02.08.2013 Views

Dark Energy in f(R) Gravity - Indiana University

Dark Energy in f(R) Gravity - Indiana University

Dark Energy in f(R) Gravity - Indiana University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dark</strong> <strong>Energy</strong> <strong>in</strong> f(R) <strong>Gravity</strong><br />

Nikodem J. Popławski<br />

<strong>Indiana</strong> <strong>University</strong><br />

16 th Midwest Relativity Meet<strong>in</strong>g<br />

Wash<strong>in</strong>gton <strong>University</strong> <strong>in</strong> St. Louis,<br />

St. Louis, MO<br />

18 XI MMVI


Cosmic acceleration<br />

NASA / WMAP<br />

We are liv<strong>in</strong>g <strong>in</strong> an accelerat<strong>in</strong>g universe!<br />

References:<br />

A. G. Riess et al., Astron. J. 116, 1009 (1998)<br />

S. Perlmutter et al., Astrophys. J. 517, 565 (1999)<br />

Cosmological constant<br />

ΛCDM model<br />

1<br />

R <br />

2<br />

Rg<br />

T g<br />

Agrees with observations<br />

52<br />

2<br />

10<br />

m


<strong>Dark</strong> energy<br />

Hypothetical form of energy<br />

with strong negative pressure<br />

NATURE OF DARK ENERGY<br />

• homogeneous<br />

• not very dense<br />

• not known to <strong>in</strong>teract<br />

nongravitationally<br />

EXPLANATIONS<br />

• Cosmological constant<br />

• Qu<strong>in</strong>tessence – dynamical field<br />

• Alternative gravity theories<br />

(talks of G. Mathews and G. J. Olmo)


<strong>Dark</strong> energy<br />

Hypothetical form of energy<br />

with strong negative pressure<br />

NATURE OF DARK ENERGY<br />

• homogeneous<br />

• not very dense<br />

• not known to <strong>in</strong>teract<br />

nongravitationally<br />

EXPLANATIONS<br />

• Cosmological constant<br />

• Qu<strong>in</strong>tessence – dynamical field<br />

• Alternative gravity theories<br />

<strong>Dark</strong> Force =<br />

– <strong>Dark</strong> <strong>Energy</strong>


Variable cosmological constant<br />

Cosmological constant problem – why is it so small?<br />

No known natural way to derive it from particle physics<br />

Possible solution: dark energy decays<br />

Cosmological constant is not constant (Bronste<strong>in</strong>, 1933)<br />

Λ<br />

energy<br />

<strong>Dark</strong> energy <strong>in</strong>teract with matter<br />

Current <strong>in</strong>teraction rate very small<br />

matter<br />

Phenomenological models of decay<strong>in</strong>g Λ relate it to: t -2 , a -2 , H 2 , q, R etc.<br />

(Berman, 1991; Ozer and Taha, 1986; Chen and Wu, 1990; Lima and Carvalho, 1994)<br />

lack covariance and/or variational derivation


f(R) gravity<br />

• Lagrangian – function of curvature scalar R<br />

•R-1 or other negative powers of R → current acceleration<br />

• Positive powers of R → <strong>in</strong>flation<br />

M<strong>in</strong>imal coupl<strong>in</strong>g <strong>in</strong> Jordan (orig<strong>in</strong>al) frame (JF)


f(R) gravity<br />

• Lagrangian – function of curvature scalar R<br />

•R-1 or other negative powers of R → current acceleration<br />

• Positive powers of R → <strong>in</strong>flation<br />

M<strong>in</strong>imal coupl<strong>in</strong>g <strong>in</strong> Jordan (orig<strong>in</strong>al) frame (JF)<br />

• Fully covariant theory based on the pr<strong>in</strong>ciple of least action<br />

• f(R) usually polynomial <strong>in</strong> R<br />

• Variable gravitational coupl<strong>in</strong>g and cosmological term<br />

• Solar system and cosmological constra<strong>in</strong>ts<br />

polynomial coefficients very small<br />

G. J. Olmo, W. Komp, gr-qc/0403092


Variational pr<strong>in</strong>ciples I<br />

• f(R) gravity field equations:<br />

vary total action for both the field & matter<br />

• Two approaches: metric and metric-aff<strong>in</strong>e


Variational pr<strong>in</strong>ciples I<br />

• f(R) gravity field equations:<br />

vary total action for both the field & matter<br />

• Two approaches: metric and metric-aff<strong>in</strong>e<br />

METRIC (E<strong>in</strong>ste<strong>in</strong>–Hilbert) variational pr<strong>in</strong>ciple:<br />

