP2a POP3a POP1b POP2b POP3b<br />

Be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test<br />

POP1a POP2a POP3a POP1b POP2b POP3b<br />

(positive test) (negative test) (negative test) (positive test) (negative test) (negative test)<br />

Figure 8 Flavonoid test by using Cyanidin test<br />

61<br />

61


POP1a POP2a POP3a POP1b POP2b POP3b<br />

Be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test be<strong>for</strong>e test<br />

POP1a POP2a POP3a POP1b POP2b POP3b<br />

after test after test after test after test after test after test<br />

(negative test) (negative test) (negative test) (negative test) (negative test) (negative test)<br />

Figure 9 Flavonoid test by using FeCl3 solution<br />

62<br />

62


Table 11 Phytochemical screening of POP1a, POP2a, POP3a, POP1b, POP2b,<br />

POP3b <strong>and</strong> callus<br />

lipophilic<br />

crude extract<br />

Alkaloid Coumarin Unsaturated<br />

lactone ring<br />

Dragendorff’s<br />

reagent<br />

NaOH Kedde’s Raymond’s<br />

reagent reagent<br />

Triterpenoid<br />

<strong>and</strong> steroid<br />

Libermann-<br />

Burchard test<br />

Cyanidin<br />

test<br />

Flavonoid<br />

POP1a +++ - + - + +++ -<br />

POP2a - +++ + - + - -<br />

POP3a - +++ + - + - -<br />

POP1b +++ - + - + + -<br />

POP2b - +++ + - + - -<br />

POP3b - +++ + - + - -<br />

FeCl3<br />

Callus NT + NT NT NT NT NT<br />

Remarks - no detection (negative test)<br />

+ detected<br />

+++ dominantly detected<br />

NT No test (too small amount to test)<br />

63


For general considerations, a method <strong>for</strong> use in phytochemical screening was<br />

simple, rapid, designed <strong>for</strong> a minimum of equipment, reasonably selective <strong>for</strong> the<br />

class of compounds under study <strong>and</strong> give additional in<strong>for</strong>mation as the presence or<br />

absence of specific members of the group being evaluated. Hence, with the selection<br />

of a specific plant <strong>for</strong> phytochemical investigation, either on the basis of one or more<br />

approaches, or through some other avenue, phytochemical screening techniques could<br />

be a valuable aid. Because an initial selection of investigational plants should be<br />

made, not on evidence that extracts elicit a particular <strong>and</strong> interesting biological<br />

activity, but rather on the basis that certain chemicals are present in the plant,<br />

relatively of which can usually be associated with biological activity. Ultimately, the<br />

goal in surveying plants <strong>for</strong> biologically active or medicinally useful compounds<br />

should be isolated <strong>for</strong> a particular activity.<br />

64


Qualitative analyses<br />

1. TLC screening<br />

In addition to phytochemical screening, specific color reagents were<br />

sprayed onto the TLC plates <strong>for</strong> an estimate of the number of secondary metabolites<br />

present; alkaloids, terpenoids, coumarins <strong>and</strong> unsaturated lactone ring detections. The<br />

results of separated compound detection by color reagent were shown in Table 12.<br />

1.1 Screening <strong>for</strong> alkaloid<br />

After spraying Dragendorff’s reagent onto the TLC plate of A.<br />

conyzoides extracts, the result showed that POP1a <strong>and</strong> POP1b gave positive test as<br />

orange spots at Rf value 0.65 <strong>and</strong> 0.78, while it could not be detected in the other<br />

lipophilic extracts (Fig 10).<br />

From the result, only less hairy-blue head A. conyzoides (both POP1a<br />

<strong>and</strong> POP1b) was detected as orange color at Rf values 0.65 <strong>and</strong> 0.78 <strong>for</strong> POP1a <strong>and</strong><br />

only 0.65 <strong>for</strong> POP1b, respectively; meaning that there might be two types of alkaloid<br />

containing POP1a <strong>and</strong> one in POP1b. While no alkaloid containing in the other two<br />

populations, more hairy-blue head (POP2a <strong>and</strong> POP2b) <strong>and</strong> more hairy-white head<br />

(POP3a <strong>and</strong> POP3b). This result was not different from alkaloid precipitating reagent<br />

test in phytochemical screening. So, it could be confirmed that only less hairy-blue<br />

head A. conyzoides contain alkaloid. However, the other alkaloid detecting reagent<br />

mentioned in the screening test should be sprayed in order to confirm this result.<br />

In this experiment, callus which was obtained from tissue culturing of<br />

less hairy-blue head plant, did not showed positive test <strong>for</strong> alkaloid. The result was<br />

different because of their quite different concentration. The callus had so less<br />

concentration that it could not be detected by the reagent. Moreover, the less hairyblue<br />

head plants used to in vitro culture were collected from different time <strong>and</strong> place<br />

as POP1a <strong>and</strong> POP1b. To confirm this result, original plant of tissue culture should<br />

be analyzed<br />

65


Rf 0.78<br />

Rf 0.65<br />

15 cm<br />

1a 2a 3a 1b 2b 3b callus<br />

Figure 10 Alkaloid detection from POP1a (1a), POP2a (2a), POP3a (3a),<br />

POP1b (1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus<br />

66


1.2 Screening <strong>for</strong> terpenoid<br />

When sprayed the TLC plate by Anisaldehyde-sulfuric acid reagent <strong>for</strong><br />

terpenoidsdetection. After heating TLC plate at the tempersture 110 ˚C until maximal<br />

visualization of the spots. Color ranged from violet (terpenes), blue (sugar), red<br />

(steroids) <strong>and</strong> grey-green (phenol) (Merck, 1980). The result showed that all<br />

lipophilic crude extracts gave a change color to violet at Rf values 0.13, 0.20, 0.25,<br />

0.42, 0.61 <strong>and</strong> 0.85. (Figure 11) indicated the lipophilic crude extracts of less hairyblue<br />

head, more hairy-blue head <strong>and</strong> more hairy-white head A. conyzoides <strong>and</strong> callus<br />

contained terpene at those Rf values.<br />

15 cm<br />

1a 2a 3a 1b 2b 3b callus<br />

Rf 0.85<br />

Rf 0.61<br />

Rf 0.42<br />

Rf 0.25<br />

Rf 0.20<br />

Rf 0.13<br />

Figure 11 Terpenoid detection from POP1a (1a), POP2a (2a), POP3a (3a), POP1b<br />

(1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus<br />

67


1.3 Screening <strong>for</strong> coumarin<br />

For revelation of coumarin, the TLC plate was sprayed with 10%<br />

NaOH <strong>and</strong> exposed with UV light at long wavelength (365 nm). The result showed<br />

that POP2a, POP2b, POP3a <strong>and</strong> POP3b gave yellow-green fluorescence. The reagent<br />

detected coumarin at Rf values 0.40 <strong>and</strong> 0.90 (Fig 12). The result indicated that more<br />

hairy-blue head (POP2a <strong>and</strong> POP2b) <strong>and</strong> more hairy-white head (POP3a <strong>and</strong> POP3b)<br />

plants contain coumarin. This result was similar to phytochemical screening. So it<br />

could be concluded that A. conyzoides with more hair populations even blue or white<br />

head contained coumarin.<br />

Other reagent useful <strong>for</strong> detecting coumarin in chromatography such as<br />

phenylboric acid, β-aminoethyl ester (Stahl <strong>and</strong> Schorn, 1961), KOH <strong>and</strong> diazotized<br />

sulfuric acid (Sundt <strong>and</strong> Saccardi, 1962) should be used to support <strong>and</strong> make the result<br />

more reasonable.<br />

15 cm<br />

1a 2a 3a 1b 2b 3b callus<br />

Rf 0.90<br />

Rf 0.40<br />

Figure 12 Coumarin detection from POP1a (1a), POP2a (2a), POP3a (3a), POP1b<br />

(1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus<br />

68


1.4 Screening <strong>for</strong> unsaturated lactone ring<br />

There was no presence of purple or blue color when spray TLC plate<br />

with Kedde’s reagent <strong>and</strong> Raymond’s reagent (Figure 13). This test gave different<br />

results from phytochemical screening test appearing positive Kedde reaction.<br />

Actually, TLC technique is more sensitive than phytochemical screening. Thus from<br />

this reason the chromatography should give positive test. However, the appearance of<br />

color changing in screening test might be false-positive interpretation.<br />

Table 12 Secondary metabolite screening on TLC plates of POP1a, POP2a, POP3a,<br />

POP1b, POP2b, POP3b <strong>and</strong> callus<br />

lipophilic<br />

crude<br />

Alkaloid Terpenoid Coumarin<br />

Unsaturated<br />

lactone ring<br />

extract Dragendorff’s<br />

reagent<br />

Anisaldehydesulfuric<br />

acid<br />

10% NaOH Kedde’s<br />

reagent<br />

Raymond’s<br />

reagent<br />

POP1a +++ +++ + - -<br />

POP2a - +++ +++ - -<br />

POP3a - +++ +++ - -<br />

POP1b +++ +++ + - -<br />

POP2b - +++ +++ - -<br />

POP3b - +++ +++ - -<br />

Callus - + - - -<br />

Remarks - no detection<br />

+ detected<br />

+++ dominant detection<br />

69


Kedde’s<br />

reagent<br />

Raymond’s<br />

reagent<br />

15 cm<br />

15 cm<br />

1a 2a 3a 1b 2b 3b callus<br />

1a 2a 3a 1b 2b 3b callus<br />

Figure 13 Unsaturated lactone ring detection from POP1a (1a), POP2a (2a), POP3a<br />

(3a), POP1b (1b), POP2b (2b), POP3b (3b) <strong>and</strong> callus<br />

70


From both phytochemical screening <strong>and</strong> TLC screening of A. conyzoides L.<br />

lipophilic crude extract, major secondary metabolites detected in the extracts were<br />

listed in Table 13<br />

Table 13 Secondary metabolites survey in lipophilic crude extracts of A. conyzoides L.<br />

Lipophilic<br />

crude<br />

extract<br />

Alkaloid Coumarin Terpenoid Steroid Unsaturated<br />

lactone ring<br />

Flavonoids<br />

POP1a √ √ √ √<br />

POP2a √ √ √<br />

POP3a √ √ √<br />

POP1b √ √ √ √<br />

POP2b √ √ √<br />

POP3b √ √ √<br />

Callus √<br />

71


2. Comparative analysis<br />

2.1 TLC<br />

All lipophilic crude extracts were analyzed on the basis of their TLC<br />

pattern. The chemical constituents were detected by visualization under UV light<br />

both at long wavelength (365 nm). Positions of separated zones on thin-layer<br />

chromatograms were described as the Rf values of each substances. The Rf values of<br />

all lipophilic extracts were listed as Figure 14 <strong>and</strong> Table 14.<br />

Rf 0.65<br />

Rf 0.51<br />

Rf 0.47<br />

Rf 0.42<br />

15 cm<br />

1a 2a 3a 1b 2b 3b callus<br />

Rf 0.88<br />

Rf 0.84<br />

Rf 0.77<br />

Rf 0.65<br />

Rf 0.50<br />

Rf 0.39<br />

Rf 0.25<br />

Rf 0.13<br />

Rf 0.09<br />

Figure 14 TLC pattern of POP1a (1a), POP2a (2a), POP3a (3a), POP1b (1b), POP2b<br />

(2b), POP3b (3b) <strong>and</strong> callus under long wavelength (365 nm) UV light<br />

72


Another method existed to visualize the spots was iodine vaporing.<br />

Iodine vapor chamber was made from a TLC jar by adding iodine crystals. The<br />

stained TLC plate was shown as Figure 15 that all Rf values mentioned above could<br />

be detected by iodine vapor. This method worked on variety compounds but does not<br />

often very sensitive.<br />

Rf 0.65<br />

15 cm<br />

1a 2a 3a 1b 2b 3b callus<br />

Figure 15 TLC pattern of POP1a (1a), POP2a (2a), POP3a (3a), POP1b (1b), POP2b<br />

(2b), POP3b (3b) <strong>and</strong> callus after treated with iodine crystal<br />

73


Table 14 Rf values of the compound detected from A. conyzoides L. lipophilic crude<br />

extracts detected under long wave length UV light<br />

POP1a POP2a POP3a POP1b POP2b POP3b Callus<br />

0.88 0.88 0.88 0.88 0.88 0.88 -<br />

0.84 0.84 0.83 0.83 0.85 0.85 -<br />

0.77 - 0.77 0.77 - 0.77 -<br />

0.65 0.65 0.65 0.65 - 0.65 -<br />

0.51 - - 0.51 - - -<br />

- 0.50 0.50 - 0.50 0.50 -<br />

0.47 - - 0.47 - - -<br />

0.42 - - 0.42 - - -<br />

- 0.39 0.39 - 0.39 0.39 -<br />

0.25 0.25 0.25 0.25 0.25 0.25 -<br />

0.13 0.13 0.13 0.11 0.13 0.13 0.13<br />

- - 0.09 - - 0.09 -<br />

From Figure 14 <strong>and</strong> Table 14, mobilities of all compounds separated<br />

from the three populations of A. conyzoides extracts; less hairy-blue head (POP1a <strong>and</strong><br />

POP1b), more hairy-blue head (POP2a <strong>and</strong> POP2b) <strong>and</strong> more hairy-white head<br />

(POP3a <strong>and</strong> POP3b) <strong>and</strong> callus were compared. Aloisi et al., (1990) described that a<br />

match in Rf values, color, size <strong>and</strong> shape of zones detection in 365 nm UV light<br />

among samples was evidence <strong>for</strong> the identity of the samples.<br />

2.1.1 Comparison between two collection<br />

From Table 14, Rf values of detected compounds comparing<br />

between POP1a <strong>and</strong> POP1b were almost similar. However, Figure 15 showed that the<br />

size of zone detection in long wave length was different, even in same color <strong>and</strong><br />

shape. This might result from different concentration. For POP2a <strong>and</strong> POP2b,<br />

chemical profiles of extracts were almost similar, only at Rf values 0.65 of POP2a<br />

which appeared different between two collections. While the chemical profiles were<br />

