04.08.2013 Views

A Workshop on Biomathematics - Math - IPM

A Workshop on Biomathematics - Math - IPM

A Workshop on Biomathematics - Math - IPM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ﻲﺘﺴﻳﺯ ﺕﺎﻴﺿﺎﻳﺭ ﺭﺩ ﻲﺜﺣﺎﺒﻣ<br />

ﻱﺩﺎﻴﻨﺑﻱ ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

•<br />

-------------------------------------<br />

۱ ( ۷ ﻲﻟﺍ ۱۱ ﻩﺎﻣﻱﺩ ۱۳۸۹ ﻥﺎﮔﺪﻨﻨﻛﺭﺍﺰﮔﺮﺑﻲﻣﺎﺳﺍ : ﻱﺩﺎﻴﻨﺑﻱﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ،ﻲﻧﺎﻛﺮﺳﻮﺗﻪﺑﺯﻭﺭ ﻲﺷﺯﻮﻣﺁﻩﺎﮔﺭﺎﻛ )<br />

ﻱﺩﺎﻴﻨﺑﻱﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘﻭﻒﻳﺮﺷﻲﺘﻌﻨﺻﻩﺎﮕﺸﻧﺍﺩ،ﻲﺳﺪﻘﻣﺎﺿﺭﺪﻴﺳ<br />

ﻱﺩﺎﻴﻨﺑﻱﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ،ﻥﺎﻴﺳﺎﺒﻋﻦﻴﺴﺤﻟﺍﺪﺒﻋ<br />

1<br />

•<br />


ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ۱ . ﻪﻣﺎﻧﺮﺑ ﺎﻫﻲﻧﺍﺮﻨﺨﺳ : ﻪﺒﻨﺷﻪﺳ۷ / ۱۰ / ۱۳۸۹ ﻪﺒﻨﺷﺭﺎﻬﭼ۸ / ۱۰ / ۱۳۸۹ ﻪﺒﻨﺷﺞﻨﭘ۹ / ۱۰ / ۱۳۸۹ ﻪﻌﻤﺟ۱۰ / ۱۰ / ۱۳۸۹ ﻪﺒﻨﺷ۱۱ / ۱۰ / ۱۳۸۹ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

- ۹:۰۰ ﻡﺎﻧﺖﺒﺛ ﺯﺍﺮﻓﺍﺵﺭﺁ ﻲﻣﺍﺮﻬﺑﺭﺩﺎﻬﺑ ﻱﺪﺳﺍﺮﻴﻣﺍ ﻲﻣﺍﺮﻬﺑﺭﺩﺎﻬﺑ ۱۰:۳۰ - ۱۰:۰۰ ﺲﻔﻨﺗ ﻲﻳﺍﺮﻳﺬﭘﻭﺲﻔﻨﺗ ﻭﺲﻔﻨﺗ ﻲﻳﺍﺮﻳﺬﭘ ﻭﺲﻔﻨﺗ ﻲﻳﺍﺮﻳﺬﭘ ﻲﻳﺍﺮﻳﺬﭘﻭﺲﻔﻨﺗ ۱۱:۳۰ - ۱۰:۳۰ ﺯﺍﺮﻓﺍﺵﺭﺁ ﻲﻣﺍﺮﻬﺑﺭﺩﺎﻬﺑ ﻱﺪﺳﺍﺮﻴﻣﺍ ﻥﺍﺩﺰﻳﺵﺭﺁ ﺶﺨﺑ ۱۰:۰۰<br />

- ۱۱:۳۰ ﺦﺳﺎﭘﻭﺶﺳﺮﭘ ﺦﺳﺎﭘﻭﺶﺳﺮﭘ ﺦﺳﺎﭘﻭﺶﺳﺮﭘ ﺦﺳﺎﭘﻭﺶﺳﺮﭘ ۱۴:۰۰ - ۱۲:۰۰ ﺭﺎﻬﻧ ﺭﺎﻬﻧ ﺭﺎﻬﻧ ﺭﺎﻬﻧ ﺭﺎﻬﻧ ۱۲:۰۰<br />

