03.08.2013 Views

Slides

Slides

Slides

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I know what you have done<br />

in your last<br />

HOTO HOP Session<br />

An Introduction to Digital Image Forensics<br />

Thomas Gloe<br />

Matthias Kirchner *<br />

Faculty of<br />

Computer Science<br />

TU Dresden<br />

ICSI Berkeley<br />

21|01|2010


This is actually not from a horror movie . . .<br />

◮ We have some clues that an alien species has begun to infiltrate (wo)mankind<br />

watch out for:<br />

⊲ two left feet<br />

Gloe & Kirchner Digital Image Forensics slide 1


This is actually not from a horror movie . . .<br />

◮ We have some clues that an alien species has begun to infiltrate (wo)mankind<br />

watch out for:<br />

⊲ two left feet<br />

⊲ missing belly button<br />

Gloe & Kirchner Digital Image Forensics slide 1


This is actually not from a horror movie . . .<br />

◮ We have some clues that an alien species has begun to infiltrate (wo)mankind<br />

watch out for:<br />

⊲ two left feet<br />

⊲ missing belly button<br />

⊲ overly long legs<br />

Gloe & Kirchner Digital Image Forensics slide 1


This is actually not from a horror movie . . .<br />

◮ We have some clues that an alien species has begun to infiltrate (wo)mankind<br />

watch out for:<br />

⊲ two left feet<br />

⊲ missing belly button<br />

⊲ overly long legs<br />

⊲ “ghost” shadows<br />

more examples can be found at<br />

http://photoshopdisasters.blogspot.com<br />

Gloe & Kirchner Digital Image Forensics slide 1


. . . yet it is as scary, at least.<br />

◮ more serious harm of image<br />

manipulations in areas like:<br />

⊲ political debates<br />

⊲ science<br />

⊲ evidence in court<br />

⊲ . . .<br />

former German Foreign Minister Steinmeier<br />

submission to the 2009 DOCMA award (Matthias Kleemann)


. . . yet it is as scary, at least.<br />

◮ more serious harm of image<br />

manipulations in areas like:<br />

⊲ political debates<br />

⊲ science<br />

⊲ evidence in court<br />

⊲ . . .<br />

Sciene 27 July 2007, Vol. 317, no. 5837, p. 450


. . . yet it is as scary, at least.<br />

◮ more serious harm of image<br />

manipulations in areas like:<br />

⊲ political debates<br />

⊲ science<br />

⊲ evidence in court<br />

⊲ . . .


. . . yet it is as scary, at least.<br />

◮ more serious harm of image<br />

manipulations in areas like:<br />

⊲ political debates<br />

⊲ science<br />

⊲ evidence in court<br />

⊲ . . .<br />

lots of interesting examples can<br />

be found at Hany Farid’s website<br />

www.cs.dartmouth.edu/farid/<br />

research/digitaltampering<br />

submission to the 2009 DOCMA award (Christine Gerhardt)


“Edit and share from anywhere”


Authenticity of images in the digital age?<br />

◮ Where is the picture coming from?<br />

Approaches<br />

◮ (How) Has the image been processed?<br />

◮ cryptography or digital watermarks<br />

⊲ marks needs to be added / embedded “actively” (high-end digital cameras)<br />

Gloe & Kirchner Digital Image Forensics slide 4


Authenticity of images in the digital age?<br />

◮ Where is the picture coming from?<br />

Approaches<br />

◮ (How) Has the image been processed?<br />

◮ cryptography or digital watermarks<br />

⊲ marks needs to be added / embedded “actively” (high-end digital cameras)<br />

◮ digital image forensics<br />

⊲ does not assume any knowledge about the original image<br />

⊲ is based on a statistical analysis of the image content<br />

N (µ, σ)<br />

Σ → min<br />

statistical analysis<br />

source?<br />

original?<br />

Gloe & Kirchner Digital Image Forensics slide 4


Digital image forensics: a first glimpse<br />

◮ digital image forensics<br />

assess the authenticity<br />

of digital images by exploiting<br />

their inherent statistical<br />

characteristics<br />

source identification<br />

manipulation detection<br />

Gloe & Kirchner Digital Image Forensics slide 5


Digital image forensics: a first glimpse<br />

◮ digital image forensics<br />

assess the authenticity<br />

of digital images by exploiting<br />

their inherent statistical<br />

characteristics<br />

class<br />

‘legitimate’<br />

model<br />

What means source?<br />

source identification<br />

manipulation detection<br />

device<br />

What means manipulation?<br />

‘malicious’<br />

Gloe & Kirchner Digital Image Forensics slide 5


Digital image forensics: a first glimpse<br />

images represent reality<br />

⊲ empirical science<br />

◮ digital image forensics<br />

assess the authenticity<br />

of digital images by exploiting<br />

their inherent statistical<br />

characteristics<br />

class<br />

‘legitimate’<br />

model<br />

What means source?<br />

source identification<br />

manipulation detection<br />

device<br />

What means manipulation?<br />

‘malicious’<br />

Gloe & Kirchner Digital Image Forensics slide 5


Digital image forensics: a first glimpse<br />

images represent reality<br />

⊲ empirical science<br />

◮ digital image forensics<br />

assess the authenticity<br />

of digital images by exploiting<br />

their inherent statistical<br />

characteristics<br />

requires a large body of<br />

reference data samples<br />

class<br />

‘legitimate’<br />

model<br />

What means source?<br />

source identification<br />

manipulation detection<br />

device<br />

What means manipulation?<br />

‘malicious’<br />

Gloe & Kirchner Digital Image Forensics slide 5


Digital image forensics: a first glimpse<br />

images represent reality<br />

1 ⊲ empirical science 2<br />

3<br />

◮ digital image forensics<br />

assess the authenticity<br />

of digital images by exploiting<br />

their inherent statistical<br />

characteristics<br />

requires a large body of<br />

reference data samples<br />

class<br />

‘legitimate’<br />

model<br />

What means source?<br />

source identification<br />

manipulation detection<br />

device<br />

What means manipulation?<br />

‘malicious’<br />

Gloe & Kirchner Digital Image Forensics slide 5


Interesting. Tell me more!<br />

Image forensics may exploit<br />

◮ artifacts of processing operations<br />

⊲ resampling · copy & paste · inconsistent lightning · double compression<br />

◮ characteristics of the source device<br />

scene<br />

⊲ e. g. digital camera:<br />

lens<br />

lens<br />

distortion<br />

filter<br />

R<br />

G<br />

G<br />

B<br />

CFA layout<br />

sensor<br />

hot pixels,<br />

sensor noise<br />

◮ metadata (has to be handled with care though)<br />

⊲ EXIF header · thumbnails<br />

black box model, camera response function<br />

color<br />

interpolation<br />

interpolation<br />

scheme<br />

post<br />

processing<br />

quantization<br />

table<br />

digital image<br />

Gloe & Kirchner Digital Image Forensics slide 6


Two introductory examples<br />

◮ digital camera identification<br />

based on sensor noise<br />

Gloe & Kirchner Digital Image Forensics slide 7


Two introductory examples<br />

◮ digital camera identification<br />

based on sensor noise<br />

?<br />

Gloe & Kirchner Digital Image Forensics slide 7


Two introductory examples<br />

◮ digital camera identification<br />

based on sensor noise<br />

?<br />

Gloe & Kirchner Digital Image Forensics slide 7


Two introductory examples<br />

◮ digital camera identification<br />

based on sensor noise<br />

≈<br />

Gloe & Kirchner Digital Image Forensics slide 7


Two introductory examples<br />

◮ digital camera identification<br />

based on sensor noise<br />

≈<br />

◮ copy & paste detection<br />

Gloe & Kirchner Digital Image Forensics slide 7


Two introductory examples<br />

◮ digital camera identification<br />

based on sensor noise<br />

≈<br />

◮ copy & paste detection<br />

presumed original<br />

Gloe & Kirchner Digital Image Forensics slide 7


1<br />

After all, it’s all about bits and<br />

bytes, like in computer forensics.<br />

Is digital image forensics<br />

really a science on its own?


1<br />

After all, it’s all about bits and<br />

bytes, like in computer forensics.<br />

Is digital image forensics<br />

really a science on its own?<br />

digital image forensics = computer forensics


By the way, what is computer forensics?


