04.08.2013 Views

2-D Niblett-Bostick magnetotelluric inversion - MTNet

2-D Niblett-Bostick magnetotelluric inversion - MTNet

2-D Niblett-Bostick magnetotelluric inversion - MTNet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C = − ∑ ∑ [ −∑C<br />

= a a∑<br />

] ( σ σ − −∑ˆ<br />

σ ) [ −=<br />

∑ ∑a<br />

[ σσ<br />

+ − ∑ a σ ] σ.<br />

+ (10)<br />

J. RODRÍGUEZ et al.<br />

2-D <strong>Niblett</strong>-<strong>Bostick</strong><br />

extremely cumbersome, for it is necessary to cover many where<br />

possibilities during each epoch training session.<br />

Another approach to <strong>inversion</strong> based on neural networks<br />

bypasses the learning sessions by directly providing the<br />

algorithm with the relevant physics behind the particular<br />

(13)<br />

application. Zhang and Paulson (1997) applied a simple<br />

recursive regularization algorithm associated with a<br />

Hopfield artificial neural network (HANN) in order to E is the Ising Hamiltonian (Ising, 1925) which Tank<br />

solve the 1-D MT inverse problem with excellent results. and Hopfield (1986) showed is a never increasing quantity<br />

In the same paper the authors explored the application to as the dynamics defined by the following equation evolve<br />

the 2-D full nonlinear <strong>inversion</strong> of MT data. Our interest from given starting values:<br />