Introductio<br />

n to<br />

Memory<br />

Introductio<br />

n to<br />

Memory<br />

2<br />

Visi<strong>on</strong> Demo<br />

(Neur<strong>on</strong>al<br />

Spike-Train<br />

Analysis, A<br />

Case Study)<br />

- ۱۴:۰۰ ﺯﺍﺮﻓﺍﺵﺭﺁ ﻱﺩﻭﺭﺮﺳﺎﻳ) ﺲﻧﺍﺮﻔﻨﻛﻮﺋﺪﻳﻭ ( ﻥﺍﺩﺰﻳﺵﺭﺁ ﺶﺨﺑ ۱۶:۰۰ - ۱۵:۰۰ ﻱﺮﻳﺯﻭﻢﻳﺮﻣ ﻱﺩﻭﺭﺮﺳﺎﻳ) ﺲﻧﺍﺮﻔﻨﻛﻮﺋﺪﻳﻭ ( ﻥﺍﺩﺰﻳﺵﺭﺁ ﺶﺨﺑ ۱۶:۳۰ - ۱۶:۰۰ ﻭﺲﻔﻨﺗ ۱۵:۰۰ ﻲﻳﺍﺮﻳﺬﭘﻭﺲﻔﻨﺗ ﻲﻳﺍﺮﻳﺬﭘﻭﺲﻔﻨﺗ ۱۷:۳۰ - ۱۶:۳۰ ﻱﺮﻳﺯﻭﻢﻳﺮﻣ ﻲﻧﺍﺮﻨﺨﺳ ﻲﺋﻮﺠﺸﻧﺍﺩ ﻲﻧﺍﺮﻨﺨﺳ ﻲﻳﻮﺠﺸﻧﺍﺩ ﺍﺮﻨﺨﺳ ﻲﻧ ﻲﻳﻮﺠﺸﻧﺍﺩ ﻥﺍﺩﺰﻳﺵﺭﺁ ﺶﺨﺑ<br />

ﻲﻳﺍﺮﻳﺬﭘ


• Spatial limits of object processing in brain<br />

• Spatial heterogeneity in the percepti<strong>on</strong> of face and form attributes. A new<br />

theoretical approach to Translati<strong>on</strong> invariance<br />

• Physiological underpinnings of face representati<strong>on</strong> in the primate brain<br />

Abstract:<br />

The identity of an object is independent of where it appears in the visual field. According to<br />

<strong>on</strong>e of the classical tenets of the visi<strong>on</strong> science, the visual system captures this invariance.<br />

Large receptive fields of neur<strong>on</strong>s in the higher brain areas are believed to mediate this<br />

translati<strong>on</strong> invariance. Based <strong>on</strong> c<strong>on</strong>verging evidence from various experiments, many<br />

assumpti<strong>on</strong>s of this traditi<strong>on</strong>al view are challenged here. A series of experiments has<br />

dem<strong>on</strong>strated that translati<strong>on</strong> invariance and homogeneity of the visual percepti<strong>on</strong> are more<br />

pr<strong>on</strong>ounced for lower level visual features that are presumably encoded by neur<strong>on</strong>s with<br />

smaller receptive fields. Using “face adaptati<strong>on</strong>” paradigm, it is shown that the functi<strong>on</strong>al<br />

analysis regi<strong>on</strong> for face processing is much smaller than what has been thought. These results<br />

also show that face processing is based in retinotopic coordinates across head and eye<br />

movements. These new findings suggest a totally different doctrine for the more modestly<br />

named functi<strong>on</strong>; “translati<strong>on</strong> tolerance”. According to the new proposal, translati<strong>on</strong> tolerant<br />

object recogniti<strong>on</strong> is not necessarily the result of big receptive fields of neur<strong>on</strong>s in the higher<br />

brain areas. Translati<strong>on</strong> tolerance is perhaps a matter of learning, calibrati<strong>on</strong> and statistical<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ۲ . ﻦﻳﻭﺎﻨﻋ ﺎﻫﻲﻧﺍﺮﻨﺨﺳ : ﺵﺭﺁ ﺯﺍﺮﻓﺍ ، ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

3<br />

ﻡﺍ . ﻱﺁ . ﻲﺗ . ﺎﻜﻳﺮﻣﺁ،ﺓﺪﻴﻜﭼﻭ<br />

sampling of separate object/feature selective units according to this new view.<br />

ﺎﻜﻳﺮﻣﺁ،ﻥﻮﺴﻳﺪﻣ<br />

• Biological complexity of gene networks: Towards a quantitative theory<br />

• Model reducti<strong>on</strong> in complete dynamical networks<br />

Abstract:<br />

Complex dynamical systems are ubiquitous. Major questi<strong>on</strong>s in biology, such as the origin of<br />

life and its evoluti<strong>on</strong> into uncountable forms and behaviors in living organisms have been<br />

investigated c<strong>on</strong>current with intellectual c<strong>on</strong>tributi<strong>on</strong>s to the science of complex systems. Our<br />

progress in understanding biological intelligence is tied to the depth and versatility of<br />

quantitative models of complex dynamics in the relevant organisms. Quantifying variati<strong>on</strong> in<br />

phenotypic and genotypic traits in organisms within a single genotype is regarded as the<br />

quintessential problem facing progress in understanding the nature and properties of the<br />

complex dynamics in biological systems.<br />

A novel view towards understanding variati<strong>on</strong> in traits is to regard variati<strong>on</strong> in phenotypic<br />

traits and diversity of the forms of behavioral resp<strong>on</strong>se to similar stimuli as results of many<br />

different forms of “Biological Computati<strong>on</strong>s” that take place in a biological system, despite all<br />