By the way, what is computer forensics?<br />

1<br />

1<br />

1100 0 0<br />

0<br />

1<br />

0<br />

1


By the way, what is computer forensics?<br />

52 51 51 51 49<br />

49 40 36 34 33<br />

55 48 40 33 23<br />

62 58 45 33 22<br />

66 62 53 34 22<br />

0<br />

0<br />

0<br />

1000 1 1<br />

0<br />

0<br />

0


By the way, what is computer forensics?<br />

52 51 51 51 49<br />

49 40 36 34 33<br />

55 48 40 33 23<br />

62 58 45 33 22<br />

66 62 53 34 22<br />

1<br />

1<br />

1<br />

0010 1 1<br />

0<br />

0<br />

0


Digital forensics: proposed ontology<br />

forensics<br />

1 1 1 1 0 1 0 0 0 0 0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1 0 0 0 0<br />

digital<br />

0 0<br />

forensics<br />

1 0 0<br />

1<br />

1<br />

0<br />

0<br />

1<br />

0<br />

analog forensics<br />

1 1 0 1 0 0 0 0 0 1 1<br />

1<br />

1<br />

1<br />

1<br />

0 0 1<br />

computer 1 1 1<br />

forensics 1 1 0<br />

0 1 1<br />

1<br />

0<br />

0<br />

1<br />

1<br />

0<br />

0<br />

1<br />

1 multimedia 0 1 1 1<br />

0 1(image) 0 1 0<br />

0 forensics 0 1 1 1<br />

1 1 1 1 1<br />

1 1 1 digital 0 0 evidence 1 1 1 0 0 0 physical evidence<br />

1 1 0 1 0 1 1 1 1 1 1<br />

Gloe & Kirchner Digital Image Forensics slide 10


Digital forensics: proposed ontology<br />

forensics<br />

0 0 0 0 1 0 1 0 0 0 0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

0<br />

0 1 1 1 0<br />

digital<br />

0 1<br />

forensics<br />

0 0 1<br />

0<br />

1<br />

0<br />

0<br />

1<br />

1<br />

analog forensics<br />

0 0 1 1 1 1 0 1 0 1 0<br />

0<br />

0<br />

1<br />

1<br />

1 1 0<br />

computer 0 1 1<br />

forensics 0 1 1<br />

0 0 1<br />

1<br />

0<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1<br />

1 multimedia 1 0 0 0<br />

1 1(image) 0 1 1<br />

0 forensics 0 1 1 1<br />

0 1 0 1 1<br />

1 0 0 digital 0 1 evidence 0 0 1 0 0 1 physical evidence<br />

1 1 0 0 1 1 1 0 0 1 1<br />

finite sequence of discrete and<br />

perfectly observable symbols<br />

Gloe & Kirchner Digital Image Forensics slide 10


WARNING!<br />

The following slides<br />

intentionally draw a very<br />

black-and-white<br />

picture


Computer forensics = Image forensics<br />

computer forensics image forensics<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

Gloe & Kirchner Digital Image Forensics slide 12


Computer forensics = Image forensics<br />

computer forensics image forensics<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

WWW<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

Gloe & Kirchner Digital Image Forensics slide 12


Computer forensics = Image forensics<br />

computer forensics image forensics<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

◮ digital evidence is not linked<br />

to the outside world<br />

WWW<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

Gloe & Kirchner Digital Image Forensics slide 12


Computer forensics = Image forensics<br />

computer forensics image forensics<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

◮ digital evidence is not linked<br />

to the outside world<br />

WWW<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

Gloe & Kirchner Digital Image Forensics slide 12


Computer forensics = Image forensics<br />

computer forensics image forensics<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

◮ digital evidence is not linked<br />

to the outside world<br />

WWW<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

◮ digital evidence is linked<br />

to the outside world<br />

Gloe & Kirchner Digital Image Forensics slide 12


Computer forensics: a closer look<br />

processing<br />

digital<br />

data<br />

Gloe & Kirchner Digital Image Forensics slide 13


suspicious<br />

traces?<br />

Computer forensics: a closer look<br />

processing<br />

digital<br />

data<br />

Gloe & Kirchner Digital Image Forensics slide 13


suspicious<br />

traces?<br />

Computer forensics: a closer look<br />

processing<br />

digital<br />

data<br />

reality<br />

◮ digital evidence is stored in the<br />

finite automaton each computer<br />

represents<br />

◮ number of states in a closed<br />

system is finite<br />

Gloe & Kirchner Digital Image Forensics slide 13


suspicious<br />

traces?<br />

Computer forensics: a closer look<br />

processing<br />

digital<br />

data<br />

reality<br />

◮ digital evidence is stored in the<br />

finite automaton each computer<br />

represents<br />

◮ number of states in a closed<br />

system is finite<br />

Gloe & Kirchner Digital Image Forensics slide 13


suspicious<br />

traces?<br />

Computer forensics: a closer look<br />

processing<br />

digital<br />

data<br />

reality<br />

◮ digital evidence is stored in the<br />

finite automaton each computer<br />

represents<br />

◮ number of states in a closed<br />

system is finite<br />

◮ non-negligible chance that a<br />

computer is left in a state which<br />

perfectly erases all traces<br />

Gloe & Kirchner Digital Image Forensics slide 13


Image forensics: a closer look<br />

processing<br />

digital<br />

image<br />

Gloe & Kirchner Digital Image Forensics slide 14


Image forensics: a closer look<br />

original?<br />

source<br />

(device) ?<br />

processing<br />

digital<br />

image<br />

Gloe & Kirchner Digital Image Forensics slide 14


Image forensics: a closer look<br />

original?<br />

source<br />

(device) ?<br />

processing<br />

digital<br />

image<br />

sensor<br />

◮ sensors capture parts of the reality and<br />

transform them into digital representations<br />

Gloe & Kirchner Digital Image Forensics slide 14


Image forensics: a closer look<br />

original?<br />

source<br />

(device) ?<br />

processing<br />

digital<br />

image<br />

sensor<br />

◮ sensors capture parts of the reality and<br />

transform them into digital representations<br />

◮ reality is incognizable: ultimate knowledge<br />

whether a digital image reflects reality or<br />

not cannot exist<br />

Gloe & Kirchner Digital Image Forensics slide 14


Image forensics: a closer look<br />

original?<br />

source<br />

(device) ?<br />

processing<br />

digital<br />

image<br />

sensor<br />

◮ sensors capture parts of the reality and<br />

transform them into digital representations<br />

◮ reality is incognizable: ultimate knowledge<br />

whether a digital image reflects reality or<br />

not cannot exist<br />

◮ image forensics = empirical science<br />

Gloe & Kirchner Digital Image Forensics slide 14


Sensors: a source of uncertainty<br />

◮ projection of reality to discrete symbols means a dimensionality reduction<br />

Gloe & Kirchner Digital Image Forensics slide 15


Sensors: a source of uncertainty<br />

◮ projection of reality to discrete symbols means a dimensionality reduction<br />

◮ image forensics has to cope with an additional source of uncertainty<br />

degrees of freedom<br />

Gloe & Kirchner Digital Image Forensics slide 15


Sensors: a source of uncertainty<br />

◮ projection of reality to discrete symbols means a dimensionality reduction<br />

◮ image forensics has to cope with an additional source of uncertainty<br />

◮ what kind of common<br />

post-processing is<br />

legitimate / tolerable?<br />

Gloe & Kirchner Digital Image Forensics slide 15<br />

?


Models: yet another dimensionality reduction<br />

◮ models make projection of reality to<br />

discrete symbols tractable with formal<br />

methods<br />

◮ typical models in image forensics:<br />

⊲ sensor noise follows a Gaussian distribution<br />

⊲ connected regions of identical pixel values are<br />

unlikely to occur in original images<br />

Gloe & Kirchner Digital Image Forensics slide 16


Models: yet another dimensionality reduction<br />

◮ models make projection of reality to<br />

discrete symbols tractable with formal<br />

methods<br />

◮ typical models in image forensics:<br />

⊲ sensor noise follows a Gaussian distribution<br />

⊲ connected regions of identical pixel values are<br />

unlikely to occur in original images<br />

Gloe & Kirchner Digital Image Forensics slide 16<br />

p


Models: yet another dimensionality reduction<br />

◮ models make projection of reality to<br />

discrete symbols tractable with formal<br />

methods<br />

◮ typical models in image forensics:<br />

⊲ sensor noise follows a Gaussian distribution<br />

⊲ connected regions of identical pixel values are<br />

unlikely to occur in original images<br />

projection to a<br />

1-dimensional<br />

variable<br />

◮ models of reality are yet another dimensionality reduction<br />

◮ quality of forensic methods depends on the quality of the employed model!<br />

Gloe & Kirchner Digital Image Forensics slide 16<br />

p


Models: yet another dimensionality reduction<br />

◮ models make projection of reality to<br />

discrete symbols tractable with formal<br />

methods<br />

◮ typical models in image forensics:<br />

⊲ sensor noise follows a Gaussian distribution<br />

⊲ connected regions of identical pixel values are<br />

unlikely to occur in original images<br />

projection to a<br />

1-dimensional<br />

variable<br />

◮ models of reality are yet another dimensionality reduction<br />

◮ quality of forensic methods depends on the quality of the employed model!<br />