74


completely similar in POP3a <strong>and</strong> POP3b. Hence, it could be assumed that less hairyblue<br />

head, more hairy-blue head <strong>and</strong> more hairy white head A. conyzoides collected<br />

different times showed similar profiles.<br />

In this experiment, the two collections were collected during the<br />

same season even defferent year <strong>and</strong> A. conyzoides L. is annual plant. So, plant age<br />

might not affect to chemical accumulation.<br />

2.1.2 Comparisom among three populations<br />

Among three populations were identified as termed “systematic<br />

analysis”. From the result shown in Figure 14, Rf values, color, size <strong>and</strong> shape of<br />

detected spots that appeared the same characteristic in all of the three populations<br />

were 0.13, 0.25, 0.84 <strong>and</strong> 0.88. On the other h<strong>and</strong>, the spots which specific <strong>for</strong> only<br />

less hairy-blue head (POP1a <strong>and</strong> POP1b) were light blue fluorescence spots at Rf<br />

values 0.42, 0.47, 0.52 <strong>and</strong> 0.65, especially Rf values 0.65 presented as major<br />

compound (Figure 15). For more hairy-blue head (POP2a <strong>and</strong> POP2b) <strong>and</strong> white<br />

head (POP3a <strong>and</strong> POP3b), spots separated in different Rf values from less hairy-blue<br />

head were yellow-green fluorescence spot at Rf values 0.39, red fluorescence spot at<br />

Rf values 0.50 <strong>and</strong> blue fluorescence spot at Rf values 0.65. Rf values 0.65 was the<br />

same position as spot detected from less hairy-blue head.<br />

It could be assumed that three populations of A. conyzoides L.<br />

gave two chemical profiles; less hair <strong>and</strong> more hair profile. Whereas chemical<br />

profiles from different inflorescence color in more hair populations were similar.<br />

2.1.3 Comparison between less hairy-blue head <strong>and</strong> callus<br />

Because the lipophilic extract of callus had so small amount that<br />

it might not be compared clearly. However, callus extract appeared red fluorescence<br />

spot at Rf values 0.13 which similar to less hairy-blue head extract. It could be<br />

assumed that one compound from callus extract could be comparable to compound<br />

75


detected from the extract of less hairy-blue head. Nevertheless, these results could be<br />

compared with the results from HPLC.<br />

From this experiment, TLC pattern was detected by using<br />

dichloromethane, ethyl acetate <strong>and</strong> methanol in rate 70:20:5, respectively. Chemical<br />

patterns in TLC plate i.e. alkaloid, coumarin, terpenoid, steroid <strong>and</strong> flavonoid<br />

detection showed that two collections of less hairy-blue head were the same but<br />

different from the collections of more hairy-blue <strong>and</strong> white head. The two collections<br />

of more hairy A. conyzoides L., both blue <strong>and</strong> white were similar.<br />

For more in<strong>for</strong>mation of systematic analysis, chromatographic spectra<br />

or profiles of compounds should be plotted as Rf values in a group of different solvent<br />

systems <strong>and</strong> those solvent systems should be judiciously chosen so as to separate the<br />

chemical compound clearly.<br />

2.2 HPLC<br />

The HPLC analysis showed out two types of data images. One is called<br />

a chemical profile or chromatogram, <strong>and</strong> the other is called spectrum (UV spectrum)..<br />

In this experiment, both chromatogram <strong>and</strong> UV spectra were used to determine a<br />

probability of identifying <strong>and</strong> comparing a chemical in each sample.<br />

2.2.1 Comparison between two collections<br />

It was shown that chrmical profiles <strong>and</strong> UV spectrum of<br />

lipophilic extracts from two collections of less hairy-blue head (POP1a-POP1b) <strong>and</strong><br />

more hairy-blue head (POP2a-POP2b) almost the same (Fifure 16 <strong>and</strong> 17, Appendix<br />

Table 1). While more hairy-white head (POP3a-POP3b), showed more dominant<br />

peaks from collection two <strong>and</strong> the UV spectrum of peak J <strong>and</strong> U were different<br />

(Figure 18 <strong>and</strong> Appendix Table 1). To clarify this question, more number of each<br />

population should be collected. However TLC analysis showed the same TLC pattern<br />

between two collections. Thus, in this experiment, it could be assumed that A.<br />

conyzoides from different collections were the same species.<br />

76


Absorbtion<br />

Absorbtion<br />

POP1a D UV of D<br />

B<br />

C UV of E<br />

A E<br />

POP1b O<br />

Retention time (min)<br />

M<br />

N<br />

P<br />

L Q<br />

Retention time (min)<br />

Figure 16 Chemical profiles <strong>and</strong> UV spectra of POP1a <strong>and</strong> POP1b<br />

F G<br />

UV of O<br />

UV of P<br />

77


Absorbtion<br />

Absorbtion<br />

POP2a H UV of H<br />

POP2b<br />

Retention time (min)<br />

Retention time (min)<br />

I<br />

UV of I<br />

R UV of R<br />

S UV of S<br />

Figure 17 Chemical profiles <strong>and</strong> UV spectra of POP2a <strong>and</strong> POP2b<br />

78


Absorbtion<br />

Absorbtion<br />

POP3a J UV of J<br />

K<br />

Retention time (min)<br />

Retention time (min)<br />

UV of K<br />

POP3b U UV of U<br />

T<br />

Figure 18 Chemical profiles <strong>and</strong> UV spectra of POP3a <strong>and</strong> POP3b<br />

V<br />

UV of V<br />

79


2.2.2 Comparison among three populations<br />

In plant collection 1, chemical profiles of less hairy-blue head<br />

(POP1a) gave obviously more peaks while the other two populations, more hairy-blue<br />

head (POP2a) <strong>and</strong> more hairy-white head (POP3a) gave only two dominant peaks<br />

(Figure 19). However there was one dominant peak from all three chromatograms<br />

that presented at the same retention time, around 14.3 minutes labeled peak number E,<br />

H <strong>and</strong> J <strong>for</strong> POP1a, POP2a <strong>and</strong> POP3a respectively. But when compared these peak<br />

numbers as UV spectra, UV spectrum of E looked quite different from H <strong>and</strong> J, which<br />

showed the same UV spectrum (Appendix Table 1).<br />

The extract of less hairy-blue head plant collection 2 (POP1b)<br />

presented six dominant peaks, while more hairy-blue head (POP2b) presented two<br />

peaks <strong>and</strong> three peaks <strong>for</strong> more hairy-white head (POP3b) (Figure 20). And also,<br />

three chromatograms had the same peak around 14.4 minutes labeled as peak P, R <strong>and</strong><br />

U <strong>for</strong> POP1b, POP2b <strong>and</strong> POP3b, respectively. But the UV spectra looked different<br />

though, especially at peak U of more hairy-white head (Figure 20 <strong>and</strong> Appendix Table<br />

1).<br />

From two collections, comparison of the extracts among three<br />

populations of A. conyzoides by HPLC technique showed that less hairy-blue head<br />

extract presented more peaks than the two more hairy extracts; blue <strong>and</strong> white head..<br />

From this result, it might be assumed that inflorescence color could not be used <strong>for</strong><br />

identification, but the amount of hair should be in consideration. As well as the other<br />

factors such as plant age, plant part, environment, number of population, etc.<br />

80


Absorbtion<br />

Absorbtion<br />

Absorbtion<br />

POP1a D UV of D<br />

B<br />

C<br />

UV of E<br />

A E<br />

Retention time (min)<br />

Retention time (min)<br />

Retention time (min)<br />

F G<br />

POP2a H UV of H<br />

I<br />

UV of I<br />

POP3a J UV of J<br />

Figure 19 Chemical profiles <strong>and</strong> UV spectra of POP1a, POP2a <strong>and</strong> POP3a<br />

K<br />

UV of K<br />

81


Absorbtion<br />

Absorbtion<br />

Absorbtion<br />

POP1b<br />

POP2b<br />

M<br />

O UV of O<br />

N UV of P<br />

P<br />

L Q<br />

Retention time (min)<br />

R UV of R<br />

Retention time (min)<br />

Retention time (min)<br />

S UV of S<br />

POP3b U UV of U<br />

T<br />

Figure 20 Chemical profiles <strong>and</strong> UV spectra of POP1b, POP2b <strong>and</strong> POP3b<br />

V<br />

UV of V<br />

82


2.2.3 Comparison between less hairy-blue head <strong>and</strong> callus<br />

From Figure 21, it was shown that chromatogram of callus<br />

extract had fewer peaks than chromatogram of two collections of less haory-blue head<br />

(POP1a <strong>and</strong> POP1b). However, one peak of callus <strong>and</strong> less hairy-blue head extract<br />

presented at the same retention time about 14.3 minutes labeled as peak X, E <strong>and</strong> P<br />

<strong>for</strong> chromatogram of callus, POP1a <strong>and</strong> POP1b, respectively, <strong>and</strong> its UV spectrum<br />

were the same (Figure 21 <strong>and</strong> Appendix Table 1). It could be assumed that callus<br />

from less hairy-blue head produced one compound as same as the plant from <strong>natural</strong><br />

habitat.<br />

83


Absorbtion<br />

Absorbtion<br />

Absorbtion<br />

Callus UV of W UV of X<br />

W<br />

X Y UV of Y<br />

Retention time (min)<br />

POP1a D UV of D<br />

B<br />

C UV of E<br />

A E<br />

POP1b O<br />

Retention time (min)<br />

M<br />

N<br />

P<br />

L Q<br />

Retention time (min)<br />

F G<br />

Figure 21 Chemical profiles <strong>and</strong> UV spectra of callus, POP1a <strong>and</strong> POP1b<br />

UV of O<br />

UV of P<br />

84


Absorbtion<br />

Retention time (min)<br />

Figure 22 Chromatogram comparison of callus <strong>and</strong> POP1a<br />

Absorbtion<br />

Retention time (min)<br />

Figure 23 Chromatogram comparison of callus <strong>and</strong> POP1b<br />

POP1a<br />

callus<br />

POP1b<br />

callus<br />

85


From comparative phytochemical analysis using both TLC <strong>and</strong> HPLC,<br />

it was shown that there were differences in chemical patterns among populations of<br />

A. conyzoides L. In less hair populations, more chemical compounds could be<br />

detected than the more hair populations. The chemical patterns of more hair<br />

populations, blue <strong>and</strong> white inflorescence are similar eventhough the color are<br />

different. So, inflorescence color should not be used as morphological character <strong>for</strong><br />

identification. But from this study the difference between less <strong>and</strong> more hair<br />

characteristic might be evidence <strong>for</strong> identification of Ageratum into taxa under<br />

species. According to Johnson (1971) had splitted A. conyzoides L. into two<br />

subspecies by using chromosome number, so the phytochemical evidence may be<br />

used to support the identification of Ageratum conyzoides as well.<br />

The evidences from TLC analysis could support the phytochemical screening<br />

of lipophilic crude extracts from three A. conyzoides L. populations (less hairy-blue<br />

head, more hairy-blue head <strong>and</strong> more hairy-white head). However, the evidences<br />

from TLC showed that the chemical patterns from more hairy-blue head <strong>and</strong> more<br />

hairy-white head were not definitely the same. Moreover, chemical profiles from<br />

HPLC analysis showed more differences between these two populations. Hence,<br />

further evidence such as cytology, molecular evidence etc.were need in order to<br />

clarify this problem.<br />

86


Separation <strong>and</strong> purification<br />

From lipophilic extract of POP1b (8.086 g), eighteen fractions were collected<br />

by a column of silica gel eluting with hexane, diethyl ether <strong>and</strong> methanol. Five<br />

fractions were obtained in accordance with the in<strong>for</strong>mation from TLC pattern (Table<br />

15 <strong>and</strong> Appendix Figure 4-6).<br />

Table 15 Column chromatography in<strong>for</strong>mation of lipophilic extract of POP1b<br />

Solvent system<br />

hexane:diethyl ether:methanol<br />

Combined<br />

fraction<br />

Remark<br />

100:0:0 – 50:50:0 A Non fluorescence<br />

50:50:0 B<br />

25:75:0 – 0:100:0 C<br />

Pink fluorescence under 365<br />

nm UV light (Appendix<br />

Figure 5)<br />

Red fluorescence under 365<br />

nm UV light<br />

(Appendix Figure 5)<br />

0:100:0 – 0:75:25 D - Blue fluorescence under<br />

254 <strong>and</strong> 365 nm UV light<br />

(Appendix Figure 4 <strong>and</strong> 5)<br />

- Positive to Dragendorff’s<br />

reagent (Appendix Figure 6)<br />

0:50:50 – 0:0:100 E Blue <strong>and</strong> red fluorescence<br />

under 365 nm UV light<br />

(Appendix Figure 5)<br />

Combined fraction C was evaporated to dryness under reduced pressure.<br />

Subsequently, fraction C was isolated by MPLC technique .The drusses crystal (4.8 mg)<br />

was isolated from fraction C which was recrystallized by diethyl ether (Figure 24).<br />

87


Figure 24 Drusses crystal isolated <strong>and</strong> purified from fraction C<br />

Characterization of crystal<br />

Characteristic : Colourless, coumarine like odor, drusses crystal<br />

Solubility : Soluble in methanol, ethanol, ethyl acetate, chloro<strong>for</strong>m, <strong>and</strong><br />

dichloromethane<br />

Rf values : The Rf values were detected by using four different solvent<br />

system as following:<br />

1) 0.83 in dichloromethane:ethyl acetate:methanol (75:20:5)<br />

(Appendix Figure 8)<br />

2) 0.28 in dichromethane (Appendix Figure 9)<br />

3) 0.34 in benzene:chloro<strong>for</strong>m (7:3) (Appendix Figure 10)<br />

4) 0.77 in chloro<strong>for</strong>m:acetone (9:1) (Appendix Figure 11)<br />

Melting point : 156-158 ˚C<br />

UV spectra : peak 1 : UV λmax MeOH (nm) 219.5, 277, 302.5 <strong>and</strong> 315 (sh)<br />

peak 2 : UV λmax MeOH (nm) 222.5, 272 (sh), 286, 307, 317.5 (sh)<br />

88


HPLC chromatogram<br />

Absorbtion<br />

1 (13.438)<br />

2 (14.370)<br />

Retention time (min)<br />

Figure 25 HPLC chromatogram <strong>and</strong> UV spectrogram of the crystal<br />