being qualified as “valid biological programs” for the “same set of genomic algorithms” that<br />

are encoded within a single genotype and stabilized through natural selecti<strong>on</strong> and other<br />

evoluti<strong>on</strong>ary mechanisms.<br />

-ﻦﻴﺴﻧﺎﻜﺴﻳﻭﻩﺎﮕﺸﻧﺍﺩ<br />

،ﻱﺪﺳﺍﺮﻴﻣﺍ


Thus, we are led to an old and challenging problem in theoretical biology, namely, to<br />

characterize Biological Computati<strong>on</strong> rigorously, and to develop the subsequent c<strong>on</strong>cepts that<br />

would lead to classificati<strong>on</strong> and descripti<strong>on</strong> of various forms of biological computati<strong>on</strong> that<br />

implement “computati<strong>on</strong>ally equivalent forms of genomic algorithms”. A magnificent example<br />

that brings together all the above menti<strong>on</strong>ed c<strong>on</strong>siderati<strong>on</strong>s is the animal brain. With no<br />

exaggerati<strong>on</strong>, the animal nervous system is the most studied complex dynamical system to<br />

date. The outstanding problem in neuroscience is notorious task of identifying brain activities<br />

and the animal behavior as emergent forms of biological computati<strong>on</strong>.<br />

A quantitative theory of Biological Complexity could be regarded as an essential step that<br />

provides insight into the biological nature of the types of events that comprise distinct cases of<br />

Biological Computati<strong>on</strong> that implement equivalent genomic algorithms, whether in brain or<br />

any other intelligent biological system. Thus, Biological Complexity could be regarded as the<br />

first systematic numerical measure of variati<strong>on</strong> of phenotypic traits in organisms within the<br />

same genotype.<br />

The first lecture lays out the biomolecular panorama for development of a computati<strong>on</strong>ally<br />

tractable theory of biological complexity. The sec<strong>on</strong>d lecture outlines the mathematical<br />

challenges that arise in extending such a theory from the molecular scale to the neur<strong>on</strong>al and<br />

behavioral domains.<br />

This research is a result of c<strong>on</strong>tributi<strong>on</strong>s by several students and collaborators in Iran and UW<br />

Madis<strong>on</strong>. ، ﻥﺎﺘﺴﻠﮕﻧﺍ ﻲﻣﺍﺮﻬﺑﺭﺩﺎﻬﺑ<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

4<br />

،.<br />

ﻝﺍ<br />

ﻲﺳ ﻮﻳ . .<br />

• Individual differences in human behavior and the relati<strong>on</strong>ship to brain structure I, II<br />

Abstract:<br />

Human Parietal Cortex Structure Predicts Individual Differences in Perceptual Rivalry<br />

When visual input has c<strong>on</strong>flicting interpretati<strong>on</strong>s, c<strong>on</strong>scious percepti<strong>on</strong> can alternate<br />

sp<strong>on</strong>taneously between competing interpretati<strong>on</strong>s. There is a large amount of unexplained<br />

variability between individuals in the rate of such sp<strong>on</strong>taneous alternati<strong>on</strong>s in percepti<strong>on</strong>. We<br />

hypothesized that variability in perceptual rivalry might be reflected in individual differences<br />

in brain structure, because brain structure can exhibit systematic relati<strong>on</strong>ships with an<br />

individual's cognitive experiences and skills. To test this noti<strong>on</strong>, we examined in a large group<br />

of individuals how cortical thickness, local gray-matter density, and local white-matter<br />

integrity correlate with individuals' alternati<strong>on</strong> rate for a bistable, rotating structure-frommoti<strong>on</strong><br />

stimulus. All of these macroscopic measures of brain structure c<strong>on</strong>sistently revealed<br />

that the structure of bilateral superior parietal lobes (SPL) could account for interindividual<br />

variability in perceptual alternati<strong>on</strong> rate. Furthermore, we examined whether the bilateral SPL<br />

regi<strong>on</strong>s play a causal role in the rate of perceptual alternati<strong>on</strong>s by using transcranial magnetic<br />

stimulati<strong>on</strong> (TMS) and found that transient disrupti<strong>on</strong> of these areas indeed decreases the rate<br />

of perceptual alternati<strong>on</strong>s. These findings dem<strong>on</strong>strate a direct relati<strong>on</strong>ship between structure<br />

of SPL and individuals' perceptual switch rate.<br />

Reference: Ryota Kanai, Bahador Bahrami, Geraint Rees. Human Parietal Cortex Structure<br />

Predicts Individual Differences in Perceptual Rivalry. Current Biology - 28 September 2010<br />

(Vol. 20, Issue 18, pp. 1626-1630)