Gloe & Kirchner Digital Image Forensics slide 16<br />

p


2<br />

Now, after all the theory, what<br />

are you really doing all day long?<br />

A practical view on digital image forensics


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

digitalization<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

digitalization<br />

digital image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

digitalization<br />

digital image<br />

manipulation<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

digitalization<br />

digital image<br />

manipulation<br />

output<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

digitalization<br />

digital image<br />

manipulation<br />

output<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

analog 2D<br />

document<br />

digitalization<br />

digital image<br />

manipulation<br />

output<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

digitalization<br />

digital image<br />

manipulation<br />

output<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

digitalization<br />

digital image<br />

manipulation<br />

output<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

digitalization<br />

device<br />

characteristics<br />

digital image<br />

manipulation<br />

output<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

digitalization<br />

device<br />

characteristics<br />

digital image<br />

file format<br />

manipulation<br />

output<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

digitalization<br />

device<br />

characteristics<br />

digital image<br />

file format<br />

manipulation<br />

processing<br />

artifacts<br />

output<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

digitalization<br />

device<br />

characteristics<br />

digital image<br />

file format<br />

manipulation<br />

processing<br />

artifacts<br />

output<br />

device<br />

characteristics<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

synthetic 3D scene<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

texture<br />

digitalization<br />

device<br />

characteristics<br />

digital image<br />

file format<br />

manipulation<br />

processing<br />

artifacts<br />

output<br />

device<br />

characteristics<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

synthetic 3D scene<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

texture<br />

digitalization<br />

device<br />

characteristics<br />

rendering<br />

digital image<br />

file format<br />

manipulation<br />

processing<br />

artifacts<br />

output<br />

device<br />

characteristics<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

synthetic 3D scene<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

texture<br />

digitalization<br />

device<br />

characteristics<br />

rendering<br />

missing device<br />

characteristics<br />

digital image<br />

file format<br />

manipulation<br />

processing<br />

artifacts<br />

output<br />

device<br />

characteristics<br />

re-digitalization<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Fundamentals of digital image forensics<br />

synthetic 3D scene<br />

real scene<br />

lightning, shadows<br />

analog 2D<br />

document<br />

surface characteristics<br />

texture<br />

digitalization<br />

device<br />

characteristics<br />

rendering<br />

missing device<br />

characteristics<br />

digital image<br />

file format<br />

manipulation<br />

processing<br />

artifacts<br />

output<br />

device<br />

characteristics<br />

re-digitalization<br />

⊲ too complex to be<br />

studied as a whole<br />

⊲ focus on small,<br />

tractable problems<br />

analog image<br />

Gloe & Kirchner Digital Image Forensics slide 18


Image source identification<br />

goal: determine either the correct class, the correct model / manufacturer,<br />

or even the actual device that took a particular image<br />

Gloe & Kirchner Digital Image Forensics slide 19<br />

?


Image source identification<br />

goal: determine either the correct class, the correct model / manufacturer,<br />

or even the actual device that took a particular image<br />

Gloe & Kirchner Digital Image Forensics slide 19<br />

?


Image source identification<br />

goal: determine either the correct class, the correct model / manufacturer,<br />

or even the actual device that took a particular image<br />

Gloe & Kirchner Digital Image Forensics slide 19<br />

?


Intra- and inter-model similarities<br />

◮ device identification – examined characteristic is unique for each device<br />

⊲ CCD / CMOS sensor noise [Lukáˇs et al., 2005]<br />

inter-model<br />

intra-model similarity intra-model similarity<br />

similarity<br />

low for device identification<br />

high for model identificatio<br />

low similarity<br />

low for device identification<br />

high for model identfication<br />

Gloe & Kirchner Digital Image Forensics slide 20


Intra- and inter-model similarities<br />

◮ device identification – examined characteristic is unique for each device<br />

⊲ CCD / CMOS sensor noise [Lukáˇs et al., 2005]<br />

◮ model identification – examined characteristic is similar for all devices of one<br />

particular model and differs between different models<br />

inter-model<br />

intra-model similarity intra-model similarity<br />

similarity<br />

low for device identification<br />

high for model identification<br />

low similarity<br />

low for device identification<br />

high for model identification<br />

Gloe & Kirchner Digital Image Forensics slide 20


Camera model identification<br />

◮ most probably, no single feature can distinguish between different camera models<br />

⊲ find a set of features with desirable properties<br />

Black box model [Kharrazi et al., 2004; Gloe et al., 2009]<br />

◮ overall 34 features to characterize images from the same camera model<br />

⊲ 12 color features to capture particularities of for instance white balancing<br />

⊲ 9 wavelet domain noise features<br />

⊲ 13 additional ‘image quality metrics’ for a general purpose description<br />

scene<br />

lens<br />

image quality<br />

metrics<br />

filter<br />

R<br />

G<br />

G<br />

B<br />

sensor<br />

image quality metrics,<br />

wavelet statistics<br />

color<br />

interpolation<br />

post<br />

processing<br />

color features color features<br />

digital image<br />

Gloe & Kirchner Digital Image Forensics slide 21


Camera model identification<br />

◮ most probably, no single feature can distinguish between different camera models<br />

⊲ find a set of features with desirable properties<br />

Black box model [Kharrazi et al., 2004; Gloe et al., 2009]<br />

◮ overall 34 features to characterize images from the same camera model<br />

⊲ 12 color features to capture particularities of for instance white balancing<br />

⊲ 9 wavelet domain noise features<br />

⊲ 13 additional ‘image quality metrics’ for a general purpose description<br />

scene<br />

lens<br />

image quality<br />

metrics<br />

filter<br />

R<br />

G<br />

G<br />

B<br />

sensor<br />

image quality metrics,<br />

wavelet statistics<br />

color<br />

interpolation<br />

◮ machine learning algorithms (SVM) for classification<br />

post<br />

processing<br />

color features color features<br />

digital image<br />

Gloe & Kirchner Digital Image Forensics slide 21


Some results on camera model identification<br />

◮ large-scale test with ≈ 15 000 images, stemming from 25 different models and<br />

overall 73 devices [Gloe et al., 2009]


Camera model identification: overall results<br />

◮ test set contains at least two devices per model<br />

◮ 60 % of the images for training the classifier, 40 % for testing<br />

◮ classification accuracy over all models: 96.42 %<br />

identified as<br />

camera model S DT DS DSs DC FZ H T W E F G I L M N O R µ<br />

Coolpix S710 S 100,00 - - - - - - - - - - - - - - - - - -<br />

D200 DT - 93,73 - - - 0,52 0,10 - 0,05 2,77 - - 2,61 - - - 0,05 - 0,16<br />

D70 DS - - 84,57 15,43 - - - - - - - - - - - - - - -<br />

D70s DSs - 0,11 67,51 30,90 - - - - - 0,85 - - 0,63 - - - - - -<br />

DCZ 5.9 DC - - 0,72 0,64 98,42 - - - - 0,12 - - - - - - - - 0,10<br />

DMC-FZ50 FZ - 1,14 - - - 97,31 0,50 0,58 0,32 - 0,06 - - - - 0,09 - - -<br />

DSC-H50 H - - - - - 0,20 98,23 0,20 1,28 - - 0,10 - - - - - - -<br />

DSC-T77 T - 0,74 - - - 3,43 2,04 91,90 1,81 - - 0,09 - - - - - - -<br />

DSC-W170 W - 0,65 - - - - 0,52 0,26 98,06 - - 0,52 - - - - - - -<br />

EX-Z150 E - - 0,19 0,08 - - - - - 99,71 - - - 0,03 - - - - -<br />

FinePixJ50 F - - - - - 0,06 - - - - 99,94 - - - - - - - -<br />

GX100 G - - - - - - - - - - - 100,00 - - - - - - -<br />

Ixus70 I - - 0,79 0,47 - - - - - - - - 98,26 0,42 - - - - 0,05<br />

L74wide L - - 0,04 0,04 - - - - - - - - 1,25 98,66 - - - - -<br />

M1063 M 0,07 0,67 - 0,01 - 0,01 - - - 0,04 - - 0,01 - 99,19 - - - -<br />

NV15 N 0,47 0,47 - - - 4,07 - - 0,05 - - - 0,05 - - 92,85 0,09 - 1,96<br />

OptioA40 O 3,97 0,13 0,09 - - 0,17 - 0,13 - 0,52 - 0,22 0,17 - 0,09 2,28 90,86 - 1,38<br />