UV of 1<br />

UV of 2<br />

TLC chromatogram of the crystal showed the presence of one spot in all four<br />

solvent systems. This could indicate the purification of the crystal. To confirm this<br />

result, the crystal was examined by HPLC technique.<br />

The HPLC chromatogram showed 2 dominant peaks (Figure 26) indicated<br />

that the crystal was not pure. Peak number (1) presented at retention time 13.438<br />

minute <strong>and</strong> peak number (2) at 14.370 minute. When compared the crystal’s<br />

chromatogram to POP1b’s, there was no peak presented around the retention time of<br />

13 in POP1b chromatogram. So, this peak could be artifact. While peak (2) was<br />

comparable to peak P in lipophilic extract of POP1b (Appendix Table 1).<br />

Because of small amount of this crystal (4.8 mg), so it was not enough <strong>for</strong><br />

purification .<br />

89


Biological activities test<br />

When treated cultivated <strong>and</strong> <strong>weed</strong> seeds with 4 diluted concentrations of less<br />

hairy-blue head (POP1b) lipophilic crude extract <strong>and</strong> herbicides, the percentage of<br />

germination was calculated at the 3 rd , 5 th <strong>and</strong> 7 th day. While shoot <strong>and</strong> root length of<br />

tested seeds were measured at the last date of the experiment.<br />

1. Cultivated plants<br />

1.1 Oryza sativa L. cultivar Hom Mali 105<br />

Germination rate of Oryza sativa L. cultivar Hom Mali 105 were<br />

negatively correlated with the concentrations of the extracts after 5 <strong>and</strong> 7 days of<br />

experiment. All concentrations tended to stimulate germination the seeds. However,<br />

those rates were not significantly different from the <strong>control</strong> (Table 16). The seed<br />

germinated only radical when treated with glyphosate, but no germination occurred in<br />

paraquat (Table 16 <strong>and</strong> 17, Figure 27)<br />

There was significant inhibition on shoot elongation of the seedling <strong>for</strong><br />

the 0.50 g/l concentration <strong>and</strong> root elongation was significantly reduced by 0.50 g/l<br />

<strong>and</strong> 2.0 g/l concentration. Yet, the other concentrations were not significantly<br />

different from the <strong>control</strong> (Table 17).<br />

1.2 Brassica chinensis L. var. chinensis<br />

It seemed that at 0.25, 0.5 <strong>and</strong> 1.0 g/l concentration inhibited seed<br />

germination of Brassica chinensis L. var. chinensis, but in statistic, it was not<br />

different from the <strong>control</strong> (Table 16). The seeds germinated only radical when treated<br />

with glyphosate, but no germination occurred in paraquat (Table 16 <strong>and</strong> 17, Figure<br />

28)<br />

In term of seedling growth, both shoot <strong>and</strong> root lengths of Brassica<br />

chinensis L. var. chinensis were inhibited. The extracts reduced growth of the<br />

90


seedlings when applied higher concentration <strong>and</strong> the data showed significantly<br />

different as compared with <strong>control</strong> (Table 17). Nevertheless, at low concentration<br />

(0.25 g/l), there was non-significant reduction in shoot growth.<br />

1.3 Ipomoea aquatica Forssk.<br />

Data in Table 16 showed that all concentrations of lipophilic extracts<br />

of A. conyzoides promoted seed germination of Morning glory since 3 to 7 day of<br />

experiment. At concentrations 0.5, 1.0 <strong>and</strong> 2.0 g/l, seed germination was significant<br />

stimulated compared with <strong>control</strong>. The seed germination also occurred in glyphosate,<br />

but only short radical. While it was not occurred in paraquat (Table 16 <strong>and</strong> 17, Figure<br />

29)<br />

Like seed germination, the extracts tended to promoted growth of<br />

seedlings, not only shoot length but also root length was increased. However, it was<br />

not different from <strong>control</strong>. Even if at dose 2.0 (4.908 cm.), it seemed that the root<br />

growth was inhibited, but it was not different from <strong>control</strong> as well (Table 17)<br />

91


Table 16 Germination percentage of cultivated plants at 3,5 <strong>and</strong> 7 days<br />

Concentration<br />

(g/l)<br />

Percentage of germination (%) 1/<br />

Oryza sativa L. cultivar Hom Mali 105 Brassica chinensis L. var. chinensis Ipomoea aquatica Forssk.<br />

3 5 7 3 5 7 3 5 7<br />

0.00 62.50 a 2/<br />

78.75 a 78.75 a 62.50 a 68.75 a 66.25 a 68.75 a 70.00 a 70.00 a<br />

0.25 58.75 a 87.50 a 87.50 a 60.00 a 75.00 a 60.00 a 75.00 ab 76.25 ab 77.50 ab<br />

0.50 71.25 a 85.00 a 85.00 a 58.75 a 85.00 a 61.25 a 85.00 b 86.25 b 90.00 b<br />

1.00 73.75 a 82.50 a 82.50 a 56.25 a 85.00 a 61.25 a 85.00 b 87.50 b 88.75 b<br />

2.00 75.00 a 83.75 a 85.00 a 63.75 a 86.25 a 66.25 a 86.25 b 88.75 b 92.50 b<br />

Glyphosate 62.50 a 78.75 a 80.00 a 66.25 a 82.50 a 66.25 a 82.50 ab 85.00 ab 85.00 ab<br />

Paraquat 0.00 b 0.00b 0.00 b 0.00 b 0.00 b 0.00 b 0.00 c 0.00 c 0.00 c<br />

F-test ** ** ** ** ** ** ** ** **<br />

CV (%) 19.86 12.34 11.94 19.72 16.66 16.49 14.20 14.11 15.37<br />

1/ Average of 4 replications<br />

2/ Values in the column with same letter are not significantly different at 95% significant level applying Duncan’s multiple range test<br />

(DMRT) method<br />

** significantly different at 95% significant level<br />

92<br />

92


Table 17 Seedling growth of cultivated plants at the 7 th date<br />

Concentration<br />

(g/l)<br />

Length of seedlings (cm.) 1/<br />

Oryza sativa L. cultivar Hom Mali 105 Brassica chinensis L. var. chinensis Ipomoea aquatica Forssk.<br />

Shoot Root Shoot Root Shoot Root<br />

0.00 3.095 a 2/ 5.517 a 3.273 a 3.553 a 4.803 a 5.135 a<br />

0.25 3.017 a 5.215 a 3.094 a 2.645 b 5.045 a 5.588 a<br />

0.50 1.890 b 2.605 b 2.443 b 2.123 c 5.183 a 5.575 a<br />

1.00 2.626 a 3.664 ab 2.243 bc 1.658 d 5.438 a 5.773 a<br />

2.00 2.535 ab 3.155 b 1.905 c 1.318 d 5.073 a 4.908 a<br />

Glyphosate 0.000 c 0.342 c 1.078 d 0.180 e 2.600 b 0.655 b<br />

Paraquat 0.000 c 0.000 c 0.000 e 0.000 e 0.000 c 0.000 b<br />

F-test ** ** ** ** ** **<br />

CV (%) 24.02 41.13 16.47 15.96 18.96 17.26<br />

1/ Average of 4 replications<br />

2/ Values in the column with same letter are not significantly different at 95% significant level applying Duncan’s multiple range test<br />

(DMRT) method<br />

** significantly different at 95% significant level<br />

93<br />

93


Control 0.25 g/l 0.50 g/l 1.00 g/l<br />

2.00 g/l Glyphosate Paraquat<br />

Figure 26 Oryza sativa L. cultivar Hom Mali 105 seedling treated with A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date<br />

94<br />

94


Control 0.25 g/l 0.50 g/l 1.00 g/l<br />

2.00 g/l Glyphosate Paraquat<br />

Figure 27 Brassica chinensis L. var. chinensis seedling treated with A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date<br />

95<br />

95


Control 0.25 g/l 0.50 g/l 1.00 g/l<br />

2.00 g/l Glyphosate Paraquat<br />

Figure 28 Ipomoea aquatica Forssk. seedling treated with A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date<br />

96<br />

96


2. Weeds<br />

2.1 Tridax procumbens L.<br />

From Table 18, it was shown that A. conyzoides significant inhibited<br />

seed germination the 3 rd date of experiment at concentration 0.25, 0.5, 1.0 <strong>and</strong> 2.0 g/l.<br />

But when the germination took longer, the inhibition was reduce, that was the extracts<br />

inhibited tridax seed germination at concentration 0.5, 1.0 <strong>and</strong> 2.0 g/l at the 5 th date<br />

<strong>and</strong> 1.0 <strong>and</strong> 2.0 g/l at 7 th date of experiment. The seed germination also occurred in<br />

glyphosate, but only short radical. While it was not occurred in paraquat (Table 18<br />

<strong>and</strong> 19 <strong>and</strong> Figure 30)<br />

In term of seedling growth, shoot length of tridax seedling was<br />

inhibited at the highest dose, while the others seemed to promote shoot growth. For<br />

root length, the result was not different to the <strong>control</strong> (Table 19).<br />

2.2 Mimosa pigra L.<br />

Data in Table 25 showed that at doses 0.5 g/l of lipophilic extracts of<br />

A. conyzoides suppressed seed germination of mimosa glory since 3 to 7 day of<br />

experiment, however, it was not different to the <strong>control</strong>. The seed germination also<br />

occurred in glyphosate <strong>and</strong> paraquat, but only short shoot <strong>and</strong> radical. (Table 18 <strong>and</strong><br />

19, Figure 31)<br />

The extracts seemed not have effect to seedling growth of mimosa.<br />

Because some dose promoted <strong>and</strong> some inhibited, but not significant in term of (Table<br />

19)<br />

97


2.3 Cenchrus echinatus L.<br />

Germination rate of cenchrus were negatively correlated with the<br />

concentrations of the extracts at 3 days of experiment. That was most concentrations<br />

stimulated germination of seeds. However, those were not significantly different from the<br />

<strong>control</strong> (Table 18). At the end of experiment, the inhibition occurred at concentration 0.25<br />

g/l significantly. In herbicides treated seed, the germination also occurred, but <strong>for</strong> short<br />

shoot <strong>and</strong> radical only (Table 18 <strong>and</strong> 19, Figure 32)<br />

There was significant inhibition on shoot <strong>and</strong> root elongation of<br />

cenchrus <strong>for</strong> the 0.50, 1.0 <strong>and</strong> 2.0 g/l doses (Table 19).<br />

2.4 Echinochloa colona (L.) Link<br />

Data in Table 18 showed that all doses of lipophilic extracts of A.<br />

conyzoides promoted seed germination of Morning glory since 5 to 7 day of<br />

experiment. At concentrations 0.5, 1.0 <strong>and</strong> 2.0 g/l, seed germination was significant<br />

stimulated when the seeds were treated 5 days. The seed germination also occurred in<br />

glyphosate, but only short radical. While it was not occurred in paraquat (Table 18<br />

<strong>and</strong> 19)<br />

The extracts seemed not have effect to seedling growth of mimosa.<br />

Because some dose promoted <strong>and</strong> some inhibited, but not significant in term of<br />

statistic (Table 19)<br />

98


Table 18 Germination percentage of <strong>weed</strong>s at 3,5 <strong>and</strong> 7 days<br />

Contration<br />

(g/l)<br />

Percentage of germination (%) 1/<br />

Tridax procumbens L. Mimosa pigra L. Cenchrus echinatus L. Echinochloa colona (L.) Link<br />

3 5 7 3 5 7 3 5 7 3 5 7<br />

0.00 86.25 a 2/ 90.00 a 87.50 a 100.0 a 100.0 a 100.0 a 50.00 a 60.00 a 65.00ab 42.50 a 42.50 a 77.50 a<br />

0.25 67.50 b 83.75 a 90.00 a 100.0 a 100.0 a 100.0 a 50.00 a 56.25 a 56.25 b 40.00 a 46.25 a 83.75 a<br />

0.50 42.50 c 61.25 bc 81.25 a 95.00 ab 97.50 ab 97.50 a 57.50 a 68.75 a 71.25 a 47.50 a 62.50 b 82.50 a<br />

1.00 31.25 c 48.75 c 61.25 b 97.50 a 100.0 a 100.0 a 52.50 a 62.50 a 62.50ab 46.25 a 55.00ab 82.50 a<br />

2.00 17.50 d 17.50 d 27.50 c 100.0 a 100.0 a 100.0 a 57.50 a 58.75 a 58.75ab 41.25 a 50.00ab 77.50 a<br />

Glyphosate 57.50 b 75.00 ab 80.00 a 95.00 ab 95.00 bc 97.50 a 35.00 b 37.50 b 37.50 c 25.00 b 28.75 c 50.00 b<br />

paraquat 0.00 d 0.00 e 0.00 d 90.00 b 91.25 c 87.50 b 17.50 c 23.73 c 23.75 d 0.00 c 0.00 d 0.00 c<br />

F-test ** ** ** ** ** ** ** ** ** ** ** **<br />

CV (%) 19.45 19.39 17.64 3.83 2.68 1.94 20.25 18.24 16.42 25.88 22.66 14.94<br />

1/ Average of 4 replications<br />

2/ Values in the column with same letter are not significantly different at 95% significant level applying Duncan’s multiple range test<br />

(DMRT) method<br />

** significantly different at 95% significant level<br />

99<br />

99


Table 19 Seedling growth of <strong>weed</strong>s at the 7 th date<br />

Concentration<br />

(g/l)<br />

Length of seedlings (cm.) 1/<br />

Tridax procumbens L. Mimosa pigra L. Cenchrus echinatus L. Echinochloa colona (L.) Link<br />

Shoot Root Shoot Root Shoot Root Shoot Root<br />

0.00 1.132 a 2/ 1.174 a 5.893 a 1.818 a 3.526 a 1.778 a 2.132 a 0.558 ab<br />

0.25 1.879 c 1.790 a 6.034 a 2.188 a 3.129 a 2.355 a 1.646 ab 0.502 ab<br />

0.50 1.785 ac 1.226 a 5.665 ab 1.995 a 1.820 b 1.289 abc 2.198 a 1.150 c<br />

1.00 1.519 ac 1.459 a 6.369 ab 1.590 ab 0.890 c 0.819 cd 1.417 ab 0.486 ab<br />

2.00 0.542 bd 1.294 a 5.733 ab 2.118 a 0.558 cd 0.578 cd 1.795 a 0.769 ac<br />

Glyphosate 0.798 ab 0.560 b 0.136 c 0.510 c 0.428 cd 0.397 d 0.277 bc 0.155 b<br />