in this algorithm was triggered by the fact that there are<br />

no references in the literature attempting to continue their<br />

(14)<br />

research in this direction, even though the results presented<br />

are very promising. In this methodology there are no<br />

dedicated input-output defined units (as with the feed- sj<br />

forward network architecture). Instead, every neuron si<br />

is interconnected with every other sj neuron through a Tij<br />

weight link as detailed below. Every neuron has a twofold<br />

input-output purpose. We assume M apparent conductivity<br />

measurements and N blocks whose conductivities are<br />

unknown. According to equation (6), for given conductivity<br />

values sj, j = 1,...,N, the responses ˆsak,, k = 1,...,M, of the<br />

model can be expressed as<br />

(9)<br />

The misfit between sak (the data) and ˆsak, (the model<br />

responses) can be written as<br />

(10)<br />

Squaring as indicated and rearranging terms, this<br />

expression corresponds to<br />

(11)<br />

It can be noted that this is an unnecessarily long, and<br />

certainly very cumbersome way of representing C, the sum<br />

of squares. However, this particular form helps to recognize<br />

its correspondence to<br />

(12)<br />

Geologica Acta, 8(1), 15-30 (2010)<br />

18<br />

DOI: 10.1344/105.000001513<br />

(t+l) is the updated conductivity value of sj (t) which is either<br />

a given starting value or the result of a previous iteration.<br />

The relevance of dynamic is that as iterations proceed<br />

E decreases at each step. Since E corresponds to C, the<br />

dynamics ensure that the sum of the squared differences<br />

between data and model responses decrease at each step,<br />

thus leading to the model whose responses best fit the data<br />

in a least square sense. It can be noted that with the HANN<br />

the matrix elements Tij are known and provided by the<br />

physics of the problem, since they are the elements (AT ki kj i akj<br />

ak<br />

ki ak i 1 M<br />

kikj<br />

akj<br />

i<br />

2 2<br />

i=<br />

1 j¹<br />

i=<br />

1 k=<br />

1 2 k=<br />

1<br />

i=<br />

1 2 2k<br />

= 1k<br />

= 1 k=<br />

j1=<br />

1 ( σ ) 2 .<br />

2∑<br />

∑ ( σ ak<br />

ak)<br />

.<br />

2 k<br />

k<br />

=<br />

1<br />

N N M<br />

N M<br />

M<br />

1<br />

M 1<br />

1 2<br />

= − ∑ ∑ [ −∑<br />

a N N<br />

N<br />

( ki<br />

2<br />

σ<br />

akj)<br />

1]<br />

E −1<br />

. Niσ<br />

j N−<br />

N<br />

∑ ∑ [ − ∑<br />

ak<br />

(11)<br />

akiσ<br />

i + ∑ aki<br />

2 i=<br />

1 j¹<br />

i=<br />

1 2 k=<br />

1<br />

i=<br />

1 ∑ ∑ Tijσ<br />

2<br />

iσ<br />

k<br />

j −=<br />

1 I iσ<br />

, k=<br />

1<br />

k=<br />

1E<br />

−<br />

2∑<br />

∑ Tijσ<br />

iσ<br />

j −∑<br />

∑ I iσ<br />

i<br />

i,<br />

2 i<br />

i<br />

=<br />

1<br />

j<br />

j<br />

¹<br />

¹<br />

i<br />

i<br />

=<br />

1<br />

i<br />

i<br />

=<br />

1<br />

N N<br />

N<br />

M<br />

1<br />

M<br />

1 2 M<br />

M<br />

E = −<br />

M<br />

1 M<br />

M<br />

∑ ∑ Tijσ<br />

iσ<br />

j −<br />

Tij = −∑<br />

a∑<br />

I iσ<br />

i ,<br />

kia<br />

∑ ( σ ak ) 2<br />

kj<br />

i −1<br />

(12) .<br />

a2<br />

2<br />

∑ kiσ<br />

i + a<br />

i=<br />

1 j¹<br />

i=<br />

1T<br />

ij = −∑<br />

aiki<br />

= 1a<br />

2<br />

kj<br />

k=<br />

1 i −<br />

k=<br />

1<br />

2∑<br />

akiσ<br />

i + ∑<br />

aki<br />

ki<br />

k=<br />

1<br />

2 k<br />

k<br />

=<br />

1<br />

k<br />

k<br />

=<br />

1<br />

M<br />

MN<br />

N M N<br />

1 2<br />

T 1 1 ⎛ N<br />

ij = −∑<br />

akia<br />

kj and IE i = − ∑ a∑<br />

⎞<br />

( t+<br />

1)<br />

( )<br />

= 1 + 1 sgn<br />

⎛ N<br />

t ⎜<br />

⎟<br />

i<br />

.<br />

2 2 ⎜ ∑ Tijσ j + I<br />

⎞<br />

( t+<br />

kiσ<br />

T<br />

1)<br />

i + ijσ∑<br />

iσ<br />

ja−<br />

ki∑<br />

σ . I ak iσ<br />

i(13)<br />

,<br />

( t)<br />

k=<br />

1<br />

22<br />

ki<br />

=<br />

1<br />

j¹<br />

i=<br />

1 sgn⎜<br />

i⎟<br />

i = k+<br />

= 1 i=<br />

1<br />

⎟.<br />

2 2 ⎜ ∑ Tijσ j + I i<br />

⎝ j≠i<br />

= 1 ⎟<br />

⎝ j≠i<br />

= 1 ⎠<br />

M<br />

1 1 ⎛ N<br />

M<br />