RCP-7325XS R - - - - 0,21 - - - - - - - - - - - - 99,79 -<br />

µ1050SW µ - 0,29 - - - 0,12 - - - - - - 0,14 0,10 - 0,38 0,02 - 98,95<br />

Gloe & Kirchner Digital Image Forensics slide 23


Camera model identification: overall results<br />

◮ test set contains at least two devices per model<br />

◮ 60 % of the images for training the classifier, 40 % for testing<br />

◮ classification accuracy over all models: 96.42 %<br />

◮ mis-classifications between almost equal models of the same manufacturer<br />

identified as<br />

camera model S DT DS DSs DC FZ H T W E F G I L M N O R µ<br />

Coolpix S710 S 100,00 - - - - - - - - - - - - - - - - - -<br />

D200 DT - 93,73 - - - 0,52 0,10 - 0,05 2,77 - - 2,61 - - - 0,05 - 0,16<br />

D70 DS - - 84,57 15,43 - - - - - - - - - - - - - - -<br />

D70s DSs - 0,11 67,51 30,90 - - - - - 0,85 - - 0,63 - - - - - -<br />

DCZ 5.9 DC - - 0,72 0,64 98,42 - - - - 0,12 - - - - - - - - 0,10<br />

DMC-FZ50 FZ - 1,14 - - - 97,31 0,50 0,58 0,32 - 0,06 - - - - 0,09 - - -<br />

DSC-H50 H - - - - - 0,20 98,23 0,20 1,28 - - 0,10 - - - - - - -<br />

DSC-T77 T - 0,74 - - - 3,43 2,04 91,90 1,81 - - 0,09 - - - - - - -<br />

DSC-W170 W - 0,65 - - - - 0,52 0,26 98,06 - - 0,52 - - - - - - -<br />

EX-Z150 E - - 0,19 0,08 - - - - - 99,71 - - - 0,03 - - - - -<br />

FinePixJ50 F - - - - - 0,06 - - - - 99,94 - - - - - - - -<br />

GX100 G - - - - - - - - - - - 100,00 - - - - - - -<br />

Ixus70 I - - 0,79 0,47 - - - - - - - - 98,26 0,42 - - - - 0,05<br />

L74wide L - - 0,04 0,04 - - - - - - - - 1,25 98,66 - - - - -<br />

M1063 M 0,07 0,67 - 0,01 - 0,01 - - - 0,04 - - 0,01 - 99,19 - - - -<br />

NV15 N 0,47 0,47 - - - 4,07 - - 0,05 - - - 0,05 - - 92,85 0,09 - 1,96<br />

OptioA40 O 3,97 0,13 0,09 - - 0,17 - 0,13 - 0,52 - 0,22 0,17 - 0,09 2,28 90,86 - 1,38<br />

RCP-7325XS R - - - - 0,21 - - - - - - - - - - - - 99,79 -<br />

µ1050SW µ - 0,29 - - - 0,12 - - - - - - 0,14 0,10 - 0,38 0,02 - 98,95<br />

Gloe & Kirchner Digital Image Forensics slide 23


Camera model identification: overall results<br />

◮ test set contains at least two devices per model<br />

◮ 60 % of the images for training the classifier, 40 % for testing<br />

◮ classification accuracy over all models: 96.42 %<br />

◮ mis-classifications between almost equal models of the same manufacturer<br />

identified as<br />

camera model S DT DS DSs DC FZ H T W E F G I L M N O R µ<br />

Coolpix S710 S 100,00 - - - - - - - - - - - - - - - - - -<br />

D200 DT - 93,73 - - - 0,52 0,10 - 0,05 2,77 - - 2,61 - - - 0,05 - 0,16<br />

D70 DS - - 84,57 15,43 - - - - - - - - - - - - - - -<br />

D70s DSs - 0,11 67,51 30,90 - - - - - 0,85 - - 0,63 - - - - - -<br />

DCZ 5.9 DC - - 0,72 0,64 98,42 - - - - 0,12 - - - - - - - - 0,10<br />

DMC-FZ50 FZ - 1,14 - - - 97,31 0,50 0,58 0,32 - 0,06 - - - - 0,09 - - -<br />

DSC-H50 H - - - - - 0,20 98,23 0,20 1,28 - - 0,10 - - - - - - -<br />

DSC-T77 T - 0,74 - - - 3,43 2,04 91,90 1,81 - - 0,09 - - - - - - -<br />

DSC-W170 W - 0,65 - - - - 0,52 0,26 98,06 - - 0,52 - - - - - - -<br />

EX-Z150 E - - 0,19 0,08 - - - - - 99,71 - - - 0,03 - - - - -<br />

FinePixJ50 F - - - - - 0,06 - - - - 99,94 - - - - - - - -<br />

GX100 G - - - - - - - - - - - 100,00 - - - - - - -<br />

Ixus70 I - - 0,79 0,47 - - - - - - - - 98,26 0,42 - - - - 0,05<br />

L74wide L - - 0,04 0,04 - - - - - - - - 1,25 98,66 - - - - -<br />

M1063 M 0,07 0,67 - 0,01 - 0,01 - - - 0,04 - - 0,01 - 99,19 - - - -<br />

NV15 N 0,47 0,47 - - - 4,07 - - 0,05 - - - 0,05 - - 92,85 0,09 - 1,96<br />

OptioA40 O 3,97 0,13 0,09 - - 0,17 - 0,13 - 0,52 - 0,22 0,17 - 0,09 2,28 90,86 - 1,38<br />

RCP-7325XS R - - - - 0,21 - - - - - - - - - - - - 99,79 -<br />

µ1050SW µ - 0,29 - - - 0,12 - - - - - - 0,14 0,10 - 0,38 0,02 - 98,95<br />

⊲ What happens if we have to consider substantially more camera models or<br />

post-processing of the images?<br />

Gloe & Kirchner Digital Image Forensics slide 23


Camera device identification<br />

◮ most probably, one single feature can distinguish between specific camera devices<br />

Camera ID from sensor noise [Lukáˇs et al., 2005, 2006]<br />

◮ CCD / CMOS sensor elements convert light into a digital signal, a process subject to<br />

various noise sources<br />

⊲ temporal noise: varies throughout all images from a camera<br />

⊲ spatial noise: similar for all images of the very same camera,<br />

but different between distinct devices<br />

Gloe & Kirchner Digital Image Forensics slide 24


Camera device identification<br />

◮ most probably, one single feature can distinguish between specific camera devices<br />

Camera ID from sensor noise [Lukáˇs et al., 2005, 2006]<br />

◮ CCD / CMOS sensor elements convert light into a digital signal, a process subject to<br />

various noise sources<br />

⊲ temporal noise: varies throughout all images from a camera<br />

⊲ spatial noise: similar for all images of the very same camera,<br />

but different between distinct devices<br />

fixed pattern<br />

noise (FPN)<br />

⊲ additive noise, mainly due<br />

to dark noise<br />

⊲ flattened inside camera<br />

photo-response<br />

non-uniformity (PRNU)<br />

⊲ multiplicative noise, due to varying<br />

light-sensitivity of sensor elements<br />

⊲ hard to correct in cameras<br />

Gloe & Kirchner Digital Image Forensics slide 24


Camera device identification<br />

◮ most probably, one single feature can distinguish between specific camera devices<br />

Camera ID from sensor noise [Lukáˇs et al., 2005, 2006]<br />

◮ CCD / CMOS sensor elements convert light into a digital signal, a process subject to<br />

various noise sources<br />

⊲ temporal noise: varies throughout all images from a camera<br />

⊲ spatial noise: similar for all images of the very same camera,<br />

but different between distinct devices<br />

fixed pattern<br />

noise (FPN)<br />

⊲ additive noise, mainly due<br />

to dark noise<br />

⊲ flattened inside camera<br />

photo-response<br />

non-uniformity (PRNU)<br />

⊲ multiplicative noise, due to varying<br />

light-sensitivity of sensor elements<br />

⊲ hard to correct in cameras<br />

camera<br />

fingerprint<br />

Gloe & Kirchner Digital Image Forensics slide 24


How to obtain a digital camera fingerprint<br />

◮ camera-specific PRNU fingerprint is approximated by a reference noise pattern<br />

⊲ take at least 50 images from the same camera (ideally: perfectly lit, bright scenes)<br />

⊲ apply a de-noising filter to estimate the noise term in in each of these images<br />