Paraquat 0.000 d 0.000 b 0.170 c 0.528 c 0.075 d 0.075 d 0.000 c 0.000 b<br />

F-test ** ** ** ** ** ** ** **<br />

CV (%) 38.92 36.46 8.27 16.60 32.03 52.74 66.56 72.32<br />

1/ Average of 4 replications<br />

2/ Values in the column with same letter are not significantly different at 95% significant level applying Duncan’s multiple range test<br />

(DMRT) method<br />

** significantly different at 95% significant level<br />

100<br />

100


Control 0.25 g/l 0.50 g/l 1.00 g/l<br />

101<br />

2.00 g/l Glyphosate Paraquat<br />

Figure 29 Tridax procumbens L. seedling treated with A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date<br />

101


Control 0.25 g/l 0.50 g/l 1.00 g/l<br />

102<br />

2.00 g/l Glyphosate Paraquat<br />

Figure 30 Mimosa pigra L. seedling treated with A. conyzoides extracts <strong>and</strong> herbicides at the 7 th date<br />

102


Control 0.25 g/l 0.50 g/l 1.00 g/l<br />

103<br />

2.00 g/l Glyphosate Paraquat<br />

Figure 31 Cenchrus echinatus L. seedling treated with A. conyzoides extracts <strong>and</strong> herbicides after the 7 th date<br />

103


Table 20 Effect of the lipophilic crude extract from A. conyzoides L. on seed germination <strong>and</strong> seedling growth of tested seed<br />

Tested plant<br />

Cultivated plants:<br />

Oryza sativa L. cultivar Hom<br />

Mali 105<br />

Brassica chinensis L. var.<br />

chinensis<br />

Seed germination<br />

104<br />

Concentration of the extract affecting on tested plant (g/l)<br />

Seedling growth<br />

Shoot Root<br />

Inhibition Promotion Inhibition Promotion Inhibition Promotion<br />

-<br />

-<br />

0.5<br />

-<br />

0.5<br />

2.0<br />

- - 0.5, 1.0, 2.0 - 0.25, 0.5,<br />

1.0, 2.0<br />

Ipomoea aquatica Forssk. - 0.5, 1.0, 2.0 - - - -<br />

Weeds:<br />

Tridax procumbens L.<br />

0.25, 0.5,<br />

1.0, 2.0<br />

-<br />

Mimosa pigra L. - - - - - -<br />

Cenchrus echinatus L. 0.25 - 0.5, 1.0, 2.0 - 0.5, 1.0, 2.0 -<br />

Echinochloa colona (L.) Link. - 0.5 - - 0.5 -<br />

-<br />

0.25<br />

-<br />

-<br />

-<br />

-<br />

104


From the result, the lipophilic crude extract from A. conyzoides L. could<br />

inhibit seed germination <strong>and</strong> seedling growth of many tested plants. Tongma et al.<br />

(1997) reported inhibitory effect of secendary metabolites from Asteraceae plants on<br />

other plants. Okwori et al. (2007) documented active phytochemicals of the plant A.<br />

conyzoides L. must be more lipid soluble or non-polar compound. However, there<br />

were studies found aqoueous extract from A. conyzoides L. inhibit seed germination<br />

of <strong>weed</strong>s Monochoria vaginalis, Echinochloa crus-galli, Aeschynomene indica (Xuan<br />

et al., 2004). Hong et al. (2004) have shown that aqueous extract of whole plants<br />

<strong>control</strong>led emergence of <strong>weed</strong>s Monochoria vaginalis, Rotala indica, Marsilea<br />

quadrifolia, Leptochloa chinensis, Cyperus dif<strong>for</strong>mis, Sphenochlea zeylanica,<br />

Commelina diffusa, Dactyloctenium aegyptium <strong>and</strong> Brachiaria mutica. Similarly,<br />

Xuan et al. (2004) found that leaves aqueous extract of A. conyzoides L. <strong>control</strong>led<br />

emergence of <strong>weed</strong>s in paddy field such as Echinochloa oryzicola, Eleochalis<br />

acicularis, Linderna pyxidaria, Monocharia vaginalis <strong>and</strong> Rotala indica.<br />

In this study, non polar extract (lipophilic crude extract) also showed<br />

inhibitory effect on seed germination of <strong>weed</strong>s; Tridax procumbens L. <strong>and</strong> Cenchrus<br />

echinatus L. In cultivated plants, the extracts inhibited growth of Oryza sativa L.<br />

cultivar Hom Mali 105 <strong>and</strong> Brassica chinensis L. var. chinensis. However, the<br />

inhibitory effects had low potential when compared with commercial herbicides<br />

which could strongly inhibited the germination <strong>and</strong> growth of tested seed especially<br />

paraquat. Hoagl<strong>and</strong> <strong>and</strong> Williams, (2004) described that the concentrations of the<br />

allelopathic compounds are generally low in a crude extract <strong>and</strong> nonactive compounds<br />

in the crude extracts may physically or chemically bind or mask the action of an<br />

allelochemical. Nevertheless, A. conyzoides L. extract might can be used initially <strong>and</strong><br />

followed with commercial herbicides that can reduce the use of herbicide.<br />

Molisch (1937) pointed out that allelopathic interactions could be either<br />

inhibitory or stimulatory to growth. There was promotion effect found in this<br />

experiment also. The extract promoted seed germination of Ipomoea aquatica Forssk.<br />

<strong>and</strong> shoot length of Tridax procumbens L., but only in low concentration. This result<br />

agree with Xuan et al. (2004), who documented leaves aqueous extract of A.<br />

conyzoides L. promoted rice Oryza sativa L. var. indica growth.<br />

105


This experiment used methanol as a solvent <strong>for</strong> initial extraction, <strong>and</strong><br />

chloro<strong>for</strong>m <strong>for</strong> partitioned then. Secendary metabolites extracted by alcohol might be<br />

the compound from Shikimic acid pathway (Vickery <strong>and</strong> Vickery, 1981). The most<br />

common phenolic compound derived from Shikimic acid pathway are the derivatived<br />

of cinnamic acid, benzoic acid, coumarins, tannins, flavonoids <strong>and</strong> other polyphenolic<br />

complexes. The phenolic acid, coumarins <strong>and</strong> tanins appear to have quite similar<br />

mechanisms of action, inhibiting plant growth through cytotoxiccity. The initial<br />

actions are on celmembranes, resulting in nonspecific permeability changes that alter<br />

ion fluxes <strong>and</strong> hydraulic conductivity of roots. Membrane perturbations are followed<br />

by a cascade of physiological effects that include alterations in ion balance, plantwater<br />

relationships, stomatal functions, <strong>and</strong> rates of photosynthesis <strong>and</strong> respiration.<br />

Allelopathic flavonoids are potent inhibitors of energy metabolism, blocking<br />

mitochondrial <strong>and</strong> chloroplast functions (Einhellig, 2004). Alkaloids could be utilized<br />

as intra- or interspecific competition of plant species (Blum, 2004).<br />

Problems with using crude extracts might result from osmotic potential.<br />

When testing extracted plant material, care should be taken to ensure that seed<br />

germination is not delayed by the osmotic potential of the extract solution. Sorbitol or<br />

manitol could be used <strong>for</strong> osmotic potential <strong>control</strong>. Moreover, insensitive <strong>bioassay</strong>s<br />

with crude extracts might be occurred.<br />

106


CONCLUSION AND RECOMMENDATION<br />

Conclusion<br />

1. For phytochemical screening <strong>and</strong> TLC screening, the lipophilic crude<br />

extract of three populations of Ageratum conyzoides L., it was shown that:<br />

Less hairy-blue head contained alkaloids, terpenoids, steroids <strong>and</strong><br />

triterpenoids <strong>and</strong> flavonoids. More hairy-blue head contained coumarins, terpenoid<br />

<strong>and</strong> steroids <strong>and</strong> triterpenoids. More hairy-white head contained coumarins, terpenoid<br />

<strong>and</strong> steroids <strong>and</strong> triterpenoids. Callus contained terpenoid<br />

2. For TLC <strong>and</strong> HPLC analyses, the result were:<br />

TLC <strong>and</strong> HPLC chromatograms of all three populations of A. conyzoides<br />

L. from two collections showed similar pattern. Among three populations, TLC <strong>and</strong><br />

HPLC profiles of more hairy-blue head <strong>and</strong> more hairy-white head were similar.<br />

More secondary metabolites could be detected from the profile of less hairy-blue<br />

head. HPLC analysis showed that callus extract contained three compounds <strong>and</strong> the<br />

main compound was comparable to one compound found in the extract from less<br />

hairy-blue head.<br />

3. The purification <strong>and</strong> structure elucidation of the crystal isolated from A.<br />

conyzoides L. with less hairy-blue head could not be carried on. It might be the result<br />

from artifact together with scantly amount of crystal.<br />

4. The biological activity of lipophilic crude extract from less hairy-blue head<br />

A. conyzoides can be concluded as follow:<br />

In cultivated plants: The lipophilic crude extract at concentrations more<br />

than 0.5 g/l could inhibit the growth of Oryza sativa L. cultivar Hom Mali 105<br />

seedling, all concentrations could inhibit the growth of Brassica chinensis L. var.<br />

107


chinensis seedling, <strong>and</strong> at concentrations more than 0.5 g/l could promote seed<br />

germination of Ipomoea aquatica Forssk.<br />

In <strong>weed</strong>s: The lipophilic crude extract at all concentrations could inhibit<br />

seed germination of Tridax procumbens L., but at the concentration 0.25 g/l the<br />

growth of seedling could be promoted. At all concentrations could neither affect to<br />

seed germination nor seedling growth of Mimosa pigra L. At the concentration 0.25<br />

g/l could inhibit seed germination of Cenchrus echinatus L. while higher<br />

concentrations could inhibit seedling growth. The concentrations 0.25 <strong>and</strong> 0.5 g/l<br />

could promote seedling growth of Echinochloa colona (L.) Link.<br />

Recommendation<br />

1. There are many groups of chemical compounds in the lipophilic crude<br />

extract of A. conyzoides L. Thus, this plant species might have economic value <strong>and</strong><br />

could be used as a <strong>natural</strong> source <strong>for</strong> those compounds. However, it was rough<br />

investigation, so the other methods should be used <strong>for</strong> confirmation.<br />

2. The callus of less-hairy blue head Ageratum conyzoides L.contained<br />

interesting chemical compound eventhough the amount of callus was so small. Thus,<br />

it was recommended to increase amount of callus to clarify this compound.<br />

3. Different character of A. conyzoides gave different profile of the extract.<br />

So whenever the researchers collected the plants from any where, TLC or HPLC<br />

analyses should be done firstly.<br />

4. The artifact could be occurred during either the long process of experiment<br />

or from organic solvents. Thus, in the process of separation <strong>and</strong> purification, it was<br />

strongly recommended to carry on as soon as possible. Then, the fractions in each<br />

steps should be compared with the original crude extract.<br />

5. The biological activity tests were done only in laboratory condition. Field<br />

study should be found out to clarify the effect of extract on tested seeds.<br />

108


LITERATURE CITED<br />

Abena, A.A., G.S. Kintasngoula-Myaba, J. Diantama <strong>and</strong> D. Bioka. 1993. Analgesic<br />

effects of Ageratum conyzoides extract in the rat. Encephale 19(4): 329-332.<br />

_____, J.M. Ouamba <strong>and</strong> A. Keita. 1996. Anti-inflammatory, analgesic <strong>and</strong><br />

antipyretic activities of essential oil of Ageratum conyzoides. Phytotherapy<br />

Research 10(7): S164-S165.<br />

Achola, K.J. <strong>and</strong> R.W. Munenge. 1997. Activity of Ageratum conyzoides on isolated<br />

rat phrenic nerve-diaphragm <strong>and</strong> blood pressure on anaesthetized. Int. J.<br />

Pharm. 35(1): 31-37.<br />

_____, _____, <strong>and</strong> A.M. Mwaura. 1994. Pharmacological properties of root <strong>and</strong><br />

aerial parts extracts of Ageratum conyzoides on isolated ileum <strong>and</strong> heart.<br />

Fitoterapia 65: 322-325.<br />

Adesogan, E.K. <strong>and</strong> A.L. Okunade. 1979. A new flavone from Ageratum<br />

conyzoides. Phytochemistry 18: 1863-1864.<br />

Adjanohoun, E.J., A.M.R. Ahyi <strong>and</strong> L. Ake-Assi. 1988. Centribution aux etudes<br />

ethnobotaniques et floristiques aux comores. ACCT, Paris. Cited A.L.<br />

Okunade. 2002. Review: Ageratum conyzoides L. (Asteraceae). Fitoterapia<br />

73: 1-16.<br />

Ahmad, A.A., A.M. Abou-Douh, A.E.H. Mohamed <strong>and</strong> M.E. Hassan. 1999. A new<br />

chromene glucoside from Ageratum conyzoides. Planta Med 65: 171-172.<br />

Akah, P.A. 1988. Haemostatic activity of aqueous leaf extract of Ageratum<br />

conyzoides L. Pharmaceutical Biology 26(2): 97-101.<br />

109


Akendengue, B. <strong>and</strong> A.M. Louis. 1994. Medicinal plants used by Masango people in<br />

Gabon. Journal of Ethnopharmacology 41: 193-200.<br />

Almagboul, A.Z., A.A. Farouk <strong>and</strong> A.R. Bushir. 1985. Antimocrobial activity of<br />

certain Sudanese plants used in folkloric medicine: Screening <strong>for</strong> antibacterial<br />

activity, part II. Fitoterapia 56(2): 103-109.<br />

Aloisi, J.D., J. Sherma <strong>and</strong> B. Fried. 1990. Comparison of mobile phases <strong>for</strong><br />

separation <strong>and</strong> quantification of lipids by one-dimensional TLC <strong>and</strong><br />

preadsorbent high per<strong>for</strong>mance silica gel plates. J. Liq. Chromatogr. 13:<br />

3949-3961.<br />

Andrade-Cetto, A. <strong>and</strong> M. Heinrich. 2005. Mexican plants with hypoglycaemic<br />

effect used in the treatment of diabetes. Journal of Ethnopharmacology 99:<br />

325-348.<br />

Ayyanar, M. <strong>and</strong> S. Ignacimuthu. 2005. Traditional knowledge of Kani tribals in<br />

Kouthalai of Tirunelveli hills, Tamil Nadu, India. Journal of<br />

Ethnopharmacology 102: 246-255.<br />

Backer, C.A. <strong>and</strong> R.C. B. van Den Brink. 1968. flora of Java vol. III. The<br />