• Collective decisi<strong>on</strong>-making<br />

Abstract:<br />

How to "see" the elephant in the dark: social interacti<strong>on</strong> afford reliable belief formati<strong>on</strong> even in<br />

the absence of objective knowledge<br />

Sensory percepti<strong>on</strong> is noisy and incomplete. Therefore, our beliefs about physical events that<br />

give rise to percepti<strong>on</strong> have limited reliability. This limitati<strong>on</strong> is beautifully portraied by Rumi<br />

in the story of "the elephant in the dark": each observer's descripti<strong>on</strong> of the elephant is far from<br />

the truth and severely c<strong>on</strong>strained by his limited sensory sample. Rumi c<strong>on</strong>cluded that "light"<br />

(ie external source of objective knowledge) is necessary for formati<strong>on</strong> of a reliable belief. In<br />

my talk I will challenge this noti<strong>on</strong> and provide empirical evidence arguing that if Rumi's<br />

protag<strong>on</strong>ists had talked to each other and shared their experience via social interacti<strong>on</strong>, they<br />

could have come to a descripti<strong>on</strong> of the elephant as accurate as if they had had access to light. I<br />

will also discuss the implicati<strong>on</strong>s of this finding for social learning in different cultural<br />

c<strong>on</strong>texts by comparing European and Chinese observers.<br />

Reference: Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., Frith, C. D.<br />

(2010). Optimally interacting minds. Science, 329 (5995). 1081-1085<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

• Mean Field Theory for Inferring Real and Functi<strong>on</strong>al Interacti<strong>on</strong>s in Neural Networks<br />

I, II<br />

The talks would be mainly based <strong>on</strong>: ﮊﻭﺮﻧ،ﻲﻟﻭﺎﻛﻪﺴﺳﻮﻣ<br />

1. Roudi Y., Hertz J. (2010)<br />

Mean Field Theory for N<strong>on</strong>-equilibrium Network Rec<strong>on</strong>structi<strong>on</strong><br />

arXiv:1009.5946v1 [c<strong>on</strong>d-mat.dis-nn]<br />

2. Hertz J., Roudi Y., Thorning A., Tyrcha J., Aurell E., Zeng H. (2010)<br />

Inferring network c<strong>on</strong>nectivity using kinetic Ising models,<br />

BMC Neuroscience 2010, 11(Suppl 1):P51<br />

3. Roudi Y., Tyrcha J., Hertz J. (2009)<br />

Ising Model for Neural Data: Model Quality and ApproximateMethods for<br />

Extracting Functi<strong>on</strong>al<br />

C<strong>on</strong>nectivity,<br />

Phys. Rev. E, 79, 051915<br />

• Percepti<strong>on</strong> of speed and positi<strong>on</strong> at low luminance<br />

• Dissociati<strong>on</strong> of percepti<strong>on</strong> and acti<strong>on</strong> at low luminance<br />

• Visi<strong>on</strong> Demo<br />

5<br />

،ﻱﺩﻭﺭﺮﺳﺎﻳ<br />

،ﻱﺮﻳﺯﻭﻢﻳﺮﻣ<br />

Abstract:<br />

The percepti<strong>on</strong> of the speed of moving objects and guiding motor reacti<strong>on</strong>s to them is a crucial<br />

task of the visuomotor system that has to be performed across dramatic changes in luminance<br />

in everyday life. In a series of studies we dem<strong>on</strong>strate that the perceived speed of moti<strong>on</strong> is<br />

significantly (up to 30%) overestimated at low luminance. This speed overestimati<strong>on</strong> is a result<br />

ﺎﻜﻳﺮﻣﺁ،ﺩﺭﺍﻭﺭﺎﻫﻩﺎﮕﺸﻧﺍﺩ


of lengthened moti<strong>on</strong> smear that is caused by an increase in visual persistence at low<br />

luminance. However, we find next that this change in perceived speed does not affect other<br />

speed-dependent resp<strong>on</strong>ses: neither moti<strong>on</strong>-induced positi<strong>on</strong> shifts (the flash lag effect) nor<br />

speed-dependent motor resp<strong>on</strong>ses (eye and hand movements) are affected by variati<strong>on</strong>s in<br />

luminance that have large and significant effects <strong>on</strong> perceived speed. In c<strong>on</strong>clusi<strong>on</strong> multiple<br />

cues, including moti<strong>on</strong> smear, may c<strong>on</strong>tribute to the percepti<strong>on</strong> of speed, but not all of them<br />

c<strong>on</strong>tribute to determining the positi<strong>on</strong> of and guiding resp<strong>on</strong>ses to moving targets. The cues<br />

that do participate appear to be invariant to wide ranges of luminance. ، ﺎﻜﻳﺮﻣﺁ،ﻥﻮﺘﺳﻮﺑﻩﺎﮕﺸﻧﺍﺩﺶﺨﺑﻥﺍﺩﺰﻳﺵﺭﺁ<br />

• The mystery of mid-level visi<strong>on</strong> and bey<strong>on</strong>d<br />