M<br />

⎞ 1<br />

( t+<br />

1)<br />

( t+<br />

1)<br />

( t)<br />

2<br />

σ T σ ( t+<br />

1)<br />

σ sgn⎜<br />

⎟<br />

i = ij = −+<br />

∑ a<br />

i<br />

kia<br />

.<br />

2i<br />

2 ⎜ ∑ kj Tand ijσ<br />

+ I j Ii<br />

− i ⎟ ∑ akiσ<br />

i + (14) ∑ akiσ<br />

ak .<br />

k=<br />

1<br />

(t ) ⎝ 1 ⎠<br />

2<br />

j≠i<br />

=<br />

k=<br />

1<br />

k=<br />

1<br />

σ (t )<br />

σ j<br />

j<br />

( t+<br />

1)<br />

σ<br />

T<br />

ij<br />

1 1 ⎛ N<br />

⎞<br />

i<br />

ij<br />

( t+<br />

1)<br />

( t)<br />

sgn⎜<br />

⎟<br />

T i = +<br />

.<br />

σ a( x, T ) = ∫ Fh( x, x', z ', σa, T ) σ(<br />

x', (t ) z ') dx' dz '. (8) ( AA T<br />

σ<br />

( AA )<br />

ij 2 2 ⎜ ∑ Tijσ j + I i ⎟<br />

j<br />

ij<br />

⎝ j≠i<br />

= 1 ⎠<br />

T<br />

σ a( x, T ) = ∫ Fh( x, x', z ', ij σa, T ) σ(<br />

x', z ') dx' dz '. ( t+<br />

1)<br />

σ<br />

(8)<br />

a( x, T ) = ∫ Fh( x, xT', z ', σa, T ) σ(<br />

x', σ iz<br />

') dx' dz '. (8)<br />

F<br />

( AA ) ij<br />

h<br />

(t )<br />

) =<br />

σ ∫ F h F σ<br />

h( x, x', z ', σa, T ) σ(<br />

x', z ') dx' dz '. (8) j<br />

a<br />

F σ h( x, ax<br />

', z ', σa, T ) σ ( x', z ') dx' dz '. (8) T ij<br />

T<br />

σ j<br />

( AA ) ij<br />

TN , σ j<br />

ij (8)<br />

σ<br />

, M σ T a( x, T ) =<br />

j , j = 1,...,<br />

N,<br />

∫ Fh( x, x', z ', σa, T ) σ(<br />

x', z ') dx' dz '. (8)<br />

2<br />

ij<br />

ˆ σ k M N<br />

A)ij,<br />

ak , σ j , = j1=<br />

,..., 1,...,<br />

N,<br />

ˆ σ a , k 1,...,<br />

M.<br />

which in turn come from the integral equation.<br />

ak = ∑ kjσ<br />

j N =<br />

(9)<br />

2<br />

ˆ σ ak , k = 1,...,<br />

Mj=<br />

1 ˆ σ ak = ∑ akjσ j , k = 1,...,<br />

M.<br />

(9)<br />

j=<br />

1 N<br />

Strictly speaking, equation (14) applies only to binary<br />

σ ,<br />

ˆ σ ak = ∑ akjσ j , k = 1,...,<br />

M.<br />

variables (9) that can take values of zero and one, as in the HANN<br />

ak N<br />

j=<br />

1<br />

architecture (Hopfield, 1982). The corresponding equations for<br />

σˆ ˆ σ<br />

2<br />

ak = akσ<br />

∑ a<br />

M kjσ<br />

j , k = 1,...,<br />

M.<br />

(9)<br />

N<br />

M<br />

N<br />

1ak ,<br />

1<br />

an assemblage of such variables, to make up for arbitrary values<br />

j=<br />

1 ,..., M 2<br />

M<br />

N 2<br />

∑ = N a, ∑ ( σ ˆ ak 1− σ ak ) = ∑ 2[<br />

σ 1ak<br />

−∑<br />

akjσ j ] . 2 (10)<br />

kjσ<br />

j<br />

of conductivity, are very similar and are given in Appendix D.<br />

σˆ 2 C<br />

, k<br />

=<br />

= 1,...,<br />

(<br />

M<br />

σ<br />

.<br />

k=<br />

1 ∑ 2ˆ<br />

ak −σ<br />

) [<br />

] .<br />

2<br />

kak<br />

= σ<br />

(9)<br />

= 1 ∑ 2 j=<br />

1 ak −∑<br />

akjσ<br />

j (10)<br />

j=<br />

1 ak<br />

1 ,..., M<br />

k=<br />

1<br />

k=<br />

1<br />

j=<br />

1<br />

M<br />

M<br />

N<br />

1 2 1<br />

2 The application of equation (14) is straightforward<br />

ˆ<br />

N N CM= N ( σ N ) M [ M ] .<br />

1<br />

(9) N N∑<br />

M ak −σ<br />

ak = σ<br />

1 N∑<br />

ak − a<br />

M ∑ kjσ<br />

M j (10)<br />

when M>N, for the process reduces to the standard least<br />

2<br />

− ∑ C∑= −[<br />

1 ˆ<br />

−<br />

σ M<br />

ak = 2 k=<br />

1 ∑ akia kj −]<br />

σ iσ<br />

j −∑<br />

[ −<br />

2 k=<br />

1<br />

− ∑ −a<br />

1 2j<br />

= 1<br />

kiσ<br />

i + ∑ + akiσ<br />

ak ] σ i + squares + problem. This corresponds to the over constrained<br />

2 ∑ ∑∑<br />

akjσN j , k = 1,...,<br />

M.<br />

(9)<br />

2 1<br />

[ ∑ akia<br />

kj ] σ iσ<br />

2<br />

σ ˆ<br />

j<br />

i=<br />

1 j¹<br />

i=<br />

1 k=<br />

1<br />

i=<br />

1 2∑<br />

[ ∑ akiσ<br />

i ∑ akiσ<br />

ak ] σ<br />

ak − σ ak ) =<br />

i<br />

M2<br />

∑ [ j=<br />

σ1<br />

ak −∑<br />

akjσ j ] . (10)<br />

i=<br />

1 j¹<br />

i=<br />

1 N k=<br />

1<br />

i=<br />

k1=<br />

1 2 k=<br />

1 k=<br />

1 k=<br />

1<br />

2 1 2 k=<br />

1<br />

j=<br />

1 2<br />

case when we have more data than unknown parameters.<br />

ˆ σ ) [ N N M<br />

N M<br />

M<br />

ak = ∑ 1 σ ak −∑<br />

akjσ j ] . (10) 1 2<br />

2<br />

In general, however, M

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!