Rijkherbarium, Leyden.<br />

Baljet, H. 1918. Glucosides with digitalis action: A new identification reaction.<br />

Pharmaceutisch Weekblad 55: 457-467. Cited N.R. Farnsworth. 1966.<br />

Biological <strong>and</strong> phytochemical screening of plants. Journal of<br />

Pharmaceutical Sciences 55(3): 225-276.<br />

Batish, D.R., H.P. Singh, S. Kaur <strong>and</strong> R.K. Kohli. 2006. Phytotoxicity of Ageratum<br />

conyzoides residues towards growth <strong>and</strong> nodulation of Cicer arietinum.<br />

Agric. Ecosyst. Environ. 113: 399-401.<br />

110


Bh<strong>and</strong>ary, M.J., K.R. Ch<strong>and</strong>rashekar <strong>and</strong> K.M. Kaveriappa. 1995. Medicinal<br />

ethnobotany of the Siddis of Uttara Kannada district, Karnataka, India.<br />

Journal of Ethnopharmacology 47: 149-158.<br />

Bhat, R.B., E.O. Etejere <strong>and</strong> V.T. Oladipo. 1990. Ethnobotanical studies from<br />

Central Nigeria. Economic Botany 44(3): 382-390.<br />

Bhattarai, N.K. 1991. Folk herbal medicines of Makawanpur district, Nepal. Int. J.<br />

Pharmacognosy 29(4): 284-295.<br />

Bioka, D., F.F. Banyikwa <strong>and</strong> M.A. Choudhuri. 1993. Analgesic effects of a crude<br />

extract of Ageratum conyzoides in the rat. Acta Hort. 332: 171-176.<br />

Blum, M.S. 2004. The importance of alkaloidal function, pp. 163-181. In F.A.<br />

Macias, J.C.G. Galindo, J.M.G. Molinillo <strong>and</strong> H.G. Cutler, eds. Allelopathy:<br />

Chemistry <strong>and</strong> Mode of Action of Allelochemical. CRC Press, Boca Raton,<br />

Florida.<br />

Boonyarattanakornkit, L, <strong>and</strong> T. Supawita. 1977. Names of medicinal plants <strong>and</strong><br />

their uses. Chulalongkorn University, Bangkok. Cited A. Panthong, D.<br />

Kanjanapothi, T. Taesotikul <strong>and</strong> W.C. Taylor. 1991. Ethnobotanical review<br />

of medicinal plants from Thai traditional books, part II: Plants with<br />

antidiarrheal, laxative <strong>and</strong> carminative properties. Journal of<br />

Ethnopharmacology 31: 121-156.<br />

Borthakur, N. <strong>and</strong> A.K.S. Baruah. 1987. Search <strong>for</strong> precocenes in Ageratum<br />

conyzoides Linn. of North-East India. J. Indian Chem. Soc. 64: 580-581.<br />

Bose, P.K. 1958. Biochemical properties of <strong>natural</strong> coumarins. J. Indian Chem.<br />

Soc. 35: 367-375. Cited N.R. Farnsworth. 1966. Biological <strong>and</strong><br />

phytochemical screening of plants. Journal of Pharmaceutical Sciences<br />

55(3): 225-276.<br />

111


Bouda, H., L.A. Tapondjou, D.A. Fontem <strong>and</strong> M.Y.D. Gumedzoe. 2001. Effect of<br />

essential oils from leaves of Ageratum conyzoides, Lantana camara <strong>and</strong><br />

Chromolaena odorata on mortality of Sitophilus zeamais (Coleoptera,<br />

Curculionidae). Journal of Stored Products Research 37: 103-109.<br />

Burkill, H.M. 1985. The Useful Plants of West Tropical Africa. Vol. 1. Royal<br />

Botanic Gardens, Kew.<br />

Chah, K.F., C.A. Eze, C.E. Emuelosi <strong>and</strong> C.O. Esimone. 2006. Antibacterial <strong>and</strong><br />

wound healing properties of methanilic extracts of some Nigerian medicinal<br />

plants. Journal of Ethnopharmacology 104: 164-167.<br />

Chalchat, J.C., R.P. Garry, C. Menut, G. Lamaty, R. Malhuret <strong>and</strong> J.J. Chopineau.<br />

1997. Correlation between chemical composition <strong>and</strong> antimicrobial activity,<br />

VI, activity of some African essential oils. Essent Oil Res 9(1): 67-75.<br />

Chopra, R.N., S.L. Nayar <strong>and</strong> I.C. Chopra. 1956. Glossary of Indian Medicinal<br />

Plants. CSIR Publication, New Delhi.<br />

Clarkson, C., V.J. Maharaj, N.R. Crouch, O.M. Grace, P. Pillay, M.G. Matsabisa, N.<br />

Bhagw<strong>and</strong>in, P.J. Smith <strong>and</strong> P.I. Folb. 2004. In vitro antiplasmodial activity<br />

of medicinal plants native to or <strong>natural</strong>ized in South Africa. Journal of<br />

Ethnopharmacology 92: 177-191.<br />

Corea, M.P. 1984. Dicionario das plantas ứteis do Brazil. 3 rd ed. Civilização<br />

Brasileira, Rio de Janeiro. Cited A. Shirwaikar, P.M. Bhilegaonkar, S. Malini<br />

<strong>and</strong> J. Sharath Kumar. 2003. The gastroprotective of the ethanol extract of<br />

Ageratum conyzoides. Journal of Ethnopharmacology 86: 117-121.<br />

112


de Melo Junior, E.J.M., M.J. Raposo, J.A.L. Neto, M.F.A. Diniz, C.A.C. Marcelino<br />

Junior <strong>and</strong> A.E.G. Sant Ana. 2002. Medicinal plants in the healing of dry<br />

socket in rats: microbiological <strong>and</strong> microscopic analysis. Phytomedicine 9:<br />

109-166.<br />

Diehl, M.S., K.K. Atindehou, H. Téré <strong>and</strong> B. Betschart. 2004. Prospect <strong>for</strong><br />

anthelminthic plants in the Ivory Coast using ethnobotanical criteria. Journal<br />

of Ethnopharmacology 95: 277-284.<br />

Dubey, S., K.C. Gupta <strong>and</strong> T. Matsumoto. 1989. Sterols of Ageratum conyzoides L.<br />

Herba Hungarica 28(1-2): 71-73.<br />

Dung, N.X. <strong>and</strong> D.T. Loi. 1991. Selection of traditional medicines <strong>for</strong> study.<br />

Journal of Ethnopharmacology 32: 57-70.<br />

_____, L.K. Bien, V.N. Lo, P.A. Leclerco, V.V. Nam, N.T.D. Trang <strong>and</strong> L.V.N.<br />

Phuong. 1996. Recent developments in the study of compositae from<br />

Vietnam, pp. 655-663. In D.J.N. Hind <strong>and</strong> H.J. Beentje, eds. Proceeding of<br />

the International Compositae Conference. Royal Botanic Gardens, Kew.<br />

Durodola, J.J. 1977. Antibacterial property of crude extracts from herbal wound<br />

healing remedy-Ageratum conyzoides. Planta Med. 32: 388-390.<br />

Einhellig, F.A. 2004. Mode of allelochemical action of phenolic compounds, pp.<br />

217-238. In F.A. Macias, J.C.G. Galindo, J.M.G. Molinillo <strong>and</strong> H.G. Cutler,<br />

eds. Allelopathy: Chemistry <strong>and</strong> Mode of Action of Allelochemical. CRC<br />

Press, Boca Raton, Florida.<br />

Ekundayo, O., S. Sharma <strong>and</strong> E.V. Rao. 1988. Essential oil of Ageratum conyzoides.<br />

Planta Med. 54: 55-57.<br />

Elisabetsky, E. <strong>and</strong> L. Wannmacher. 1993. The status of ethnopharmacology in<br />

Brazil. Journal of Ethnopharmacology 38: 137-143.<br />

113


Fagoonee, I. <strong>and</strong> G. Umrit. 1981. Antigonadotropic hormones from Ageratum<br />

conyzoides. Insect Sci Its Appl. 1(4): 373-376.<br />

Farnsworth, N.R. 1966. Biological <strong>and</strong> phytochemical screening of plants. Journal<br />

of Pharmaceutical Sciences 55(3): 225-276.<br />

Fiori, A.C.G., K.R.F. Schwan-Estrada, J.R. Stangarlin, J.B. Vida, C.A. Scapim,<br />

M.E.S. Cruz <strong>and</strong> S.F. Pascholati. 2000. Antifungal activity of leaf extracts<br />

<strong>and</strong> essential oils of some medicinal plants against Didymella bryoniae. J.<br />

Phytopathol. 148: 483-487.<br />

Gbolade, A.A., O.A. Onayade <strong>and</strong> B.A. Ayinde. 1999. Insecticidal activity of<br />

Ageratum conyzoides L. volatile oil against Callosobruchus muculatus f. in<br />

seed treatment <strong>and</strong> fumigation laboratory test. Insect Sci Its Appl 19(2-3):<br />

237-240.<br />

Geissler, P.W., S.A. Harris, R.J. Prince, A. Olsen, R.A. Odhiambo, H. Oketch-Rabah,<br />

P.A. Madiega, A. Anderson <strong>and</strong> P. Molgaard. 2002. Medicinal plants used by<br />

Lou mothers <strong>and</strong> children in Bondo district, Kenya. Journal of<br />

Ethnopharmacology 83: 39-54.<br />

Geissman, T. 1955. Modern Methods of Plant Analysis vol. III. Springer-Verlag,<br />

Berlin, Germany.<br />

Geyid, A., D. Abebe, A. Debella, Z. Makonnen, F. Aberra, F. Teka, T. Kebede, K.<br />

Urga, K. Yersaw, T. Biza, B.H. Mariam <strong>and</strong> M. Guta. 2005. Screening of<br />

some medicinal plants of Ethiopia <strong>for</strong> their anti-microbial properties <strong>and</strong><br />

chemical profiles. Journal of Ethnopharmacology 97: 421-427.<br />

Gill, S., H. Mionskowski, D. Janczewska <strong>and</strong> G. Kapsa. 1978. Flavonoid compounds<br />

of the Ageratum conyzoides L. herb. Acta Pol Pharm 35(2): 241-243.<br />

114


Githens, T.S. 1948. Drug plants of Africa, vol. 8. Univ. Press, Philadelphia. Cited<br />

A. Shirwaikar, P.M. Bhilegaonkar, S. Malini <strong>and</strong> J. Sharath Kumar. 2003.<br />

The gastroprotective of the ethanol extract of Ageratum conyzoides. Journal<br />

of Ethnopharmacology 86: 117-121.<br />

Gonzales, A.G., Z.E. Aguiar, T.A. Grillo, J.G. Luis, A. Rivera <strong>and</strong> J. Calle. 1991a.<br />

Chromenes from Ageratum conyzoides. Phytochemistry 30(4): 1137-1139.<br />

_____, _____, _____, _____, _____ <strong>and</strong> _____. 1984. JCS Perkins Trans 1: 2945.<br />

Cited A.L. Okunade. 2002. Review: Ageratum conyzoides L. (Asteraceae).<br />

Fitoterapia 73: 1-16.<br />

_____, _____, _____, _____, _____ <strong>and</strong> _____. 1991b. Methoxyflavones from<br />

Ageratum conyzoides. Phytochemistry 30(4): 1269-1271.<br />

Gravena, S., A. Coletti <strong>and</strong> P.T. Yamamoto. 1993. Influence of green cover with<br />

Ageratum conyzoides <strong>and</strong> Eupatorium pauciflorum on predatory <strong>and</strong><br />

phytophagous mites in citrus. Bul. OILS-SROP 16: 104-114.<br />

Gurib-Fakim, A., J. Gueho, M. Sewraj-Bissoondoyal <strong>and</strong> E. Dulloo. 1993.<br />

Medicalethnobotany of some <strong>weed</strong>s of Mauritius <strong>and</strong> Rodrigues. Journal of<br />

Ethnopharmacology 39: 175-185.<br />

_____, _____ <strong>and</strong> _____. 1997. The medicinal plants of Maurutius-part 1.<br />

Internation Journal of Pharmacognosy 35(4): 237-254.<br />

Hahn-Deinstrop, E. 1997. Applied Thin-Layer Chromatography: Best<br />

Practice <strong>and</strong> Avoidance of Mistakes. WILEY-VCH Verlag GmbH,<br />

Weinheim, Federal Republic of Germany.<br />

Hilgert, N.I. 2001. Plants used in home medicine in the Zenta River basin, Northwest<br />

Argentina. Journal of Ethnopharmacology 76: 11-34.<br />

115


Hoagl<strong>and</strong>, R.E. <strong>and</strong> R.D. Williams. 2004. Bioassays-Useful tools <strong>for</strong> the study of<br />

allelopathy, pp. 315-351. In F.A. Macias, J.C.G. Galindo, J.M.G. Molinillo<br />

<strong>and</strong> H.G. Cutler, eds. Allelopathy: Chemistry <strong>and</strong> Mode of Action of<br />

Allelochemical. CRC Press, Boca Raton, Florida.<br />

Holdsworth, D.K., W. Chin <strong>and</strong> M.V. Mohiddin. 2001. More medicinal plants of<br />

Brunei Darussalam. J. Trop. Med. Plant 2(1): 133-138.<br />

Hong, N.H., T.D. Xuan, E. Tsuzuki <strong>and</strong> T.D. Khanh. 2004. Paddy <strong>weed</strong> <strong>control</strong> by<br />

highers from Southeast Asia. Crop Prot. 23: 255-261.<br />

Horie, T., H. Tominaga <strong>and</strong> Y. Kawamura. 1993. Revised structure of a <strong>natural</strong><br />

flavone from Ageratum conyzoides. Phytochemistry 32(4): 1076-1077.<br />

Horng, C.J., S.R. Lin <strong>and</strong> A.H. Chen. 1976. Phytochemical study on Ageratum<br />

conyzoides. Taiwan Kexeu 30(3): 101-105.<br />

Hui, W.H. <strong>and</strong> W.K. Lee. 1971. Triterpenoid <strong>and</strong> steroid constituents of some<br />

Lactuca <strong>and</strong> Ageratum species of Hong Kong. Phytochemistry 10: 899-901.<br />