⊲ take the pixel-wise average of the noise residuals<br />

digital camera stack of images noise residuals averaged noise residuals<br />

(reference noise pattern)<br />

◮ for practical applications, it is recommended to use a more sophisticated maximum<br />

likelihood estimation procedure [Chen et al., 2007, 2008]<br />

Gloe & Kirchner Digital Image Forensics slide 25


A typical noise residual Wavelet de-noising filter [Miçhak et al., 1999]<br />

◮ de-noising filters are not perfect ⊲ residual retains some image content<br />

Faculty of Computer Science, TU Dresden noise residual<br />

Gloe & Kirchner Digital Image Forensics slide 26


Reference noise pattern of a Canon S70<br />

noise pattern averaged over 300 images<br />

◮ reference noise pattern is free of<br />

image content<br />

◮ also contains information about the<br />

camera model (CFA artifacts, . . . )<br />

[Filler et al., 2008]<br />

enlarged detail with pixel defects<br />

Gloe & Kirchner Digital Image Forensics slide 27


correlation coefficient<br />

Was it your camera that took this image?<br />

◮ cameras are identified by measuring the similarity of the noise residual of a<br />

questionable image and all known reference noise pattern<br />

⊲ correlation coefficient or (more preferably) peak to correlation energy<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

reference pattern: S70<br />

Canon S70<br />

Canon S45<br />

Epson 1240U<br />

Ixus IIs<br />

1 image index<br />

350<br />

Closed camera set problem:<br />

◮ choose the camera with the highest<br />

similarity<br />

Open camera set problem:<br />

◮ no decision if maximum similarity is<br />

below a certain threshold<br />

Gloe & Kirchner Digital Image Forensics slide 28


correlation coefficient<br />

Was it your camera that took this image?<br />

◮ cameras are identified by measuring the similarity of the noise residual of a<br />

questionable image and all known reference noise pattern<br />

⊲ correlation coefficient or (more preferably) peak to correlation energy<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

reference pattern: S70<br />

Canon S70<br />

Canon S45<br />

Epson 1240U<br />

Ixus IIs<br />

1 image index<br />

350<br />

Closed camera set problem:<br />

◮ choose the camera with the highest<br />

similarity<br />

Open camera set problem:<br />

◮ no decision if maximum similarity is<br />

below a certain threshold<br />

◮ large-scale test with more than 10 6 images from ≈ 7000 individual cameras:<br />

97.6 % correct identification at a false acceptance rate of < 3 × 10 −5 [Goljan et al., 2009]<br />

Gloe & Kirchner Digital Image Forensics slide 28


Image source identfication: Summary<br />

◮ discussed methods are only the tip of the iceberg<br />

◮ further approaches include:<br />

⊲ sensor dust [Dirik et al., 2007]<br />

⊲ JPEG quantization tables [Farid, 2008]<br />

⊲ chromatic abberation [Van et al., 2007]<br />

⊲ demosaicing artifacts [Swaminathan et al, 2007]<br />

⊲ and many more . . .<br />

◮ current literature concludes that sensor noise is the method of choice whenever we<br />

have access to the questionable device (or a number of reference images)<br />

⊲ extensions to flatbed scanners [Gloe et al., 2007]<br />

⊲ robust against JPEG compression; may even survive printing and re-scanning<br />

⊲ but: computational issues with de-synchronization (cropping, rotation)<br />

◮ device model identification beneficial whenever we don’t have direct access to the<br />

questionable device<br />

⊲ but: does it scale with the number of examined models?<br />

Gloe & Kirchner Digital Image Forensics slide 29


Need a break?<br />

submission to the 2009 DOCMA award (Bernd Busche)


Need a break? Ooops. . .<br />

submission to the 2009 DOCMA award (Bernd Busche)


Image manipulation detection<br />

Digital image forensics checks for<br />

◮ missing or inconsistent device characteristics<br />

◮ presence of processing artifacts<br />

But what actually constitutes a manipulation?


Image manipulation detection<br />

Digital image forensics checks for<br />

◮ missing or inconsistent device characteristics<br />

◮ presence of processing artifacts<br />

But what actually constitutes a manipulation?<br />

‘malicious’ post-processing ‘legitimate’ post-processing


Image manipulation detection<br />

Digital image forensics checks for<br />

◮ missing or inconsistent device characteristics<br />

◮ presence of processing artifacts<br />

But what actually constitutes a manipulation?<br />

‘malicious’ post-processing ‘legitimate’ post-processing<br />

⊲ (mostly) local changes<br />

⊲ splicing<br />

⊲ copy & paste<br />

⊲ . . .<br />

⊲ content-preserving global changes<br />

⊲ denoising<br />

⊲ compression<br />

⊲ contrast enhancement<br />

definitions depend on established habits and conventions


Image manipulation detection<br />

Digital image forensics checks for<br />

◮ missing or inconsistent device characteristics<br />

◮ presence of processing artifacts<br />

But what actually constitutes a manipulation?<br />

‘malicious’ post-processing ‘legitimate’ post-processing


Image manipulation detection<br />

Digital image forensics checks for<br />

◮ missing or inconsistent device characteristics<br />

◮ presence of processing artifacts<br />

But what actually constitutes a manipulation?<br />

‘malicious’ post-processing ‘legitimate’ post-processing<br />

pictures: Andrea Sommer, Doc Baumann


Image manipulation detection<br />

Digital image forensics checks for<br />

◮ missing or inconsistent device characteristics<br />

◮ presence of processing artifacts<br />

But what actually constitutes a manipulation?<br />

research focuses on the<br />

detection of basic image<br />

processing primitives<br />

‘malicious’ post-processing ‘legitimate’ post-processing<br />

pictures: Andrea Sommer, Doc Baumann


Resampling detection<br />

◮ image manipulations often rely on geometric transformations<br />

(scaling, rotation, . . . ) of images or parts thereof<br />

Gloe & Kirchner Digital Image Forensics slide 32<br />

Andrea Sommer, Doc Baumann


Resampling detection<br />

◮ image manipulations often rely on geometric transformations<br />

(scaling, rotation, . . . ) of images or parts thereof<br />

◮ resampling to a new image grid; involves an interpolation step<br />

◮ interpolation introduces periodic linear correlations between neighboring pixels<br />

s1,1 s1,2<br />

s2,1 s2,2<br />

bilinear upsampling<br />

(×2)<br />

0.5<br />

0.5<br />

0.5 0.5<br />

s1,1 s1,2 s1,3<br />

s2,1 s2,2 s2,3<br />

s3,1 s3,2 s3,3<br />

0.5 0.5<br />

◮ resampling artifacts can be detected by the analysis of linear predictor residue<br />

[Popescu & Farid, 2005], [Kirchner, 2008]<br />

Gloe & Kirchner Digital Image Forensics slide 32<br />

0.5<br />

0.5


Resampling detection scheme<br />

t − 2 t − 1 t t + 1 t + 2<br />

Gloe & Kirchner Digital Image Forensics slide 33


Resampling detection scheme<br />

example: linear upsampling (×2)<br />

s(ωt ′ ) = P<br />

t h(ωt′ − t)s(t)<br />

t − 2 t − 1 t t + 1 t + 2<br />

Gloe & Kirchner Digital Image Forensics slide 33


Resampling detection scheme<br />

ωt ′ − ω ωt ′<br />

example: linear upsampling (×2)<br />

ωt ′ + ω<br />

t − 2 t − 1 t t + 1 t + 2<br />

◮ predictor residue: e(ωt ′ ) = s(ωt ′ ) −<br />

KX<br />

αks(ωt ′ + ωk) (α0 := 0)<br />

k=−K<br />

◮ large absolute prediction errors indicate minor degree of linear dependence<br />

Gloe & Kirchner Digital Image Forensics slide 33


Resampling detection scheme<br />

ωt ′ − ω ωt ′<br />

example: linear upsampling (×2)<br />

ωt ′ + ω<br />

t − 2 t − 1 t t + 1 t + 2<br />

◮ predictor residue: e(ωt ′ ) = s(ωt ′ ) −<br />

KX<br />

αks(ωt ′ + ωk) (α0 := 0)<br />

k=−K<br />

◮ large absolute prediction errors indicate minor degree of linear dependence<br />

◮ optimal weights in the example: α = (0.5, 0, 0.5)<br />

⊲ every second sample defaults to 0<br />

Gloe & Kirchner Digital Image Forensics slide 33


Resampling detection scheme<br />

ωt ′ − ω ωt ′<br />

example: linear upsampling (×2)<br />

ωt ′ + ω<br />

t − 2 t − 1 t t + 1 t + 2<br />

◮ predictor residue: e(ωt ′ ) = s(ωt ′ ) −<br />

KX<br />

αks(ωt ′ + ωk) (α0 := 0)<br />

k=−K<br />

◮ large absolute prediction errors indicate minor degree of linear dependence<br />