• action varied with respect to the metric<br />

• aff<strong>in</strong>e connection given by Christoffel symbols (Levi-Civita connection)


Variational pr<strong>in</strong>ciples I<br />

• f(R) gravity field equations:<br />

vary total action for both the field & matter<br />

• Two approaches: metric and metric-aff<strong>in</strong>e<br />

METRIC (E<strong>in</strong>ste<strong>in</strong>–Hilbert) variational pr<strong>in</strong>ciple:<br />

• action varied with respect to the metric<br />

• aff<strong>in</strong>e connection given by Christoffel symbols (Levi-Civita connection)<br />

METRIC–AFFINE (Palat<strong>in</strong>i) variational pr<strong>in</strong>ciple:<br />

• action varied with respect to the metric and connection<br />

• metric and connection are <strong>in</strong>dependent<br />

• if f(R)=R metric and metric-aff<strong>in</strong>e give the same field equations:<br />

variation with respect to connection connection = Christoffel symbols<br />

E. Schröd<strong>in</strong>ger, Space-time structure, Cambridge (1950)


Variational Pr<strong>in</strong>ciples: Metric<br />

METRIC variational pr<strong>in</strong>ciple:<br />

• connection: Christoffel symbols of metric tensor metric compatibility<br />

• fourth-order differential field equations<br />

• mathematically equivalent to Brans–Dicke (BD) gravity with ω=0<br />

• 1/R gravity unstable – but <strong>in</strong>stabilities disappear with additional positive<br />

powers of R<br />

• potential <strong>in</strong>consistencies with cosmological evolution<br />

• need to transform to the E<strong>in</strong>ste<strong>in</strong> conformal frame to avoid violations of the<br />

dom<strong>in</strong>ant energy condition (DEC) EF is physical


Variational Pr<strong>in</strong>ciples: Metric–Aff<strong>in</strong>e<br />

METRIC–AFFINE variational pr<strong>in</strong>ciple:<br />

• no a priori relation between metric and connection<br />

• second-order differential equations of field<br />

• mathematically equivalent to BD gravity with ω=−3/2<br />

• field equations <strong>in</strong> vacuum reduce to GR with cosmological constant<br />

• no <strong>in</strong>stabilities<br />

• no <strong>in</strong>consistencies with cosmological evolution<br />

• both the Jordan and E<strong>in</strong>ste<strong>in</strong> frame obey DEC<br />

Work presented here uses metric–aff<strong>in</strong>e formulation


Jordan frame<br />

Assume action for matter is <strong>in</strong>dependent of connection (good for cosmology)<br />

Variation of connection <br />

connection = Christoffel symbols of<br />

~<br />

<br />

[ f '(<br />

R)<br />

g g<br />

<br />

~<br />

~<br />

]<br />

:<br />

<br />

0<br />

<br />

{} g


Jordan frame<br />

Assume action for matter is <strong>in</strong>dependent of connection (good for cosmology)<br />

Variation of connection <br />

connection = Christoffel symbols of<br />

Variation of metric <br />

~<br />

<br />

[ f '(<br />

R)<br />

g g<br />

Dynamical energy-momentum (EM) tensor generated by metric:<br />

Writ<strong>in</strong>g {} ~ ...<br />

g<br />

and<br />

R<br />

<br />

<br />

<br />

~<br />

~<br />

( ) R ( g)<br />

<br />

<br />

~<br />

<br />

]<br />

<br />

0<br />

<br />

{} g<br />

allows <strong>in</strong>terpretation of Θ as additional source and br<strong>in</strong>gs EOF <strong>in</strong>to GR form<br />

:


Helmholtz Lagrangian<br />

The action <strong>in</strong> the Jordan frame is dynamically equivalent to the<br />