Abstract:<br />

Mid-level visi<strong>on</strong> may not be a well-defined c<strong>on</strong>cept, yet multiple efforts to describe and test<br />

the percepti<strong>on</strong> of basic geometrical and physical properties of objects through visual system<br />

grouping and competitive mechanisms related to phenomena like surface appearance,<br />

transparency, and glowing illusi<strong>on</strong>s like ne<strong>on</strong>-color spreading entertained many for quite a<br />

while. Psychophysical-microelectrode-type experiments related to binocular rivalry and<br />

disparity-based depth engaged psychophysicist and electrophysiologist into getting a handle<br />

over the temporal and spatial aspects of related neural resp<strong>on</strong>ses. However, single-cell and<br />

imaging studies show that these phenomena could have their neural signature in multiple visual<br />

areas, inspiring modelers to seek a variety of grouping and synaptic habituati<strong>on</strong> mechanisms all<br />

over to fit the temporal and spatial parameters of candidate models.<br />

I will partially explore a few modeling, electrophysiological, and psychophysical studies<br />

relevant to the above struggles.<br />

• Topics in modeling, psychophysics, and electrophysiology I, II, III<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

In the presentati<strong>on</strong>, I will give a tour to the modeling work:<br />

Grossberg, S. and A. Yazdanbakhsh, Laminar cortical dynamics of 3D surface percepti<strong>on</strong>:<br />

stratificati<strong>on</strong>, transparency, and ne<strong>on</strong> color spreading. Visi<strong>on</strong> Res, 2005. 45(13): p. 1725<br />

To cover the phenomenology of transparency and ne<strong>on</strong> color spreading and then offer a tour of<br />

laminar structure based <strong>on</strong> shunting equati<strong>on</strong>s and network. This is rather intended to fulfill the<br />

curiosities related the shunting equati<strong>on</strong>s, properties and how to wire things to be c<strong>on</strong>sistent<br />

with the psychophysical findings and also not to be inc<strong>on</strong>sistent with physiological findings.<br />

Of course there are “hidden” assumpti<strong>on</strong>s in such an endeavor for which the audience are<br />

encouraged to dig out, criticize and discuss.<br />

Then I will sweep the work with Takeo Watanabe about the engineering a stimulus for<br />

stereopsis and 3D visi<strong>on</strong>. It has a bit inspirati<strong>on</strong> form modeling work, but independently can be<br />

c<strong>on</strong>sidered a pure psychophysics work:<br />

Yazdanbakhsh, A. and T. Watanabe, Asymmetry between horiz<strong>on</strong>tal and vertical illusory lines<br />

in determining the depth of their embedded surface. Visi<strong>on</strong> Res, 2004. 44(22): p. 2621<br />

6


EQU<strong>IPM</strong>ENT: If some students are interested in stereo-visi<strong>on</strong>, I encourage setting up a<br />

stereoscope (haploscope) in a room to check all of the stereograms in the above paper. If some<br />

students have the ability to cross-fuse, even better!<br />

Then we proceed quickly to the electrophysiology work and some examples of spike-triggered<br />

cross-correlati<strong>on</strong>:<br />

Yazdanbakhsh, A. and M. S. Livingst<strong>on</strong>e (2006). "End stopping in V1 is sensitive to c<strong>on</strong>trast."<br />

Nature Neurosci 9(5): p.697-702.<br />

This can be interesting definitely from a modeling view point.<br />

Then we can c<strong>on</strong>tinue our tour with a psychophysical work about surface and depth with the<br />

flavor of ne<strong>on</strong> color spreading, ALL IN ONE, DEAL…<br />

Nishina, S., A. Yazdanbakhsh, et al. (2007). "Depth propagati<strong>on</strong> across an illusory surface." J<br />

Opt Soc Am A Opt Image Sci Vis 24(4): 905-10.<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

If some student is interested, we can talk/plan about the next step in such a study and do a pilot<br />

study in the potential room with haploscope there, if some<strong>on</strong>e is interested to replicate the<br />

dynamical stereogram, even better…<br />

Could <strong>on</strong>e measure the receptive field size psychophysically? No, yes, no, yes, … (might you<br />

remember Gholi va Madar-bozorg), seems I am getting Gholi a bit….<br />

Yazdanbakhsh A. and Gori, S. (2008) A new psychophysical estimati<strong>on</strong> of the receptive field<br />

size, Neuroscience Letters, 438(2): 246-251.<br />

This work makes several assumpti<strong>on</strong>s, yet <strong>on</strong> its own can be c<strong>on</strong>sidered a rare <strong>on</strong>e. If some<br />

students are more interested toward this directi<strong>on</strong>, they are encouraged to do paper/screen<br />

demo and play with different variants, and even include stereopsis. For more versi<strong>on</strong>s they can<br />

c<strong>on</strong>sult this <strong>on</strong>e:<br />

Gori, S. and A. Yazdanbakhsh (2008) The Riddle of the Rotating Tilted Lines Illusi<strong>on</strong>.<br />