Jaccoud, R.J.S. 1961. Contribuição para o estudo <strong>for</strong>macognóstico do Ageratum<br />

conyzoides L. Rev. Bras. Farm. 42(11/12): 177–197. Cited L.C. Ming.<br />

1999. Ageratum conyzoides: a tropical source of medicinal <strong>and</strong> agricultural<br />

products. In J. Janick, ed. Perspectives on New Crops <strong>and</strong> New Uses.<br />

ASHS Press, Alex<strong>and</strong>ria.<br />

Jain, A., S.S. Katewa, P.K. Galav <strong>and</strong> P. Sharma. 2005. Medicinal plant diversity of<br />

Sitamata wildlife sanctuary, Rajasthan, India. Journal of<br />

Ethnopharmacology 102: 143-157.<br />

Jha, S. <strong>and</strong> M. Dhakal. 1990. Allelopathic effects of various extracts of some herbs<br />

on rice <strong>and</strong> wheat. J. Inst. Agr. Anim. Sci. 11: 121-123.<br />

116


Johns, T., J.O. Kokwaro <strong>and</strong> E.K. Kimanani. 1990. Herbal remedies of the Luo of<br />

Siaya district, Kenya: establishing quantitative criteria <strong>for</strong> consensus.<br />

Economic Botany 44(3): 369-381.<br />

Johnson, M.F. 1971. A monograph of the genus Ageratum L. (Compositae,<br />

Eupatorieae). Ann. Missouri Bot. Gard. 58: 6-88. Cited L.C. Ming. 1999.<br />

Ageratum conyzoides: A Tropical Source of Medicinal <strong>and</strong><br />

Agricultural Products. In J. Janick, ed. Perspectives on New Crops <strong>and</strong><br />

New Uses. ASHS Press, Alex<strong>and</strong>ria.<br />

Joshi, A.R. <strong>and</strong> K. Joshi. 2000. Indigenous knowledge <strong>and</strong> uses of medicinal plants<br />

by local communities of the Kali G<strong>and</strong>aki Watershed Area, Nepal. Journal of<br />

Ethnopharmacology 73: 175-183.<br />

Kamal, R. <strong>and</strong> P. P. Mehra. 1991. Efficacy of pyrethrins extracted from Dusodia<br />

tennifolius <strong>and</strong> Ageratum conyzoides against larvae of Anopheles stephensi.<br />

Pyretthrum Post. 18(2): 70-73.<br />

Kasturi, T.R., E. Thomas <strong>and</strong> E.M. Abraham. 1973. Essential oil of Ageratum<br />

conyzoides: Isolation <strong>and</strong> structure of two new constituents. Ind. J. Chem.<br />

11(2): 91-95.<br />

Kerharo J. <strong>and</strong> J.G. Adam. 1974. La Pharmacopée Sénégalaise Traditionelle<br />

Plantes: Medicinales et Toxiques vol. 1. Paris Vigot, Paris. Cited A.L.<br />

Okunade. 2002. Review: Ageratum conyzoides L. (Asteraceae). Fitoterapia<br />

73: 1-16.<br />

Kirtikar, K.R. <strong>and</strong> M.D. Badu. 1991. Indian Medicinal Plants, vol. 2. 2 nd ed. Lalit<br />

Mohan Basu <strong>and</strong> Company Publication, New Delhi.<br />

Kissmann, G. <strong>and</strong> D. Groth. 1993. Plantas infestantes e nocivas. Sau Paulo, Basf<br />

Brasileira. Cited A.L. Okunade. 2002. Review: Ageratum conyzoides L.<br />

(Asteraceae). Fitoterapia 73: 1-16.<br />

117


Kokwaro, J.O. 1976. Medicinal plants of East Africa. East African Literature<br />

Bureau, Nairobi.<br />

Kong, C., F. Hu, T. Xu <strong>and</strong> Y. Lu. 1999. Allelopathic potential <strong>and</strong> chemical constituents<br />

of volatile from Ageratum conyzoides. J. Chem. Ecol. 25: 2347-2356.<br />

Kshirsagar, R.D. <strong>and</strong> N.P. Singh. 2001. Some less known ethnomedicinal uses from<br />

Mysore <strong>and</strong> Coorg districts, Karnataka state, India. Journal of<br />

Ethnopharmacology 75: 231-238.<br />

Ladeira, A.M., L.B.P. Zaidan <strong>and</strong> R.C.L. Fiqueiredo-Ribeiro. 1987. Aferatum<br />

conyzoides L. (Compositae): Germinação, floração e ocorrência de derivados<br />

fenólicos em diferentes estádios de desenvolvimento. Hoehneo 15: 53-62.<br />

Cited N. Nyunaї, N. Njikam, C. Mounier <strong>and</strong> P. Pastoureau. 2006. Blood<br />

glucose lowering effect of aqueous leaf extracts of Ageratum conyzoides in<br />

rats. African Journal Traditional, Complementary <strong>and</strong> Alternative<br />

Medicines 3(3): 76-79.<br />

Legal, E. 1948. Ber. Chem. 1883. Cited N.R. Farnsworth. 1966. Biological <strong>and</strong><br />

phytochemical screening of plants. Journal of Pharmaceutical Sciences<br />

55(3): 225-276.<br />

Liang, W.G., W. Hui <strong>and</strong> W.K. Lee. 1994. Influence of citrus orchard ground cover<br />

plants on arthropod communities in China. Agric. Ecosyst. Environ. 50: 29-<br />

37.<br />

Lu, R. 1982. Study of insect antijuvenile hormones, chemical composition of<br />

Ageratum conyzoides L. <strong>and</strong> its effect on insects. Kunchoong Zhishi 19(4):<br />

22-25.<br />

Madureira, M.C., A P. Martins, M. Gomes, Jorge Paiva, A.P. Cunha <strong>and</strong> V. Rosario.<br />

2002. Antimalarial activity of medicinal plants used in traditional medicine in<br />

S. Tomé <strong>and</strong> Principe isl<strong>and</strong>s. Journal of Ethnopharmacology 81: 23-29.<br />

118


Magalhaes, J.F.G., C.F.G. Viana, A.G.M. Aragao Junior, V.G. Moraes, R.A. Ribeiro<br />

<strong>and</strong> M.R. Vale. 1997. Analgesic <strong>and</strong> anti-inflammatory activities of<br />

Ageratum conyzoides in rats. Phytotherapy Research 11: 183-188.<br />

Magalhaes, P.M., I. Montanari <strong>and</strong> G.M. Ferreira. 1997. Large Scale Cultivation of<br />

Ageratum conyzoides L. Unicamp-Cpqba, Campinas.<br />

Marques-Neto, J.F., A. Lapa <strong>and</strong> M. Kubota. 1988. Efeitos do Ageratum conyzoides<br />

Lineé no tratamento da artrose. Rev. Brass. Reumat. 28(4): 34-37. Cited<br />

A.L. Okunade. 2002. Review: Ageratum conyzoides L. (Asteraceae).<br />

Fitoterapia 73: 1-16.<br />

Merck, E. 1980. Dyeing Reagents <strong>for</strong> Thin Layer <strong>and</strong> Paper Chromatography.<br />

B. Grim Healthcare Co. LTD, Darmstadt, Federal Republic of Germany.<br />

Ming, L.C. 1999. Ageratum conyzoides: a tropical source of medicinal <strong>and</strong><br />

agricultural products. In J. Janick, ed. Perspectives on New Crops <strong>and</strong> New<br />

Uses. ASHS Press, Alex<strong>and</strong>ria.<br />

Mishra, D.N., V. Dixit <strong>and</strong> A.K. Mishra. 1991. Mycotoxic evaluation of some higher<br />

plants against ringworm causing fungi. Indian Drugs 28(7): 300-303.<br />

Molish, H. 1937. Der Einfluss einer Pflanze auf die <strong>and</strong>ere-Allelopathic. G. Fischer,<br />

Jana, Germany. Cited R.E. Hoagl<strong>and</strong> <strong>and</strong> R.D. Williams. 2004. Bioassays-<br />

Useful tools <strong>for</strong> the study of allelopathy. In F.A. Macias, J.C.G. Galindo,<br />

J.M.G. Molinillo <strong>and</strong> H.G. Cutler, eds. Allelopathy: Chemistry <strong>and</strong> Mode<br />

of Action of Allelochemical. CRC Press, Boca Raton, Florida.<br />

Moody, J.O., O.A. Adebiyi <strong>and</strong> B.A. Adeniyi. 2004. Do Aloe vera <strong>and</strong> Ageratum<br />

conyzoides enhance the anti-microbial activity of traditional medicinal soft<br />

soaps (Osedudu). Journal of Ethnopharmacology 92: 57-60.<br />

119


Moshi, M.J., G.A.B. Kagashe <strong>and</strong> Z.H. Mbwambo. 2005. Plants used to treat<br />

epilepsy by Tanzanian traditional healers. Journal of Ethnopharmacology<br />

97: 327-336.<br />

Moura, A.C.A., E.L.F. Silva, M.C.A. Fraga, A.G. W<strong>and</strong>erley, P. Afiatpour <strong>and</strong><br />

M.B.S. Maia. 2005. Antiinflammatory <strong>and</strong> chronic toxicity study of the<br />

leaves of Ageratum conyzoides L. in rats. Phytomedicine 12: 138-142.<br />

Nair, A.G.R., J.P. Kotiyal <strong>and</strong> S.S. Subramaian. 1977. Chemical constituents of the<br />

leaves of Ageratum conyzoides. Ind J. Pharm. 39(5): 108-109.<br />

Nébié, R.H.C., R.T. Yaméogo, A. Bélanger <strong>and</strong> F.S. Sib. 2004. Composition<br />

chimique des huiles essentielles d’ Ageratum conyzoides du Burkina Faso.<br />

Comtes Rendus Chimie 7(10-11): 1019-1022.<br />

Neogi, B., M.N.V. Prasad <strong>and</strong> R.R. Rao. 1989. Ethnobotany of some <strong>weed</strong>s of Khasi<br />

<strong>and</strong> Garo Hills, Meghalaya, Northeastern India. Economic Botany 43(4):<br />

471-479.<br />

Noumi, E. 2004. Animal <strong>and</strong> plant poisons <strong>and</strong> their antidotes in Eseka <strong>and</strong><br />

Mbalmayo regions, Centre province, Cameroon. Journal of<br />

Ethnopharmacology 93: 231-241.<br />

_____ <strong>and</strong> T.W. Dibakto. 2000. Medicinal plants used <strong>for</strong> peptic ulcer in the<br />

Bangangte region, Western Cameroon. Fitoterapia 71: 406-412.<br />

Novy, J.W. 1997. Medicinal plants of the eastern region of Madagascar. Journal of<br />

Ethnopharmacology 55: 119-126.<br />

Okunade, A.L. 1981. Ph.D. Thesis, University of Ibadan. Cited A.L. Okunade.<br />

2002. Review: Ageratum conyzoides L. (Asteraceae). Fitoterapia 73: 1-16.<br />

120


_____. 2002. Review: Ageratum conyzoides L. (Asteraceae). Fitoterapia 73: 1-16.<br />

Okwori, A.E.J., C.O. Dine, S. Junaid, I.O. Okeke, J.A. Adetunji <strong>and</strong> A.O. Olabode.<br />

2007. Antibacterial activities of Ageratum conyzoides extracts on selected<br />

bacterial pathogens. Int. J. Microbial. 4(1).<br />

Oliveira, F., M.K. Akisue <strong>and</strong> L.O. Garcia. 1993. Caracterização farmacognóstica da<br />

droga e do extrato fluido de mentrasto, Ageratum conyzoides L. Lecta 11(1):<br />

63-100. Cited L.C. Ming. 1999. Ageratum conyzoides: a tropical source of<br />

medicinal <strong>and</strong> agricultural products. In J. Janick, ed. Perspectives on New<br />

Crops <strong>and</strong> New Uses. ASHS Press, Alex<strong>and</strong>ria.<br />

Pari, K., P.J. Rao, B. Subrahmanyam, J.N. Rasthogi <strong>and</strong> C. Devakumar. Benzofuran<br />

<strong>and</strong> other constituents of the essential oil of Ageratum conyzoides. 1998.<br />

Phytochemistry 49(5): 1385-1388.<br />

Pattnaik, S., V.R. Subramanyam <strong>and</strong> C. Kole. 1996. Antibacterial <strong>and</strong> antifungal<br />

activity of ten essential oil in vitro. Microbioscience 86(349): 237-246.<br />

Pérez, A.E. 1953. Plantas ứtiles de Colombia. Bogotá, Colombia.<br />

Perumal Samy, R., S. Ignacimuthu <strong>and</strong> D. Patric Raja. 1999. Preliminary screening<br />

of ethnomedicinal plants from India. Journal of Ethnopharmacology 66:<br />

235-240.<br />

Pham, T.T.T. <strong>and</strong> V.D. Nguyen. 1976. Contribution to the study of Ageratum<br />

conyzoides L. Tap Chi Hoa Hoc 14(2): 29-32.<br />

Prasad, K. <strong>and</strong> V.C. Srivastava. 1991. Teletoxic effect of some <strong>weed</strong>s on<br />

germination <strong>and</strong> initial growth of ground nut (Arachis hypogea). Ind. J. Agr.<br />

Sci. 61: 493-494.<br />

121


Pu, T.S., K.Y. Liao <strong>and</strong> T. Chang. 1990. Investigations on predations mite resources<br />

in citrus orchards in Guang Xi <strong>and</strong> their utilization. Acta Phytophyarica Sin.<br />

17: 355-358.<br />

Quijano, L., J.S. Calderson, G.F. Gomez <strong>and</strong> T. Rios. 1982. Two<br />

polymethoxyflavones from Ageratum conyzoides . Phytochemistry 21: 2965-<br />

2967.<br />

Raffauf, R.F. <strong>and</strong> M.B. Flogler 1960. Alkaloids of the Apocynaceae. Econ. Botany<br />