◮ optimal weights α can be determined with an EM algorithm [Popescu & Farid, 2005]<br />

or set to a fixed linear filter mask [Kirchner, 2008]<br />

Gloe & Kirchner Digital Image Forensics slide 33


Resampling detection scheme<br />

ωt ′ − ω ωt ′<br />

example: linear upsampling (×2)<br />

ωt ′ + ω<br />

t − 2 t − 1 t t + 1 t + 2<br />

◮ predictor residue: e(ωt ′ ) = s(ωt ′ ) −<br />

KX<br />

αks(ωt ′ + ωk) (α0 := 0)<br />

k=−K<br />

◮ large absolute prediction errors indicate minor degree of linear dependence<br />

◮ optimal weights α can be determined with an EM algorithm [Popescu & Farid, 2005]<br />

or set to a fixed linear filter mask [Kirchner, 2008]<br />

◮ p-map: p(ωt ′ ) ∝ exp (−σ|e(ωt ′ )| τ )<br />

◮ measure for the strength of linear dependence<br />

Gloe & Kirchner Digital Image Forensics slide 33


Original<br />

105 %<br />

120 %<br />

Typical detection results<br />

p-map DFT (p-map)<br />

* each spectrum graph has been individually normalized and processed with a maximum filter<br />

◮ resampling causes periodic<br />

pattern in the p-map and<br />

distinct peaks in the p-map’s<br />

DFT<br />

◮ peak position is characteristic for<br />

resampling parameters<br />

◮ typical resampling detectors<br />

employ a frequency domain<br />

peak detector<br />

Gloe & Kirchner Digital Image Forensics slide 34


It’s not only the biggest potato that counts<br />

www.bountyfishing.com<br />

◮ website awards a nice price to the largest fish caught by registered users<br />

◮ problem: ph fishing attacks with Photoshop<br />

Gloe & Kirchner Digital Image Forensics slide 35


It’s not only the biggest potato that counts<br />

www.bountyfishing.com<br />

◮ website awards a nice price to the largest fish caught by registered users<br />

◮ problem: ph fishing attacks with Photoshop<br />

◮ resampling detector unveils cheating<br />

Gloe & Kirchner Digital Image Forensics slide 35


Color filter array interpolation<br />

◮ typical digital cameras use only one CCD / CMOS sensor<br />

and a color filter array (CFA) to capture full-color images<br />

◮ missing color information is estimated from surrounding<br />

genuine elements in the raw image<br />

GR<br />

G<br />

GR<br />

G<br />

GR<br />

RAW image full-color image<br />

G<br />

GB<br />

G<br />

GB<br />

G<br />

GR<br />

G<br />

GR<br />

G<br />

GR<br />

G<br />

GB<br />

G<br />

GB<br />

G<br />

GR<br />

G<br />

GR<br />

G<br />

GR<br />

CFA interpolation / demosaicing<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Gloe & Kirchner Digital Image Forensics slide 36<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R


Color filter array interpolation<br />

◮ typical digital cameras use only one CCD / CMOS sensor<br />

and a color filter array (CFA) to capture full-color images<br />

◮ missing color information is estimated from surrounding<br />

genuine elements in the raw image<br />

GR<br />

G<br />

GR<br />

G<br />

GR<br />

RAW image full-color image<br />

G<br />

GB<br />

G<br />

GB<br />

G<br />

GR<br />

G<br />

GR<br />

G<br />

GR<br />

G<br />

GB<br />

G<br />

GB<br />

G<br />

GR<br />

G<br />

GR<br />

G<br />

GR<br />

CFA interpolation / demosaicing<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

demosaiced images<br />

exhibit specific inter-pixel<br />

correlation artifacts<br />

Gloe & Kirchner Digital Image Forensics slide 36


Example application of CFA artifacts [Popescu & Farid, 2005]<br />

Dresden Palace


Example application of CFA artifacts [Popescu & Farid, 2005]<br />

Dresden Palace


Example application of CFA artifacts [Popescu & Farid, 2005]<br />

◮ periodic artifacts in the linear predictor residue (p-map)<br />

Dresden Palace<br />

CFA peak<br />

DFT(p-map)


Double JPEG compression<br />

Main idea / background<br />

◮ digital images are often already JPEGs before being further processed<br />

◮ digital images are often re-saved as JPEGs after processing<br />

◮ usually, we will see different quantization tables<br />

Gloe & Kirchner Digital Image Forensics slide 38


Double JPEG compression<br />

Main idea / background<br />

◮ digital images are often already JPEGs before being further processed<br />

◮ digital images are often re-saved as JPEGs after processing<br />

◮ usually, we will see different quantization tables<br />

quantization of<br />

DCT coefficients<br />

QFpre<br />

pre-compression post-compression<br />

quantization<br />

factor q0<br />

» –<br />

c<br />

cq0 =<br />

q0<br />

=<br />

QFpost<br />

quantization<br />

factor q1<br />

" » – #<br />

c q0<br />

c (q0,q =<br />

1)<br />

q0 q1<br />

Gloe & Kirchner Digital Image Forensics slide 38


Double JPEG compression artifacts<br />

Quantization of DCT coefficients: a toy example<br />

q 0<br />

c ∈ R<br />

q 0cq 0 ∈ Z<br />

cq 0 =<br />

" #<br />

c<br />

Gloe & Kirchner Digital Image Forensics slide 39<br />

q 0


Double JPEG compression artifacts<br />

Quantization of DCT coefficients: a toy example<br />

q 0<br />

q 1<br />

c ∈ R<br />

q 0cq 0 ∈ Z<br />

q1c (q0 ,q1 ) ∈ Z<br />

cq 0 =<br />

" #<br />

c<br />

q 0<br />

c (q0 ,q 1 ) =<br />

" #<br />

cq0<br />

Gloe & Kirchner Digital Image Forensics slide 39<br />

q 1


Double JPEG compression artifacts<br />

Quantization of DCT coefficients: a toy example<br />

q 0<br />

q 1<br />

c ∈ R<br />

q 0cq 0 ∈ Z<br />

q1c (q0 ,q1 ) ∈ Z<br />

◮ double quantization leads to empty DCT coefficient histogram bins<br />

◮ periodicity depends on q0 / q1 ab [Popescu & Farid, 2004; Lukáˇs et al., 2003]<br />

no artifacts for q1 = n q0<br />

cq 0 =<br />

" #<br />

c<br />

q 0<br />

c (q0 ,q 1 ) =<br />

" #<br />

cq0<br />

Gloe & Kirchner Digital Image Forensics slide 39<br />

q 1


Church of our Ladies, Dresden<br />

A typical example . . .<br />

(1, 1) DCT coefficient histograms<br />

Q = 90<br />

-200 0<br />

200<br />

Q = (80, 90)<br />

-200 0<br />

200<br />

Q = (95, 90)<br />

-200 0<br />

200<br />

Gloe & Kirchner Digital Image Forensics slide 40


. . . and a practical application<br />

submission to the 2009 DOCMA award (Julia Enkelmann)


. . . and a practical application<br />

JPEG ghosts [Farid, 2009]<br />

submission to the 2009 DOCMA award (Julia Enkelmann)


Image manipulation detection: summary<br />

◮ discussed methods are only the tip of the iceberg<br />

◮ further approaches include:<br />

⊲ copy & paste<br />

[Lukáˇs et al., 2003; Popescu & Farid, 2004; . . . ]<br />

⊲ lightning analysis [Jonson & Farid, 2007]<br />

⊲ blocking artifacts [Li et al., 2009]<br />

◮ there is no single catch-all detector<br />

⊲ sensor noise [Lukáˇs et al., 2007]<br />

⊲ chromatic aberrations [Johnson & Farid, 2006]<br />

⊲ and many more . . .<br />

◮ image forensics provides a whole toolbox of different methods that aim at particular<br />

aspects of image manipulation<br />

but: semantic analysis of the results remains to be a task for the human investigator<br />

Gloe & Kirchner Digital Image Forensics slide 42


3Digital image forensics<br />

requires images.<br />

A lot of them.<br />

Test datasets in digital image forensics


How does your algorithm know that this<br />

image is authentic?<br />

Gloe & Kirchner Digital Image Forensics slide 44<br />

accompanying authentic submission to the 2009 DOCMA award (Xaver Klaußner)


How does your algorithm know that this<br />

image is authentic?<br />

Training, training, training, . . .<br />

◮ requires a vast amount of test data<br />

◮ scientifically sound results should rely on publicly available data<br />

Approaches to obtain test data<br />

◮ capture the images on your own<br />

⊲ time-consuming and redundant<br />

◮ use specific databases (mostly designed for other applications)<br />

⊲ images may have undesired properties<br />

◮ download<br />

⊲ images may have even more undesired properties<br />

⊲ no knowledge about the processing history available<br />

⊲ persistence and privacy issues<br />

Gloe & Kirchner Digital Image Forensics slide 44


Dresden Image Database [Gloe & Böhme, 2010]<br />

◮ image database, specifically designed for applications in digital image forensics<br />