Percepti<strong>on</strong>, 37(4): 631-635.<br />

Hardcore gentlemen interested in the percepti<strong>on</strong> of depth with minimal stimulus c<strong>on</strong>diti<strong>on</strong>? Go<br />

with this:<br />

Léveillé J., Yazdanbakhsh A. (2010). Speed, more than depth, determines the strength of<br />

induced moti<strong>on</strong>, Journal of Visi<strong>on</strong>, 10(6):10, 1-9<br />

What can be d<strong>on</strong>e practically in the class? Well Emmert’s law game, we can do paper and pen<br />

game with that and get more and more c<strong>on</strong>fused with depth percepti<strong>on</strong> and even feel that the<br />

above article helps substantial c<strong>on</strong>fusi<strong>on</strong> toward the understanding of depth percepti<strong>on</strong>.<br />

7


No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

ﻲﻳﺎﻬﻧ ﻥﺎﮔﺪﻨﻨﻛ ﺖﻛﺮﺷ ﺖﺴﻴﻟ<br />

Name Family Name Affiliati<strong>on</strong> Field of Study<br />

Parastou Abbasi<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

8<br />

Amirkabir University of<br />

Technology<br />

Computer Science<br />

Abdolhosein Abassian <strong>IPM</strong> Cognitive Sciences<br />

Nima Abedpour <strong>IPM</strong> Physics<br />

Mohammad Reza Abolghasemi <strong>IPM</strong> Cognitive Sciences<br />

Mohadese Adabi Mohazab University of Tehran<br />

S. Reza Afraz MIT, USA M.D., Ph.D.<br />

Samira Aghayee<br />

Ali Ahari<br />

Siavash Ahmadi<br />

Amirkabir University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

<strong>Math</strong>ematics<br />

Emad Ahmadi University of Tehran Medical<br />

Hessameddin Akhlaghpour<br />

Elyar Alizadeh<br />

Mohsen Arian Nik<br />

Amir Assadi<br />

Saeedeh Babaii<br />

Bahador Bahrami<br />

Sharif University of<br />

Technology<br />

Allameh Helli High<br />

School<br />

Shahid Beheshti<br />

University<br />

University of<br />

Wisc<strong>on</strong>sin-Madis<strong>on</strong><br />

Sharif University of<br />

Technology<br />

University College<br />

L<strong>on</strong>d<strong>on</strong>, UK<br />

Computer Engineering<br />

Computer Science<br />

Computer Engineering<br />

Medical<br />

<strong>Math</strong>ematics<br />

Physics<br />

M.D, Ph.D.