Helmholtz action<br />

provided<br />

f " ( )<br />

<br />

0<br />

Scalar – tensor gravity (STG)<br />

GR limit and Solar System constra<strong>in</strong>ts under debate<br />

The scalar degree of freedom correspond<strong>in</strong>g to nonl<strong>in</strong>ear terms <strong>in</strong> the<br />

Lagrangian is transformed <strong>in</strong>to an auxiliary nondynamical scalar field p (or φ)<br />

T. P. Sotiriou, Class. Quantum Grav. 23, 5117 (2006)<br />

V. Faraoni, Phys. Rev. D 74, 023529 (2006)


E<strong>in</strong>ste<strong>in</strong> frame<br />

Conformal transformation of metric:<br />

Effective potential<br />

Non-m<strong>in</strong>imal coupl<strong>in</strong>g <strong>in</strong> E<strong>in</strong>ste<strong>in</strong> frame (EF)


E<strong>in</strong>ste<strong>in</strong> frame<br />

Conformal transformation of metric:<br />

Effective potential<br />

Non-m<strong>in</strong>imal coupl<strong>in</strong>g <strong>in</strong> E<strong>in</strong>ste<strong>in</strong> frame (EF)<br />

• If m<strong>in</strong>imal coupl<strong>in</strong>g <strong>in</strong> E<strong>in</strong>ste<strong>in</strong> frame GR with cosmological constant<br />

• Both JF and EF are equivalent <strong>in</strong> vacuum<br />

• Coupl<strong>in</strong>g matter–gravity different <strong>in</strong> conformally related frames<br />

• Pr<strong>in</strong>ciple of equivalence violated <strong>in</strong> EF → constra<strong>in</strong>ts on f(R) gravity<br />

• Experiments should verify which frame (JF or EF) is physical<br />

G. Magnano, L. M. Sokołowski, Phys. Rev. D 50, 5039 (1994)


Equations of field and motion<br />

Variation of :<br />

Variation of :<br />

Structural equation <br />

V


Equations of field and motion<br />

Variation of :<br />

Variation of :<br />

Structural equation<br />

• If T=0 (vacuum or radiation) algebraic equation for φ→ φ=const<br />

GR with cosmological constant<br />

• Gravitational coupl<strong>in</strong>g and cosmological term vary<br />

• The energy-momentum tensor is not covariantly conserved<br />

• If the EM tensor generated by the EF metric tensor is physical<br />

constancy of V(φ) → GR with cosmological constant<br />

<br />

V<br />

NJP, Class. Quantum Grav. 23, 2011 (2006)


<strong>Dark</strong> energy–momentum tensor<br />

• Non-conservation of EM tensors for matter and DE separately<br />

• Total EM for matter + DE conserved <strong>in</strong>teraction


<strong>Dark</strong> energy–momentum tensor<br />

• Non-conservation of EM tensors for matter and DE separately<br />

• Total EM for matter + DE conserved <strong>in</strong>teraction<br />

Assume homogeneous and isotropic universe<br />

Cont<strong>in</strong>uity equation with <strong>in</strong>teraction term Q:<br />

Interaction rate Γ=Q/ε Λ<br />

Nondimensional rate γ=Γ/H<br />

NJP, Phys. Rev. D 74, 084032 (2006)


Cosmological parameters<br />

Hubble parameter Deceleration parameter<br />

Omega (L=f)<br />

Redshift H(z)<br />

Higher derivatives of scale factor (jerk and snap) more complicated<br />

More nondimensional parameters:<br />

deceleration-to-acceleration transition redshift z t, dq/dz| 0 etc.<br />

NJP, Class. Quantum Grav. 23, 4819 (2006); Phys. Lett. B 640, 135 (2006)


Cosmological term<br />

Palat<strong>in</strong>i f(R) gravity <strong>in</strong> E<strong>in</strong>ste<strong>in</strong> frame predicts (p=0)


Cosmological term<br />

Palat<strong>in</strong>i f(R) gravity <strong>in</strong> E<strong>in</strong>ste<strong>in</strong> frame predicts (p=0)<br />

