02.08.2013 Views

Simulation of Optical Crosstalk in SiPM - NDIP 11

Simulation of Optical Crosstalk in SiPM - NDIP 11

Simulation of Optical Crosstalk in SiPM - NDIP 11

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

On the Efficiency <strong>of</strong> Photon Emission<br />

dur<strong>in</strong>g Avalanches <strong>in</strong> Silicon<br />

A. Nepomuk Otte<br />

University <strong>of</strong> California <strong>in</strong> Santa Cruz<br />

Santa Cruz Institute for Particle Physics<br />

pay<strong>in</strong>g the conference fee<br />

was<br />

Max-Planck-Institut für Physik, Munich<br />

pay<strong>in</strong>g the hotel<br />

supported by the American Astronomical Society<br />

pay<strong>in</strong>g the flight ticket<br />

work published <strong>in</strong><br />

2007 JINST TH 003<br />

photon emission <strong>in</strong> avalanches<br />

(Sciacca, 2003)<br />

Nepomuk Otte 1


Outl<strong>in</strong>e<br />

• SiSi the <strong>SiPM</strong> Simulator<br />

One example application <strong>of</strong> SiSi:<br />

characterize photon emission,<br />

which results <strong>in</strong> optical crosstalk<br />

Nepomuk Otte 2


SiSi*: The <strong>SiPM</strong> Simulator<br />

* Elisabeth ”Sis(s)i” von Wittelsbach the<br />

empress consort <strong>of</strong> Emperor Franz Joseph<br />

<strong>of</strong> Austria. She was born 1837 <strong>in</strong> Munich,<br />

Bavaria and murdered 1898 <strong>in</strong> Geneva,<br />

Switzerland<br />

a 3D Monte Carlo simulation package <strong>of</strong> <strong>SiPM</strong><br />

for the community<br />

to make it most affordable:<br />

It is free!<br />

send me an e-mail:<br />

nepomuk@scipp.ucsc.edu<br />

Nepomuk Otte 3


An application <strong>of</strong> SiSi:<br />

Why?<br />

Study Photon Emission <strong>in</strong><br />

The emission spectrum is uncerta<strong>in</strong>:<br />

and so is the underly<strong>in</strong>g physics<br />

• spectral measurements differ<br />

Avalanches<br />

• absolute <strong>in</strong>tensity/efficiency uncerta<strong>in</strong><br />

- direct measurement is difficult task<br />

- unit: photons emitted per avalanche carrier<br />

Nepomuk Otte 4


<strong>SiPM</strong>-Simulator: 3D-Geometry<br />

depleted and sensitive volume<br />

cross section <strong>of</strong> one cell 390µm<br />

42µm<br />

21µm<br />

geometrical description <strong>of</strong> a <strong>SiPM</strong>:<br />

• any number <strong>of</strong> cells / array layout<br />

• arbitrary<br />

- depleted / undepleted volumes<br />

- avalanche region<br />

- <strong>in</strong>sensitive regions<br />

- …<br />

depleted but non-sensitive volume<br />

2.5µm<br />

non-depleted bulk<br />

avalanche region<br />

Nepomuk Otte 5


<strong>SiPM</strong>-Simulator: Treatment <strong>of</strong> Photons<br />

photon emission <strong>in</strong> avalanches:<br />

• emission spectrum (free parameter)<br />

use Planck-spectrum<br />

• <strong>in</strong>tensity/efficiency (free parameter)<br />

• isotropic emission<br />

ray-trac<strong>in</strong>g <strong>of</strong> photons <strong>in</strong> the <strong>SiPM</strong>:<br />

• surface reflections<br />

• wavelength dependent absorption<br />

creation <strong>of</strong> charge carrier<br />

• diffusion (<strong>in</strong> non-depleted volume)<br />

• drift (<strong>in</strong> depleted volume)<br />

possible<br />

breakdown <strong>of</strong><br />

another cell<br />

Nepomuk Otte 6


Two Simulated Events<br />

one cell triggered at random (blue)<br />

<strong>SiPM</strong> with 24x24 cells<br />

simulated device<br />

correlated fir<strong>in</strong>g <strong>of</strong> other cells optical crosstalk<br />