17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

Fatemeh Bakouie<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

M<strong>on</strong>a Bayat<br />

9<br />

Amirkabir University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

Biomedical<br />

Engineering<br />

Physics<br />

Milad Ekramnia University of Isfahan Physics<br />

Moein Esghaei <strong>IPM</strong> Cognitive Sciences<br />

Mina Ekramnia<br />

Sharif University of<br />

Technology<br />

Physics<br />

Niloofar Farajzadeh University of Tehran <strong>Math</strong>ematics<br />

Tara Farzami University of Tehran <strong>Math</strong>ematics<br />

Zeinab Fazlali <strong>IPM</strong> Cognitive Sciences<br />

Sadegh Feiz<br />

Tara Ghafari<br />

Reza Ghanbarpour<br />

Aida Hajizadeh<br />

Seyed Naser Hashemi<br />

Akram Heidari<br />

Maziar Heidari<br />

Aghileh Heydari<br />

Vahid Hoghooghi<br />

Sharif University of<br />

Technology<br />

Shahid Beheshti<br />

University<br />

Sharif University of<br />

Technology<br />

Amirkabir University of<br />

Technology<br />

Amirkabir University of<br />

Technology<br />

Islamic Azad<br />

University, Izeh<br />

Sharif University of<br />

Technology<br />

Payame Noor<br />

University of Mashhad<br />

Tehran University of<br />

Medical Science<br />

Physics<br />

Medical<br />

Computer Science<br />

Physics<br />

<strong>Math</strong>ematics<br />

<strong>Math</strong>ematics<br />

Mechanical<br />

Engineering<br />

Medical


34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

Shayan Hosseiny<br />

Ehsan Irani<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

Omid Jadidoleslam<br />

Mina Jamshidi<br />

10<br />

Allameh Helli High<br />

School<br />

Sharif University of<br />

Technology<br />

Bah<strong>on</strong>ar University of<br />

Kerman<br />

Hoda Javadi University of Tehran<br />

Amir Judaki<br />

Sharif University of<br />

Technology<br />

Physics<br />

<strong>Math</strong>ematics<br />

Pegah Kahali University of Tehran Medical<br />

Computer Engineering<br />

Nasrin Kahkeshani Qom University <strong>Math</strong>ematics<br />

Danesh Kajbaf University of Tehran Medical<br />

Hassan Kangarani Farahani<br />

Elnaz Karami University of Tehran Biology<br />

Ali Kashi<br />

Mohammad Hassan Khabbazian<br />

Sharif University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

Physics<br />

Computer Science<br />

Ahmad Reza Khadem <strong>IPM</strong> Computer Science<br />

Seyed-Mahdi Khaligh-Razavi University of Tehran Computer Engineering<br />

Zahra Khalili <strong>IPM</strong> Cognitive Sciences<br />

Ali Khezeli<br />

Sharif University of<br />

Technology<br />

<strong>Math</strong>ematics<br />

Mohammad Kianpour Guilan University <strong>Math</strong>ematics<br />

Hadi Maboudi <strong>IPM</strong> Cognitive Sciences<br />

Amin Mahnam <strong>IPM</strong> Electrical Engineering<br />

Iman Mahyaeh<br />

Sharif University of<br />

Technology<br />

Physics


55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

Masoud Majed University of Tehran Medical<br />

Maryam Malekpour Alzahra University <strong>Math</strong>ematics<br />

Peyman Mani<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

Mahdi Mazaheri<br />

Saghar Mirbagheri<br />

Mehdi Mirzaie<br />

S. Reza Moghadasi<br />

Mahsa Mohammadi Kaji<br />

Zahra Mokhtari<br />

Ali Nadalizadeh<br />

Isar Nejadgholi<br />

D<strong>on</strong>na Parizade<br />

11<br />

Amirkabir University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

Shahid Beheshti<br />

University<br />

Shahid Beheshti<br />

University<br />

Sharif University of<br />

Technology and <strong>IPM</strong><br />

Sharif University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

Amirkabir University of<br />

Technology<br />

Amirkabir University of<br />

Technology<br />

Shahid Beheshti<br />

University<br />

Computer Engineering<br />

Electrical Engineering<br />

Medical<br />

<strong>Math</strong>ematics<br />

<strong>Math</strong>ematics<br />

Computer Engineering<br />

Physics<br />

Computer Engineering<br />

Biomedical<br />

Engineering<br />

Medical<br />

Morteza Pishnamazi University of Tehran Medical<br />

Nima Pourdamghani<br />

Nafiseh Rafiei<br />

Sharif University of<br />

Technology<br />

Amirkabir University of<br />

Technology<br />

Computer Engineering<br />

Physics<br />

Safura Rashid-Shomali <strong>IPM</strong> Cognitive Sciences<br />

Neda Sadat Rasooli<br />

Shahid Beheshti<br />

University<br />

<strong>Math</strong>ematics


72<br />

73<br />

74<br />

75<br />

Hossein Razizadeh<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

Elham Roshanbin<br />

Yasser Roudi<br />

12<br />

Sharif University of<br />

Technology<br />

Isfahan University of<br />

Technology<br />

Kavli Insitute for<br />

Systems Neuroscience,<br />

NTNU<br />

Ehsan Sabri University of Tehran<br />

Computer Science<br />

<strong>Math</strong>ematics<br />

Physics<br />

Electr<strong>on</strong>ic, Electrical<br />

& Computer<br />

Engineering<br />

Saeid Sadri IASBS <strong>Math</strong>ematics<br />

Mohammad-Karim Saeed-Ghalati<br />

Sharif University of<br />

Technology<br />

Physics<br />

Shervin Safavi University of Tehran Physics<br />