14: 37-55. Cited N.R. Farnsworth. 1966. Biological <strong>and</strong> phytochemical<br />

screening of plants. Journal of Pharmaceutical Sciences 55(3): 225-276.<br />

_____. 1962. Simple field test <strong>for</strong> alkaloid-containing plants. Econ. Botany 16:<br />

171-172. Cited N.R. Farnsworth. 1966. Biological <strong>and</strong> phytochemical<br />

screening of plants. Journal of Pharmaceutical Sciences 55(3): 225-276.<br />

Raja, S.S., A. Singh <strong>and</strong> S. Rao. 1987. Effect of Ageratum conyzoides on Chilo<br />

partellus Swinhoe (Lepidoptera: Pyralidae). J. Anim. Morphol. Physiol.<br />

34(1-2): 35-37.<br />

Rao, J.T. <strong>and</strong> S.S. Nigam. 1973. Chemical investigation of ether oils recovered from<br />

Ageratum conyzoides. Riechstoffe Aromen Koerperpflegemittel 23(7): 209-<br />

212.<br />

Rasaonaivo, P., A. Petitjean, S. Ratsimamanga-Urverg <strong>and</strong> A. Rakoto-Ratsimamanga.<br />

1992. Medicinal plants used to treat malaria in Madagascar. Journal of<br />

Ethnopharmacology 37: 117-127.<br />

Riaz, M., M.R. Khalid <strong>and</strong> F.M. Chaudhary. 1995. Essential oil composition of<br />

Pakistan Ageratum conyzoides L. Essent. Oil Res. 79(5): 551-553.<br />

122


Rosenthaler, L. 1930. The Chemical Investigation Plants. Bell <strong>and</strong> Sons, Ltd.,<br />

London, Engl<strong>and</strong>. Cited N.R. Farnsworth. 1966. Biological <strong>and</strong><br />

phytochemical screening of plants. Journal of Pharmaceutical Sciences<br />

55(3): 225-276.<br />

Saxena, A. <strong>and</strong> R.C. Saxena. 1992. Effects of Ageratum conyzoides extract on the<br />

developmental stages of malaria vector, Anopheles stephensi (Diptera:<br />

Culicidae). Journal of Environmental Biology 13(3): 207-209.<br />

Shabana, N., S.I. Husian <strong>and</strong> S. Nisar. 1991. Allelopathoc effects of some plants on<br />

the larval emergence of Meloidogyne incognita. J. Indian Appl. Pure Bio. 5:<br />

129-130.<br />

Sharma, P.D. <strong>and</strong> O.M.P Sharma. 1995. Natural products chemistry <strong>and</strong> biological<br />

properties of the Ageratum plant. Toxicol. Environ. Chem. 50(1-4): 213-232.<br />

Shirwaikar, A., P.M. Bhilegaonkar, S. Malini <strong>and</strong> J. Sharath Kumar. 2003. The<br />

gastroprotective of the ethanol extract of Ageratum conyzoides. Journal of<br />

Ethnopharmacology 86: 117-121.<br />

Shrestha I. <strong>and</strong> N. Joshi. 1993. Medicinal plants of the Lele village of Lalitpur<br />

district, Nepal. Int. J. Pharmacog. 31(2): 130-134.<br />

Silva, M.J.M. <strong>and</strong> M.R. Vale. 1991. Resumos VI Reunião Annual da Federação<br />

das Sociedades de Biologia Experimental, Caxambu.<br />

Simes, J.J.H., J.G. Tracey, L.J. Webb <strong>and</strong> W.J. Dunstan. 1959. An Australian<br />

phytochemical survey, III: Saponin in Eastern Australian flowering plants.<br />

Australia Commnwealth Sci. Ind. Res. Organ., Bull. 281. Cited N.R.<br />

Farnsworth. 1966. Biological <strong>and</strong> phytochemical screening of plants.<br />

Journal of Pharmaceutical Sciences 55(3): 225-276.<br />

123


Singh, A.K., A.S. Raghubanshi <strong>and</strong> J.S. Singh. 2002. Medical ethnobotany of the<br />

tribals of Sonaghati of Sonbhadra district, Uttar Pradesh, India. Journal of<br />

Ethnopharmacology 81: 31-41.<br />

Smitin<strong>and</strong>, T. 1980. Thai Plant Names (Botanical Names – Vernacular Names).<br />

2 nd ed. Funny Publishing, Bangkok.<br />

Sofowora, A. 1984. Medicinal Plants <strong>and</strong> Traditional Medicine in Africa. Wiley,<br />

Ibadan.<br />

Soine, T.O. 1964. Naturally occurring coumarins <strong>and</strong> related physiological activites.<br />

J. Pharm. Sci. 53(3): 231-264. Cited N.R. Farnsworth. 1966. Biological<br />

<strong>and</strong> phytochemical screening of plants. Journal of Pharmaceutical Sciences<br />

55(3): 225-276.<br />

Stahl, E. <strong>and</strong> P.J. Schorn. 1961. Thin layer chromatography of hydrophilic medicinal<br />

plant extracts, VIII: Coumarins, flavones derivatives, hydroxyl acid, tannins,<br />

anthracene derivatives <strong>and</strong> lichens. Physiol. Chem. 263. Cited N.R.<br />

Farnsworth. 1966. Biological <strong>and</strong> phytochemical screening of plants.<br />

Journal of Pharmaceutical Sciences 55(3): 225-276.<br />

Sujatha, C.H., S. Nisar <strong>and</strong> C. Jadhi. 1988. Evaluation of plant extracts <strong>for</strong> biological<br />

activity against mosquitoes. Int. Pest Control 7: 122-124.<br />

Sundt, E. <strong>and</strong> A. Saccardi. 1962. Thin layer chromatography <strong>and</strong> paper<br />

chromatography of vanilla flavoring compounds. Food Technol. 16(4): 89-<br />

90. Cited N.R. Farnsworth. 1966. Biological <strong>and</strong> phytochemical screening of<br />

plants. Journal of Pharmaceutical Sciences 55(3): 225-276.<br />

Sur, N., R. Poi, A. Bhattacharyya <strong>and</strong> N.J. Adityachoudhury. 1997. Isolation of<br />

aurantiamide acetate from Ageratum conyzoides. Ind Chem Soc 74(3): 249.<br />

124


Suresh, B., S. Dhanasekaran, R.V. Kumar <strong>and</strong> S. Balasubramanian. 1994.<br />

Ethnopharmacological studies on the medicinal plants in Nilgiris. Indian<br />

Drugs 32(7): 340-352.<br />

Tongma, S., K. Kobayachi <strong>and</strong> K. Usui. 1997. Effect of water extract of Maxican<br />

sunflower (Tithonia diversifolia (Hemsl.) A. Gray) on germination <strong>and</strong> growth<br />

of tested plants. J. Weed Sci Tech 42(4): 432-437.<br />

Trigo, J.R., S. Campos <strong>and</strong> A.M. Pereira. 1988. Presença de alcalóides<br />

pirrolizidinicos em Ageratum conyzoides L., pp. 13. In Simposio de Plantas<br />

Medicinais do Brazil, Sao Poulo (Resomos). Cited N. Nyunaї, N. Njikam,<br />

C. Mounier <strong>and</strong> P. Pastoureau. 2006. Blood glucose lowering effect of<br />

aqueous leaf extracts of Ageratum conyzoides in rats. African Journal<br />

Traditional, Complementary <strong>and</strong> Alternative Medicines 3(3): 76-79.<br />

Ueda, J., Y. Tezuka, A.H. Banskota, Q.L. Tran, Q.K. Tran, Y. Harimaya, I. Saiki <strong>and</strong><br />

S. Kadota. 2002. Antiproliferative activity of Vietnamese medicinal plants.<br />

Biol. Pharm. Bull. 25(6): 753-760.<br />

Vajrodaya, S. 1986. The Study of Coumarins <strong>and</strong> Flavonoids from Ageratum<br />

conyzoides Leaves. M.S. Thesis, Chulalongkorn University.<br />

Vera, R. 1993. Chemical composition of the essential oil of Ageratum conyzoides L.<br />

(Asteraceae) from Réunion. Falvour Fragrance J. 8: 256-260.<br />

Vickery, L.M. <strong>and</strong> B. Vickery. 1981. Secondary Plant Metabolism. The Macmillan<br />

Press, Ltd., London.<br />

Vlietinck, A.J., L. Van. Hoof, J. Totte, A. Lasure, D. V<strong>and</strong>en Berghe, P.C. Rwangabo<br />

<strong>and</strong> J. Mvukiyumwami. 1995. Screening of hundred Rw<strong>and</strong>ese medicinal<br />

plants <strong>for</strong> anti-microbial <strong>and</strong> antiviral properties. Journal of<br />

Ethnopharmacology 46: 31-47.<br />

125


Vyas, A.V. <strong>and</strong> N.B. Mulch<strong>and</strong>ani. 1986. Polyoxygenated flavones from Ageratum<br />

conyzoides. Phytochemistry 25(11): 2625-2627.<br />

Wall, M.E., M.M. Krider, C.F. Krewson, C.R. Eddy, J.J. Willaman, D.S. Corell <strong>and</strong><br />

H.S. Gentry. 1954. Steroidal saponins, VII: Survey of plants <strong>for</strong> steroidal<br />

saponins <strong>and</strong> other constituents. J. Am. Pharm. Assoc. 43: 1-7. Cited N.R.<br />

Farnsworth. 1966. Biological <strong>and</strong> phytochemical screening of plants.<br />

Journal of Pharmaceutical Sciences 55(3): 225-276.<br />

W<strong>and</strong>ji, J., M.F. Bissangou, J.M. Ouambra, T. Silou, A. Abena <strong>and</strong> A. Keita. 1996.<br />

Ageratum conyzoides essential oil. Fitoterapia 67(5): 427-431.<br />

Webb, L.J. 1949. An Australian phytochemical survey, I: Alkaloids <strong>and</strong><br />

cyanogenetic compounds in Queensl<strong>and</strong> plants. Australia Commonwealth<br />

Sci. Ind. Res. Organ., Bull. 241. Cited N.R. Farnsworth. 1966. Biological<br />

<strong>and</strong> phytochemical screening of plants. Journal of Pharmaceutical Sciences<br />

55(3): 225-276.<br />

Widodo, G.P., E.Y. Suk<strong>and</strong>ar <strong>and</strong> J.K. Adyana. 2008. A coumarin from Ageratum<br />

leaves (Ageratum conyzoides L.). International Journal of Pharmacology<br />

4(1): 56-59.<br />

Wiedenfeld, H. <strong>and</strong> E. Roder. 1991. Pyrrolizidine alkaloids from Ageratum<br />

conyzoides. Planta Med 57: 578-579.<br />

Xuan, T.D., T. Shinkichi, N.H. Hong, T.D. Khanh <strong>and</strong> C.I. Min. 2004. Assessment<br />

of phytotoxic action of Ageratum conyzoides L. (billy goat <strong>weed</strong>) on <strong>weed</strong>s.<br />

Crop Protection 23: 915-922.<br />

Yadara, R.N. <strong>and</strong> S. Kumar. 1999. A novel isoflavone from the stems of Ageratum<br />

conyzoides . Fitoterapia 70: 475-477.<br />

126


APPENDIX<br />

127


Preparation of reagents <strong>for</strong> phytochemical screening<br />

1. Dragendorff’s reagent<br />

Solution A:<br />

Bismuth sub nitrate (BiO(NO3).H2O): AR grade Merck 0.85 g<br />

Glacial acetic acid (CH3COOH): AR grade Merck 10.0 ml<br />

Distilled water (H2O): 16 MΩ/cm Millipore 40.0 ml<br />

Solution B:<br />

Potassium iodide (KI): AR grade Univar 8.0 g<br />

Distilled water (H2O): 16 MΩ/cm Millipore 20.0 ml<br />

Solution C:<br />

Glacial acetic acid (CH3COOH): AR grade Merck 20.0 ml<br />

Distilled water (H2O): 16 MΩ/cm Millipore 80.0 ml<br />

Be<strong>for</strong>e use, 5 ml of solution A was mixed with 5 ml of solution B <strong>and</strong> 100<br />

ml of solution C. Amines <strong>and</strong> basic heterocycles like pyridine produce brown-orange<br />

spots at retention time. Phosphines <strong>and</strong> crown ethers are also detected (Farnsworth,<br />

1966).<br />

2. Anisaldehyde-sulfuric acid<br />

The reagent was freshly prepared be<strong>for</strong>e use by mixture of 0.5 ml<br />

anisaldehyde (C8H8O2 : AR grade Fluka) in 50 ml Glacial acetic acid <strong>and</strong> 1 ml 97%<br />

sulfuric acid (H2SO4 : AR grade Fisher Scientific) following by heating on oven<br />

(Sanyo OMT) at 100-105 °C until maximal visualization of the spots.<br />

Colorful spots will occur varies on the compound: terpene (red), sugar<br />

(grey), steroid (green), phenol (blue) <strong>and</strong> lichen (violet). Good <strong>for</strong> all things with<br />

128


active methylene, <strong>and</strong> <strong>for</strong> distinguishing closely-spaced spots on TLC by their color<br />

difference (Merck, 1980).<br />

3. Kedde’s reagent<br />

The reagent was freshly prepared by mixture of Kedde I, 5 ml of 3%<br />

ethanolic-3,5-dinitrobenzoic acid (C7H4N2O6 : AR grade Fluka) <strong>and</strong> Kedde II, 5 ml of<br />

2 M ethanolic potassium hydroxide (KOH: AR grade Univar) <strong>and</strong> evaluated in the air.<br />

The reagent was useful <strong>for</strong> detection of C17 unsaturated lactone ring like cardiac<br />

glycoside. The present of purple color was assessed as positive result (Farnsworth, 1966).<br />

4. Raymond’s reagent<br />

The reagent was freshly prepared by Raymond I, 5 ml of 2% ethanolic-<br />

1,3-dinitrobenzene (C6H4N2O4 : AR grade Fluka) mixed with Raymond II, 5 ml of 5%<br />

ethanolic potassium hydroxide <strong>and</strong> evaluated in the air.<br />

The reagent was useful <strong>for</strong> detection of C17 unsaturated lactone ring like<br />

cardiac glycoside. The present of blue color was assessed as positive result<br />

(Farnsworth, 1966).<br />

5. 10% Sodium hydroxide<br />

Dissolved 8 g of pellets sodium hydroxide (NaOH: AR grade Mallinckrodt)<br />

in 100 ml ethanol. After spraying, evaluate in the air. The chemical constituent was<br />

detected as yellow-green fluorescence by visualization under UV light at wavelength<br />