MEPhI / Pulsar from 2003<br />

the excess noise <strong>of</strong> <strong>SiPM</strong><br />

Nepomuk Otte 7


How to learn about Photon Emission?<br />

1. take an<br />

exist<strong>in</strong>g device<br />

+<br />

have a good<br />

relationship to<br />

the producer<br />

3. Repeat<br />

measurement<br />

<strong>in</strong> the<br />

simulation<br />

MEPhI / Pulsar<br />

4. change free parameters<br />

temperature and <strong>in</strong>tensity<br />

until<br />

measured crosstalk<br />

distributions match<br />

(m<strong>in</strong>imiz<strong>in</strong>g χ²)<br />

2. trigger on dark<br />

counts and measure<br />

how <strong>of</strong>ten N cells are<br />

fired simultaneous<br />

(crosstalk distribution)<br />

same data but<br />

different b<strong>in</strong>n<strong>in</strong>g<br />

Nepomuk Otte 8


F<strong>in</strong>d Parameters that match<br />

<strong>Crosstalk</strong> Distribution<br />

T = 4500 K<br />

Total <strong>in</strong>tensity = 1.45x10 -4<br />

photons per avalanche<br />

carrier<br />

not a unique solution for Temperature and Intensity<br />

Residuals<br />

dark counts, which are<br />

not simulated<br />

Nepomuk Otte 9


<strong>Optical</strong> <strong>Crosstalk</strong> Photons:<br />

Photons that cause a breakdown <strong>of</strong> another <strong>SiPM</strong> cell<br />

energy distribution <strong>of</strong> optical crosstalk photons<br />

2000K and 4500K<br />

emission spectra<br />

after adjust<strong>in</strong>g the <strong>in</strong>tensity,<br />

different spectral shapes result <strong>in</strong><br />

the same energy distribution <strong>of</strong><br />

optical crosstalk photons<br />

Precise knowledge <strong>of</strong><br />

spectral shape not<br />

required<br />

reduces the free parameters to one:<br />

the <strong>in</strong>tensity <strong>of</strong> photon emission between<br />

~1.1 and 1.4 eV<br />

Nepomuk Otte 10


note the<br />

log-scale<br />

~10µm – 1mm absorption length<br />

= characteristic lengths <strong>of</strong> the <strong>SiPM</strong><br />

strong energy dependent absorption <strong>of</strong> photons <strong>in</strong> silicon<br />

Nepomuk Otte <strong>11</strong>


Photon Emission dur<strong>in</strong>g Avalanches<br />

<strong>in</strong> Silicon<br />

<strong>in</strong>tegrat<strong>in</strong>g the emission spectrum 1.1eV …1.4 eV:<br />

photons with energies<br />

between 1.1eV and 1.4eV are emitted with<br />

an efficiency <strong>of</strong><br />

3*10 -5 photons per avalanche carrier<br />

result does not depend on the shape <strong>of</strong> the emission spectrum<br />

the result does depend on:<br />

uncerta<strong>in</strong>ties <strong>in</strong> the geometry <strong>of</strong> the measured <strong>SiPM</strong><br />

homogeneity <strong>of</strong> avalanche region and <strong>SiPM</strong><br />

<strong>in</strong>troduces a systematic uncerta<strong>in</strong>ty by a factor <strong>of</strong> 2<br />

Nepomuk Otte 12


Conclusions<br />

• SiSi a free <strong>SiPM</strong> Simulator<br />

– write me: nepomuk@scipp.ucsc.edu<br />

• crosstalk measurements can be used to characterize photon<br />

emission dur<strong>in</strong>g avalanches<br />

• only photons with<strong>in</strong> a narrow energy <strong>in</strong>terval (1.1eV-1.4eV) cause<br />

optical crosstalk; reason: strong energy dependence <strong>of</strong> absorption<br />

lengths<br />

• measured <strong>in</strong>tensity <strong>of</strong> photons between 1.1eV-1.40eV : ~3•10 -5<br />

photons / avalanche electron-hole pair; estimated uncerta<strong>in</strong>ty: 2<br />

Nepomuk Otte 13


χ² -distribution <strong>of</strong> a scan <strong>in</strong>:<br />

• temperature <strong>of</strong> photon spectrum<br />

• <strong>in</strong>tensity <strong>of</strong> photon spectrum<br />

x<br />

no unique solution <strong>of</strong> model parameters but<br />

log scale<br />

Nepomuk Otte 14


4500K<br />

Electron Lifetimes<br />

2000K<br />

Intensity <strong>of</strong> the photons is reduced by ~30%<br />

if lifetime <strong>of</strong> the electrons <strong>in</strong> the non-depleted volume is non-zero<br />

Nepomuk Otte 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!