Atena Sajedin <strong>IPM</strong><br />

Niloufar Salehi<br />

Fazeleh Salehi<br />

Amir Sepehri<br />

Sharif University of<br />

Technology<br />

Amirkabir University of<br />

Technology<br />

Sharif University of<br />

Technology<br />

Computer Engineering<br />

<strong>Math</strong>ematics<br />

<strong>Math</strong>ematics<br />

Behrang Sharif University of Tehran Medical<br />

Amir Hossein Shirazi<br />

Tehran University of<br />

Medical Science<br />

Medical<br />

Ehsan Tadayy<strong>on</strong> University of Tehran Medical<br />

Moujan Tofighi<br />

Amirkabir University of<br />

Technology<br />

<strong>Math</strong>ematics<br />

Tahereh Toosi <strong>IPM</strong> Cognitive Sciences


88<br />

89<br />

90<br />

91<br />

92<br />

Rouzbeh Tusserkani <strong>IPM</strong> <strong>Math</strong>ematics<br />

Hossein Vahabi <strong>IPM</strong> Cognitive Sciences<br />

Maryam Vaziri Pashkam<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

93<br />

94<br />

Farbod Yadegarian<br />

Arash Yazdanbakhsh<br />

Mohammad Mahdi Yazdi<br />

13<br />

Harvard University,<br />

USA<br />

Allameh Helli High<br />

School<br />

Bost<strong>on</strong> University, USA<br />

Sharif University of<br />

Technology<br />

M.D., Ph.D.<br />

M.D., Ph.D.<br />

<strong>Math</strong>ematics<br />

Pooya Zakeri <strong>IPM</strong> Computer Engineering


Thursday, 30 December 2010<br />

9 Dey 1389<br />

Timetable for the workshop <strong>on</strong><br />

“Introducti<strong>on</strong> to Memory”<br />

ﻲﻳﻮﺠﺸﻧﺍﺩ ﻱﺎﻫ ﻲﻧﺍﺮﻨﺨﺳ ﻪﻣﺎﻧﺮﺑ<br />

14:00 - 14:45 1. Introducti<strong>on</strong> to memory<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

14<br />

Masoud Majed<br />

15:00 - 15:45 2. Microcircuits of hippocampus Pegah Kalali<br />

16:00 - 17:15 3. Place cell – Grid cell Ehsan Taday<strong>on</strong> – Danesh Kajbaf<br />

17:30 - 18:30 Preliminary workshop: anatomy and hippocampus<br />

Friday, 31 December 2010<br />

10 Dey 1389<br />

14:00 - 14:45 4. Familiarity versus Recollecti<strong>on</strong> Masoud Majed<br />

15:00 - 15:45 5. Molecular basis of memory Danesh Kajbaf – Ehsan Taday<strong>on</strong><br />

16:00 - 16:30 6. C<strong>on</strong>textual cueing Masoud Majed<br />

16:30 - 18:30 Main memory: memory and psychophysics


ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

15<br />

. 1<br />

<br />

<br />

<br />

<br />

. hard disk <br />

<br />

<br />

<br />

<br />

1950<br />

<br />

<br />

<br />

William Scoville . H.M. <br />

H.M. <br />

<br />

Brenda Milner Scoville . <br />

. <br />

H.M. <br />

.<br />

<br />

<br />

.<br />

<br />

<br />

neocortex<br />

<br />

<br />

<br />

. <br />

. <br />

<br />

<br />

<br />

Microcircuits of hippocampus . 2<br />

<br />

<br />

<br />

( )<br />

<br />

<br />

<br />

<br />

<br />

. <br />

<br />

<br />

. <br />

<br />

<br />

<br />

<br />

<br />

cortex<br />

<br />

<br />

<br />

<br />

Hippocampus<br />

Hippocampus<br />

<br />

<br />

<br />

<br />

3<br />

<br />

Hippocampus<br />

<br />

! <br />

<br />

hippocampus<br />

<br />

!! . 3<br />

John O'keefe 1974 <br />

. place cell<br />

. " "<br />

<br />

.


Grid .<br />

<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

16<br />

<br />

. <br />

.... <br />

<br />

. 4<br />

<br />

<br />

. <br />

<br />

. <br />

<br />

<br />

<br />

<br />

. <br />

<br />

<br />

. <br />

Ĥ <br />

<br />

<br />

. <br />

<br />

! . 5<br />

" : "<br />

<br />

<br />

. <br />

. <br />

. <br />

<br />

. <br />

: . 6<br />

: <br />

. <br />

"<br />

. <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

" ..... <br />

<br />

. <br />

<br />

.<br />

c<strong>on</strong>textual cueing 1998 chun jiang


Neur<strong>on</strong>al Spike-Train Analysis, A Case Study<br />

Hessameddin Akhlaghpour<br />

Using simultaneous recordings of neur<strong>on</strong>s in different brain regi<strong>on</strong>s of a macaque performing<br />

visual tasks, I intend to explore methods and techniques that attempt to analyze neur<strong>on</strong>al spike<br />

trains. Various pattern recogniti<strong>on</strong> methods may be used to classify spike trains. I will<br />

primarily focus <strong>on</strong> utilizing Bayesian inference to extract stimulus informati<strong>on</strong> from neural<br />

codes. Through analysis of this data we can observe traces of visual stimuli coding during the<br />

delay period were the visual stimulus has disappeared. This gives us insight <strong>on</strong> how working<br />

memory might functi<strong>on</strong> in the brain. In additi<strong>on</strong>, analysis of repeated recordings of single<br />

neur<strong>on</strong>s can be helpful in comparing firing rate models with spike timing models, and<br />

determining whether it is the temporal pattern that codes informati<strong>on</strong> or simply spike<br />

frequency. In this talk I will dem<strong>on</strong>strate several elementary effects observed in neur<strong>on</strong>al codes<br />

which can give us insight in how neur<strong>on</strong>s behave.<br />

ﻱﺩﺎﻴﻨﺑﻱ ------------------------------------- ﺕﺎﻴﺿﺎﻳﺭﻩﺪﻜﺸﻫﻭﮋﭘ ﺎﻬﺸﻧﺍﺩﻩﺎﮕﺸﻫﻭﮋﭘ<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!