Duh!<br />

ΛCDM model says so<br />

But:<br />

ΛCDM – constant Λ relates H and q<br />

f(R) gravity – variable Λ depends on H and q<br />

• Resembles simple phenomenological models of variable cosmological<br />

constant<br />

• Unlike them, it arises from least-action-pr<strong>in</strong>ciple based theory<br />

NJP, Phys. Rev. D 74, 084032 (2006)


R-1/R gravity<br />

52<br />

2<br />

10 m<br />

The simplest f(R) that produces current cosmic acceleration<br />

Deceleration-to-acceleration transition:


R-1/R gravity<br />

Simplest f(R) that produces current cosmic acceleration<br />

Deceleration-to-acceleration transition:<br />

Unification of <strong>in</strong>flation and current cosmic acceleration<br />

T=0 2 de Sitter phases:<br />

<br />

52<br />

2<br />

10 m<br />

D. N. Vollick, Phys. Rev. D 68, 063510 (2003)<br />

S. M. Carroll, V. Duvvuri, M. Trodden, M. S. Turner, Phys. Rev. D 70, 043528 (2004)<br />

S. Nojiri, S. D. Od<strong>in</strong>tsov, Phys. Rev. D 68, 123512 (2003); NJP, CQG 23, 2011 (2006)


R-1/R gravity<br />

The simplest f(R) that produces current cosmic acceleration<br />

Deceleration-to-acceleration transition:<br />

Unification of <strong>in</strong>flation and current cosmic acceleration<br />

T=0 2 de Sitter phases:<br />

<br />

52<br />

2<br />

10 m<br />

D. N. Vollick, Phys. Rev. D 68, 063510 (2003)<br />

S. M. Carroll, V. Duvvuri, M. Trodden, M. S. Turner, Phys. Rev. D 70, 043528 (2004)<br />

S. Nojiri, S. D. Od<strong>in</strong>tsov, Phys. Rev. D 68, 123512 (2003); NJP, CQG 23, 2011 (2006)<br />

<br />

β/α ~10 120 ?


Compatibility with observations I<br />

<br />

Use<br />

f(R) observations<br />

A. G. Riess et al., Astrophys. J. 607, 665 (2004)<br />

SNLS<br />

X clusters<br />

Gold<br />

ΛCDM<br />

Z t=-0.56+0.07-0.04<br />

j=1


Compatibility with observations II<br />

<br />

Use<br />

f(R) observations<br />

A. G. Riess et al., Astrophys. J. 607, 665 (2004)<br />

SNLS<br />

X clusters<br />

Gold<br />

ΛCDM<br />

Z t=-0.56+0.07-0.04<br />

j=1


Compatibility with observations III<br />

Current <strong>in</strong>teraction rate<br />

At deceleration-to-acceleration transition<br />

Interaction between matter and dark energy is weak<br />

ε ~ a 3-n<br />

Observations n


Conclusions<br />

• f(R) gravity provides possible explanation for present cosmic<br />

acceleration<br />

• <strong>Dark</strong> energy <strong>in</strong>teracts with matter <strong>in</strong> EF – decay<strong>in</strong>g Λ<br />

• R-1/R model is nice – simple, nondimensional cosmological<br />

parameters do not depend on α<br />

• We need stronger constra<strong>in</strong>ts from astronomical observations<br />

FUTURE WORK<br />

• Compare with JF<br />

• Generalize to p≠0 (<strong>in</strong>flation and radiation epochs)<br />

• Solar system constra<strong>in</strong>ts and Newtonian limit?<br />

THANK YOU!


Back-up Slides


Conservation of matter<br />

Bianchi identity<br />

Homogeneous and isotropic universe with no pressure (comov<strong>in</strong>g frame)<br />

Time evolution of φ<br />

NJP, Class. Quantum Grav. 23, 2011 (2006)


<strong>Dark</strong> energy density <strong>in</strong> f(R)<br />

Matter energy density<br />

<strong>Dark</strong> energy density<br />

NJP, Phys. Rev. D 74, 084032 (2006)


More cosmological parameters<br />

Deceleration parameter slope<br />

dq<br />

dz<br />

| 0<br />

Jerk parameter<br />

NJP, Class. Quantum Grav. 23, 4819 (2006); Phys. Lett. B 640, 135 (2006)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!