◮ altogether more than 14 000 digital camera<br />

images, stemming from<br />

⊲ 73 devices<br />

⊲ 23 camera models<br />

⊲ 14 major camera manufacturers<br />

◮ several devices for most model<br />

◮ full range of consumer, semi-professional and<br />

professional digital cameras<br />

◮ main foucs: image source identification<br />

⊲ body of images allows to study characteristics specific to either manufacturer,<br />

model, or device<br />

⊲ images of each scene captured with each device<br />

◮ applications in manipulation detection [Kirchner & Gloe, 2009]<br />

Gloe & Kirchner Digital Image Forensics slide 45


How to capture 14 000 images<br />

. . .<br />

2<br />

2<br />

ICSI 2010<br />

2A<br />

3 image forensics<br />

3<br />

3A<br />

4<br />

4<br />

ICSI 2010<br />

4A<br />

set of cameras<br />

5 image forensics<br />

5<br />

5A<br />

6<br />

6<br />

ICSI 2010<br />

6A<br />

7 image forensics<br />

◮ each 2 tripods per indoor / outdoor location to capture 2 scenes<br />

◮ 3 different focal lengths per scene and device<br />

. . . and a lot of time<br />

7<br />

7A<br />

8<br />

8<br />

ICSI 2010<br />

8A<br />

9 image forensics<br />

9<br />

9A .<br />

. .


How to capture 14 000 images<br />

. . .<br />

2<br />

2<br />

ICSI 2010<br />

2A<br />

3 image forensics<br />

3<br />

3A<br />

4<br />

4<br />

ICSI 2010<br />

4A<br />

set of cameras<br />

5 image forensics<br />

5<br />

5A<br />

6<br />

6<br />

ICSI 2010<br />

6A<br />

7 image forensics<br />

◮ each 2 tripods per indoor / outdoor location to capture 2 scenes<br />

◮ 3 different focal lengths per scene and device<br />

. . . and a lot of time and hot beverages<br />

7<br />

7A<br />

8<br />

8<br />

ICSI 2010<br />

It looks cold?<br />

8A<br />

9 image forensics<br />

9<br />

9A .<br />

. .


min / max temperature [ ◦ C]<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

-12<br />

-16<br />

-20<br />

It was cold!<br />

1.1. 11.1. 21.1. 31.1. 10.2. 20.2.<br />

day<br />

◮ photo-shooting took place during the<br />

coldest period of the year 2009<br />

Gloe & Kirchner Digital Image Forensics slide 47


DOCMA Award<br />

Background<br />

◮ creating convincing forgeries is a time-consuming task<br />

◮ researchers are usually no Photoshop experts<br />

◮ typical test images do not reflect “real-life conditions”<br />

How can we learn to detect real forgeries from real<br />

Photoshop users if we don’t have them in our test<br />

database?


DOCMA Award<br />

Background<br />

◮ creating convincing forgeries is a time-consuming task<br />

◮ researchers are usually no Photoshop experts<br />

◮ typical test images do not reflect “real-life conditions”<br />

How can we learn to detect real forgeries from real<br />

Photoshop users if we don’t have them in our test<br />

database?<br />

DOCMA Award 2009<br />

◮ competition amongst (semi-)professional Photoshop<br />

users to create an arbitrary newspaper story,<br />

supported by a convincing image manipulation<br />

◮ initiator: Doc Baumann and his DOCMA magazine for<br />

professional Photoshop users<br />

◮ images (+ originals) are made available to researchers<br />

◮ around 100 interesting submissions<br />

Doc Baumann


DOCMA Award: some examples<br />

Fake<br />

Peter Hebler


DOCMA Award: some examples<br />

Original<br />

Peter Hebler


DOCMA Award: some examples<br />

Fake<br />

Bernd Busche


DOCMA Award: some examples<br />

Original<br />

Bernd Busche


DOCMA Award: some examples<br />

Fake<br />

Peter Wienerroither


DOCMA Award: some examples<br />

Original<br />

Peter Wienerroither


4Now that we have<br />

the theory behind,<br />

the practical algorithms,<br />

and the test data,<br />

everything should be fine?


4Now that we have<br />

the theory behind,<br />

the practical algorithms,<br />

and the test data,<br />

everything should be fine?<br />

Attacks against digital image forensics


Introducing attacks<br />

✔ existing forensic schemes seem to work well under laboratory conditions<br />

✔ usage in practical applications is documented<br />

✘ What if there was a smart counterfeiter, who knew about our techniques?<br />

◮ attacks: methods to systematically mislead digital image forensics<br />

Goals of an attacker<br />

◮ hide traces of image<br />

manipulations<br />

Benefits of studying attacks<br />

◮ eventually better detectors<br />

◮ erase evidence about the source of an image<br />

◮ pretend another source device of an image<br />

◮ protect the source of an image (e .g. retain anonymity)<br />

Gloe & Kirchner Digital Image Forensics slide 52


Digital forensics: proposed ontology<br />

forensics<br />

0 1 1 1 1 1 0 0 0 0 1<br />

1<br />

0<br />

1<br />

1<br />

0<br />

0<br />

1 1 0 0 0<br />

digital<br />

0 0<br />

forensics<br />

1 1 0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

1<br />

analog forensics<br />

1 0 1 0 0 1 1 0 0 1 1<br />

0<br />

1<br />

1<br />

0<br />

0 0 1<br />

computer 1 0 1<br />

forensics 0 0 1<br />

0 1 1<br />

1<br />

1<br />

1<br />

0<br />

1<br />

0<br />

0<br />

0<br />

1 multimedia 0 0 1 1<br />

1 1(image) 1 0 1<br />

0 forensics 0 0 1 0<br />

1 0 1 1 1<br />

1 0 0 digital 1 1 evidence 1 1 0 1 1 1 physical evidence<br />

0 0 1 0 1 1 0 0 0 1 1<br />

forgeability<br />

b=<br />

counter-forensics<br />

Gloe & Kirchner Digital Image Forensics slide 53


Digital forensics: proposed ontology<br />

forensics<br />

0 1 0 1 0 1 0 1 0 0 1<br />

0<br />

1<br />

0<br />

1<br />

1<br />

1<br />

0 0 0 0 1<br />

digital<br />

0 1<br />

forensics<br />

0 1 1<br />

1<br />

1<br />

0<br />

1<br />

0<br />

0<br />

analog forensics<br />

0 1 1 1 0 0 1 1 0 0 0<br />

”physical evidence cannot be wrong,<br />

0<br />

0<br />

1<br />

0<br />

1 1 1<br />

computer 0 0 1<br />

forensics 0 0 1<br />

0 0 0<br />

1<br />

0<br />

1<br />

0<br />

0<br />

1<br />

1<br />

0<br />

0 multimedia 0 1 0 1<br />

0 1(image) 1 1 0<br />

1 forensics 0 1 1 0<br />

1 1 0 0 1<br />

it cannot perjure itself,<br />

it cannot be wholly absent”<br />

[Kirk, 1953]<br />

1 0 0 digital 1 1 evidence 0 0 0 1 1 1 physical evidence<br />

1 0 0 1 1 1 1 1 1 1 0<br />

forgeability<br />

b=<br />

counter-forensics<br />

Gloe & Kirchner Digital Image Forensics slide 53


Counter-forensics: computer forensics<br />

leave<br />

traces<br />

valid state invalid state<br />

Gloe & Kirchner Digital Image Forensics slide 54


Counter-forensics: computer forensics<br />

leave<br />

traces<br />

eliminate<br />

traces<br />

valid state invalid state valid state<br />

Gloe & Kirchner Digital Image Forensics slide 54


Counter-forensics: computer forensics<br />

leave<br />

traces<br />

eliminate<br />

traces<br />

valid state invalid state valid state<br />

valid states are perfectly known<br />

or can be recorded before<br />

Gloe & Kirchner Digital Image Forensics slide 54


Counter-forensics: computer forensics<br />

leave<br />

traces<br />

preemptively<br />

avoid traces<br />

eliminate<br />

traces<br />

valid state invalid state valid state<br />

valid states are perfectly known<br />

or can be recorded before<br />

Gloe & Kirchner Digital Image Forensics slide 54


Counter-forensics: computer forensics<br />

leave<br />

traces<br />

virtualization<br />

preemptively<br />

avoid traces<br />

eliminate<br />

traces<br />

valid state invalid state valid state<br />

valid states are perfectly known<br />

or can be recorded before<br />

Gloe & Kirchner Digital Image Forensics slide 54


Counter-forensics: image forensics<br />

leave<br />

traces<br />

preemptively<br />

avoid traces<br />

eliminate<br />

traces<br />

valid state invalid state valid state<br />

invalidity depends on<br />

the model of reality<br />

virtualization<br />

valid states are perfectly known<br />

or can be recorded before<br />

Gloe & Kirchner Digital Image Forensics slide 55


Counter-forensics: image forensics<br />

leave<br />

traces<br />

preemptively<br />

avoid traces<br />

eliminate<br />

traces<br />

valid state invalid state valid state<br />

invalidity depends on<br />

the model of reality<br />

virtualization is not possible<br />

valid states are not perfectly known<br />

or can be recorded before<br />

and cannot be recorded before<br />

Gloe & Kirchner Digital Image Forensics slide 55


Digital forensics: proposed ontology<br />

forensics<br />

1 0 0 0 1 0 1 1 0 1 1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1 1 0 0 0<br />