365 nm (Farnsworth, 1966).<br />

129


6. Iodine<br />

Iodine vapor chamber is made from a TLC jar by adding iodine crystals<br />

(May & Baker LTD Dagenham Engl<strong>and</strong>). Put dry TLC in the chamber <strong>and</strong> watch the<br />

spots to going. This technique works on variety compounds but often not very<br />

sensitive. Iodine stained TLC can be developed subsequently with other stains<br />

(Merck, 1980)<br />

130


Appendix Table 1 Retention time (Rt) <strong>and</strong> UV spectrum of peak detected from<br />

Peak Rt<br />

(min)<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

I<br />

J<br />

K<br />

L<br />

M<br />

HPLC chromatogram<br />

9.122<br />

10.595<br />

10.991<br />

12.364<br />

14.357<br />

21.842<br />

25.133<br />

14.389<br />

15.622<br />

14.346<br />

15.583<br />

9.178<br />

10.647<br />

UV spectrum<br />

λmax MeOH (nm) 202, 202.5(sh), 210(sh), 242, 267,<br />

336<br />

λmax MeOH (nm) 197(sh), 200, 214, 265, 320<br />

λmax MeOH (nm) 197, 200(sh), 225, 227(sh), 284<br />

λmax MeOH (nm) 202(sh), 207, 212, 264, 266(sh),<br />

327<br />

λmax MeOH (nm) 198, 217.5, 273, 282.5(sh), 302,<br />

314(sh)<br />

λmax MeOH (nm) 198, 200(sh), 233(sh)<br />

λmax MeOH (nm) 200(sh), 202<br />

λmax MeOH (nm) 200(sh), 212, 230(sh), 270(sh),<br />

282(sh), 302, 314(sh)<br />

λmax MeOH (nm) 198, 222, 274(sh), 285(sh), 305,<br />

317.5(sh)<br />

λmax MeOH (nm) 209, 230(sh), 270(sh), 282(sh), 302,<br />

314(sh)<br />

λmax MeOH (nm) 198, 202.5(sh), 222, 275(sh),<br />

286(sh), 306, 317(sh)<br />

λmax MeOH (nm) 198(sh), 200, 207(sh), 242, 265,<br />

335<br />

λmax MeOH (nm) 198(sh), 200, 214, 216(sh), 265,<br />

320<br />

131


Appendix Table 1 (Continued)<br />

Peak Rt<br />

(min)<br />

N<br />

O<br />

P<br />

Q<br />

R<br />

S<br />

T<br />

U<br />

V<br />

W<br />

X<br />

Y<br />

11.041<br />

12.436<br />

14.402<br />

20.136<br />

14.345<br />

15.601<br />

10.214<br />

14.365<br />

15.583<br />

8.305<br />

14.372<br />

21.183<br />

UV spectrum<br />

λmax MeOH (nm) 198, 200(sh), 212(sh), 225, 227(sh),<br />

283<br />

λmax MeOH (nm) 206, 212(sh), 218(sh), 268, 323<br />

λmax MeOH (nm) 198, 218, 272, 282(sh), 302,<br />

314(sh)<br />

λmax MeOH (nm) 198, 200(sh), 226, 233(sh)<br />

λmax MeOH (nm) 208, 232.5(sh), 272(sh), 282(sh),<br />

302, 314(sh)<br />

λmax MeOH (nm) 198, 223, 274(sh), 286(sh), 305,<br />

315(sh)<br />

λmax MeOH (nm) 197(sh), 199, 220, 228(sh), 275,<br />

285(sh), 320<br />

λmax MeOH (nm) 208(sh), 212(sh), 222(sh), 237(sh),<br />

268(sh), 272(sh), 285, 314,<br />

λmax MeOH (nm) 196(sh), 198, 215, 227(sh), 275(sh),<br />

285(sh), 305, 316(sh)<br />

λmax MeOH (nm) 197, 199, 223, 225(sh), 270(sh),<br />

280, 292(sh)<br />

λmax MeOH (nm) 198, 217, 272, 282(sh), 302,<br />

314(sh)<br />

λmax MeOH (nm) 197.5, 200, 232(sh)<br />

132


Appendix Table 2 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Oryza sativa L. cultivar Hom Mali 105 at 95%<br />

significant level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 16467.857 2744.643 20.912**<br />

Within groups 21 2756.250 131.250<br />

Total 27 19224.107<br />

Between groups 6 2369.429 3949.405 51.634**<br />

Within groups 21 1606.250 76.488<br />

Total 27 25302.679<br />

Between groups 6 23912.500 3985.417 55.107 **<br />

Within groups 21 1518.750 72.321<br />

Total 27 25431.250<br />

Between groups 6 43.296 7.216 35.370 **<br />

Within groups 21 4.284 0.204<br />

Total 27 47.581<br />

Between groups 6 111.549 18.592 12.820 **<br />

Within groups 21 30.455 1.450<br />

Total 27 142.004<br />

CV (GERM 3 DAY) = 19.86 %<br />

CV (GERM 5 DAY) = 12.34 %<br />

CV (GERM 7 DAY) = 11.94 %<br />

CV (SHOOT) = 24.02 %<br />

CV (ROOT) = 41.13 %<br />

** significantly different at 95% significant level<br />

133


Appendix Table 3 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Brassica chinensis L. var. chinensis at 95%<br />

significant level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 13125.000 2187.500 20.417**<br />

Within groups 21 2250.000 107.143<br />

Total 27 15375.000<br />

Between groups 6 13896.429 2316.071 28.505**<br />

Within groups 21 1706.250 81.250<br />

Total 27 15602.679<br />

Between groups 6 14023.214 2337.202 28.978**<br />

Within groups 21 1693.750 80.655<br />

Total 27 15716.964<br />

Between groups 6 31.720 5.287 48.490**<br />

Within groups 21 2.920 0.109<br />

Total 27 34.010<br />

Between groups 6 39.304 6.551 95.637**<br />

Within groups 21 1.438 0.068<br />

Total 27 40.742<br />

CV (GERM 3 DAY) = 19.72 %<br />

CV (GERM 5 DAY) = 16.66 %<br />

CV (GERM 7 DAY) = 16.49 %<br />

CV (SHOOT) = 16.47 %<br />

CV (ROOT) = 15.96 %<br />

** significantly different at 95% significant level<br />

134


Appendix Table 4 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Ipomoea aquatica Forssk. at 95% significant<br />

level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 23155.357 3859.226 40.270**<br />

Within groups 21 2012.500 95.833<br />

Total 27 25167.857<br />

Between groups 6 24335.714 4055.952 40.925**<br />

Within groups 21 2081.250 99.107<br />

Total 27 26416.964<br />

Between groups 6 25648.214 4274.702 34.946**<br />

Within groups 21 2568.750 122.321<br />

Total 27 28216.964<br />

Between groups 6 97.233 16.205 27.897**<br />

Within groups 21 12.199 0.581<br />

Total 27 109.432<br />

Between groups 6 149.969 24.949 53.756**<br />

Within groups 21 9.747 0.464<br />

Total 27 159.443<br />

CV (GERM 3 DAY) = 14.20 %<br />

CV (GERM 5 DAY) = 14.11 %<br />

CV (GERM 7 DAY) = 15.37 %<br />

CV (SHOOT) = 18.96 %<br />

CV (ROOT) = 17.26 %<br />

** significantly different at 95% significant level<br />

135


Appendix Table 5 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Tridax procumbens L. at 95% significant level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 23673.214 3945.536 59.716**<br />

Within groups 21 1387.500 66.071<br />

Total 27 25060.714<br />

Between groups 6 27800.000 4633.333 42.654**<br />

Within groups 21 2281.250 108.631<br />

Total 27 30081.250<br />

Between groups 6 28630.357 4771.726 41.11**<br />

Within groups 21 2437.50 116.071<br />

Total 27 31067.857<br />

Between groups 6 11.463 1.910 10.547**<br />

Within groups 21 3.804 0.181<br />

Total 27 15.267<br />

Between groups 6 8.639 1.440 9.430**<br />

Within groups 21 3.207 0.153<br />

Total 27 11.846<br />

CV (GERM 3 DAY) = 19.45 %<br />

CV (GERM 5 DAY) = 19.36 %<br />

CV (GERM 7 DAY) = 17.64 %<br />

CV (SHOOT) = 38.92 %<br />

CV (ROOT) = 36.46 %<br />

** significantly different at 95% significant level<br />

136


Appendix Table 6 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Mimosa pigra L. at 95% significant level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 335.714 55.952 5.222**<br />

Within groups 21 225.000 10.714<br />

Total 27 560.714<br />

Between groups 6 280.357 46.726 6.826**<br />

Within groups 21 143.750 6.845<br />

Total 27 424.107<br />

Between groups 6 500.000 83.333 23.333**<br />

Within groups 21 75.000 3.571<br />

Total 27 575.000<br />

Between groups 6 179.315 29.886 254.361**<br />

Within groups 21 2.467 0.117<br />

Total 27 181.782<br />

Between groups 6 12.497 2.083 32.062**<br />

Within groups 21 1.364 0.065<br />

Total 27 13.861<br />

CV (GERM 3 DAY) = 3.83 %<br />

CV (GERM 5 DAY) = 2.68 %<br />

CV (GERM 7 DAY) = 1.94 %<br />

CV (SHOOT) = 8.27 %<br />

CV (ROOT) = 16.60 %<br />

** significantly different at 95% significant level<br />

137


Appendix Table 7 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Cenchrus echinatus L. at 95% significant level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 5085.714 847.619 9.889**<br />

Within groups 21 1800.000 85.714<br />

Total 27 6885.714<br />

Between groups 6 6100.000 1016.667 11.091**<br />

Within groups 21 1925.000 91.667<br />

Total 27 8025.000<br />

Between groups 6 6817.857 1136.310 14.685**<br />

Within groups 21 1625.000 77.381<br />

Total 27 8442.857<br />

Between groups 6 45.195 7.533 33.085**<br />

Within groups 21 4.781 0.228<br />

Total 27 49.976<br />

Between groups 6 15.765 2.268 8.707**<br />

Within groups 21 6.337 0.302<br />

Total 27 22.107<br />

CV (GERM 3 DAY) = 20.25 %<br />

CV (GERM 5 DAY) = 18.24 %<br />

CV (GERM 7 DAY) = 16.42 %<br />

CV (SHOOT) = 32.03 %<br />

CV (ROOT) = 52.74 %<br />

** significantly different at 95% significant level<br />

138


Appendix Table 8 Analysis of Variance (ANOVA) of germination percentage, shoot<br />

<strong>and</strong> root length of Echinochloa colona (L.) Link at 95%<br />

significant level<br />

GERM<br />

3 DAY<br />

GERM<br />

5 DAY<br />

GERM<br />

7 DAY<br />

SHOOT<br />

ROOT<br />

df Sum of Square Mean Square F<br />

Between groups 6 6908.929 1151.488 14.330**<br />

Within groups 21 1687.500 80.357<br />

Total 27 8596.429<br />

Between groups 6 10398.214 1733.036 20.360**<br />

Within groups 21 1787.500 85.119<br />

Total 27 12185.714<br />

Between groups 6 22905.357 3817.560 40.721**<br />

Within groups 21 1968.750 93.750<br />

Total 27 24874.107<br />

Between groups 6 18.377 3.063 3.781**<br />

Within groups 21 17.012 0.810<br />

Total 27 35.388<br />

Between groups 6 3.463 0.577 4.125**<br />

Within groups 21 2.938 0.140<br />

Total 27 6.401<br />

CV (GERM 3 DAY) = 25.88 %<br />

CV (GERM 5 DAY) = 22.66 %<br />

CV (GERM 7 DAY) = 14.94 %<br />

CV (SHOOT) = 66.56 %<br />

CV (ROOT) = 72.32 %<br />

** significantly different at 95% significant level<br />

139


Less hairy-blue head more hairy-blue head more hairy-white head<br />

Appendix figure 1 Three populations of A. conyzoides L.<br />

140


pump<br />

Mobile phase<br />

reservoir<br />

Monometer<br />

sample<br />

254 nm UV<br />

detector<br />

Appendix Figure 2 MPLC Instrumentation<br />

Reference cell<br />

column<br />

fractions<br />

141


pump<br />

Mixer<br />

Solvent<br />

(mobile phase)<br />

Injector<br />

Column<br />

Waste<br />

Appendix Figure 3 Agilent Technologies Instrumentation<br />

Chromatogram<br />

Detector<br />

UV/DAD<br />

142


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18<br />

A B C D E<br />

Appendix Figure 4 TLC in<strong>for</strong>mation (under 254 nm UV light) of eighteen fractions<br />

collected from Column Chromatography<br />

143


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18<br />

A B C D E<br />

Appendix Figure 5 TLC in<strong>for</strong>mation (under 365 nm UV light) of eighteen fractions<br />

collected from Column Chromatography<br />

144


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18<br />

A B C D E<br />

Appendix Figure 6 Dragendorff’s reagent detection of fraction D combined from<br />

Column Chromatography<br />

145


15 cm<br />

Rf value 0.83<br />

Appendix Figure 7 TLC chromatogram of crystal from fraction C developing in<br />

dichloromethane:ethyl acetate:methanol (75:20:5) solvent system<br />

146


15 cm<br />

Rf value 0.28<br />

Appendix Figure 8 TLC chromatogram of crystal from fraction C developing in<br />

dichromethane solvent system<br />

147


15 cm<br />

Appendix Figure 9 TLC chromatogram of crystal from fraction C developing in<br />

benzene:chloro<strong>for</strong>m (7:3) solvent system<br />

Rf value 0.34<br />

148


15 cm<br />

Appendix Figure 10 TLC chromatogram of crystal from fraction C developing in<br />

chloro<strong>for</strong>m:acetone (9:1) solvent system<br />

Rf value 0.77<br />

149


CURRICULUM VITAE<br />

NAME : Ms. Buakhao Hongsachum<br />

BIRTH DATE : February 01, 1981<br />

BIRTH PLACE : Nakhon Phanom, Thail<strong>and</strong><br />

EDUCATION : YEAR INSTITUTE DEGREE/DIPLOMA<br />

2004 Kasetsart Univ. B.Sc. (Biology)<br />

2008 Kasetsart Univ. M.S. (Botany)<br />

POSITION/TITLE :<br />

WORK PLACE :<br />

SCHOLARSHIP/AWARD : Development <strong>and</strong> Promotion of Science <strong>and</strong><br />

Technology Talented Project (DPST Project)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!