digital<br />

1 0<br />

forensics<br />

1 1 0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

0<br />

1 1 1 1 0 1 0 1 1 1 1<br />

1<br />

1<br />

1<br />

0<br />

0 1 1<br />

computer 1 0 0<br />

forensics 0 0 1<br />

0 0 0<br />

1<br />

1<br />

1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1 multimedia 1 0 0 1<br />

1 1(image) 0 0 0<br />

0 forensics 1 1 0 1<br />

0 0 1 1 0<br />

0perfect 1 1 crime 0 1<br />

1 possible 0 1 0 1<br />

1<br />

1<br />

1 1 1 1 1<br />

compete for<br />

the<br />

1 0<br />

best<br />

0<br />

model<br />

0 0<br />

forgeability<br />

b=<br />

counter-forensics<br />

analog forensics<br />

perfect crime<br />

impossible<br />

Gloe & Kirchner Digital Image Forensics slide 56


Attacks: practical considerations<br />

Who is that guy in the pixel next to you?<br />

◮ successful attacks against particular forensic algorithms are available<br />

[Gloe et al., 2007; Kirchner & Böhme, 2008, 2009]<br />

◮ defeating a whole set of forensic approaches is a much more challenging task<br />

⊲ attacks may introduce new detectable artifacts<br />

⊲ attacks may interfere with each other<br />

⊲ competition for the best model<br />

Gloe & Kirchner Digital Image Forensics slide 57


Attacks: practical considerations<br />

Who is that guy in the pixel next to you?<br />

◮ successful attacks against particular forensic algorithms are available<br />

[Gloe et al., 2007; Kirchner & Böhme, 2008, 2009]<br />

◮ defeating a whole set of forensic approaches is a much more challenging task<br />

⊲ attacks may introduce new detectable artifacts<br />

⊲ attacks may interfere with each other<br />

⊲ competition for the best model<br />

Attacks in terms of plausible<br />

post-processing<br />

◮ in practice, plausible image statistics<br />

might be enough<br />

⊲ downscaling and / or lossy compression<br />

are likely to smooth out and destroy most<br />

of the subtle traces we are looking for<br />

Gloe & Kirchner Digital Image Forensics slide 57


fin<br />

Concluding remarks


Summary<br />

◮ image forensics is a science to assess the authenticity of digital images<br />

image forensics is about statistical analysis of images<br />

⊲ main ingredients: device characteristics and manipulation artifacts<br />

⊲ there exists a variety of different approaches to determine the source of an image<br />

or to detect manipulations<br />

image forensics is an empirical science<br />

⊲ the better our model of reality, the more we can trust our tools<br />

image forensics requires rigor testing on large data sets<br />

⊲ since we cannot model reality entirely, we need as much observations as possible<br />

Gloe & Kirchner Digital Image Forensics slide 59


Multimedia forensics: a growing field<br />

◮ publications on multimedia forensics per year<br />

source: Hany Farid<br />

Digital Forensic Database<br />

8<br />

before<br />

4<br />

2003<br />

12<br />

2004<br />

21<br />

2005<br />

36<br />

2006<br />

Gloe & Kirchner Digital Image Forensics slide 60<br />

65<br />

2007<br />

71<br />

2008<br />

87<br />

2009


Multimedia forensics: a growing field<br />

◮ publications on multimedia forensics per year<br />

source: Hany Farid<br />

Digital Forensic Database<br />

first publication<br />

from Dresden<br />

8<br />

before<br />

4<br />

2003<br />

12<br />

2004<br />

21<br />

2005<br />

36<br />

2006<br />

Gloe & Kirchner Digital Image Forensics slide 60<br />

65<br />

2007<br />

71<br />

2008<br />

87<br />

2009


A broader view<br />

2<br />

2<br />

7<br />

7<br />

ICSI 2010<br />

2A<br />

ICSI 2010<br />

7A<br />

3<br />

3<br />

8<br />

8<br />

ICSI 2010<br />

3A<br />

ICSI 2010<br />

8A<br />

4<br />

4<br />

9<br />

9<br />

ICSI 2010<br />

4A<br />

ICSI 2010<br />

9A<br />

5<br />

5<br />

10<br />

10<br />

ICSI 2010<br />

5A<br />

ICSI 2010<br />

10A<br />

6<br />

6<br />

11<br />

11<br />

ICSI 2010<br />

6A<br />

ICSI 2010<br />

Gloe & Kirchner Digital Image Forensics slide 61<br />

11A


I know what you have done<br />

in your last<br />

HOTO HOP Session<br />

An Introduction to Digital Image Forensics<br />

Thomas Gloe<br />

Matthias Kirchner *<br />

Faculty of<br />

Computer Science<br />

TU Dresden<br />

ICSI Berkeley<br />

21|01|2010


Computer forensics in a broader sense<br />

◮ computers interact with their environment<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

WWW<br />

Gloe & Kirchner Digital Image Forensics slide 63


Computer forensics in a broader sense<br />

◮ computers interact with their environment<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

WWW<br />

WWW<br />

WWW<br />

◮ computers can be part of a network<br />

Gloe & Kirchner Digital Image Forensics slide 63<br />

WWW<br />

WWW<br />

WWW<br />

WWW


Computer forensics in a broader sense<br />

◮ computers interact with their environment<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

WWW<br />

WWW<br />

WWW<br />

◮ computers can be part of a network<br />

◮ computers can be sensors itself<br />

Gloe & Kirchner Digital Image Forensics slide 63<br />

WWW<br />

WWW<br />

WWW<br />

WWW


Computer forensics in a broader sense<br />

◮ computers interact with their environment<br />

physical evidence<br />

digital evidence<br />

1 0 0 1<br />

1 1 0 1<br />

WWW<br />

WWW<br />

WWW<br />

WWW<br />

◮ computers can be part of a network<br />

◮ computers can be sensors itself<br />

◮ computers leave physical evidence<br />

Gloe & Kirchner Digital Image Forensics slide 63<br />

WWW<br />

WWW<br />

WWW<br />

WWW


Image sources<br />

⊲ Photoshop logo (title,64) http://commons.wikimedia.org/wiki/File:Photoshop_CS4.svg<br />

⊲ Porta advertisement (1) DOCMA 32, January 2010, http://www.docma.info<br />

⊲ models (1) http://photoshopdisasters.blogspot.com<br />

⊲ Iranian missile test (7) http://www.spiegel.de<br />

⊲ hard drive (9,61) http://commons.wikimedia.org/wiki/File:Open_hard-drive.jpg<br />

⊲ floppy disk (13,54) http://commons.wikimedia.org/wiki/GNOME_Desktop_icons<br />

⊲ core memory (13) http://commons.wikimedia.org/wiki/File:KL_CoreMemory.jpg<br />

⊲ digital image (14,55) http://commons.wikimedia.org/wiki/File:Crystal_Project_lphoto.png<br />

⊲ newspaper (18) http://commons.wikimedia.org/wiki/Nuvola/apps<br />

⊲ camera1, scanner, monitor, printer, 3D (18,19,20,25) http://commons.wikimedia.org/wiki/Crystal_Clear<br />

⊲ video camera, color palette (18,19) http://commons.wikimedia.org/wiki/Category:Crystal_Project<br />

⊲ beamer (18) http://www.oxygen-icons.org<br />

⊲ Blender logo (18) http://commons.wikimedia.org/wiki/Blender_(software)<br />

⊲ camera2 (19,20) http://commons.wikimedia.org/wiki/Camera<br />

⊲ George Bush (57) http://www.snopes.com/photos/politics/bushbook.asp<br />

⊲ fingerprints (61) http://www.lanl.gov/news/albums/chemistry/fingerprint.jpg<br />

⊲ handcuffs (61) http://commons.wikimedia.org/wiki/File:Handcuffs01_2003-06-02.jpg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!