04.08.2013 Views

x - Digital Photogrammetry Research Group

x - Digital Photogrammetry Research Group

x - Digital Photogrammetry Research Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ENGO 667: Chapter 2<br />

Photogrammetric Triangulation<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

1


Overview<br />

• Objective: Investigate the possibility of object<br />

space reconstruction from imagery using:<br />

– Single image<br />

– Stereo-pair<br />

– Single flight lines (Strip Triangulation)<br />

– Image blocks:<br />

• Block Adjustment of Independent Models (BAIM)<br />

• Bundle Block Adjustment<br />

– Special cases (resection, intersection, and stereo-pair<br />

orientation)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

2


<strong>Photogrammetry</strong>: The Reconstruction Process<br />

• The main objective of photogrammetry is to<br />

derive ground coordinates of object points from<br />

imagery.<br />

• We would like to investigate the feasibility of<br />

performing this task using single image, stereo<br />

image pair, or more.<br />

• The mathematical model we are going to use is the<br />

collinearity equations.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

3


Input Imagery<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

4<br />

z<br />

Perspective Center<br />

x a<br />

y<br />

a<br />

ya x


Z G<br />

Collinearity Equations<br />

O G<br />

R( , , )<br />

X O<br />

z i<br />

Y G<br />

c<br />

O i<br />

Y O<br />

Z O<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

5<br />

pp<br />

+<br />

y i<br />

a<br />

+ (xa, ya) X A<br />

x i<br />

Y A<br />

(Perspective Center)<br />

A<br />

Z A<br />

X G


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

6<br />

y<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

c<br />

y<br />

y<br />

x<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

c<br />

x<br />

x<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

p<br />

a<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

p<br />

a<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

33<br />

23<br />

13<br />

32<br />

22<br />

12<br />

33<br />

23<br />

13<br />

31<br />

21<br />

11<br />

Collinearity Equations


Single Photograph<br />

• An image point is defined by its coordinates<br />

relative to the image coordinate system.<br />

• We have two equations (collinearity equations) in<br />

three unknowns (ground coordinates of the<br />

corresponding object point - Best Case Scenario).<br />

– IOP & EOP are available.<br />

• Consequently, this problem is under determined.<br />

• Conceptually: an image point will define a single<br />

(infinite) light ray.<br />

– The object point can be anywhere along this light ray.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

7


Single Photograph<br />

a (Image Point)<br />

Perspective Center<br />

(Single Light Ray)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

8


Stereo-<strong>Photogrammetry</strong><br />

• We have the same point appearing in two images.<br />

– Four equations (two collinearity equations in each image)<br />

– Three unknowns (ground coordinates of the corresponding<br />

object points - Best Case Scenario)<br />

• IOP & EOP are available.<br />

• Thus, we have a redundancy of one (which will<br />

contribute towards the computation of the ROP).<br />

• Conceptually: the two image points define two light<br />

rays.<br />

– The object point is the intersection of these light rays.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

9


Stereo-<strong>Photogrammetry</strong><br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

10


a<br />

PC<br />

Stereo-<strong>Photogrammetry</strong><br />

Object Point (A)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

11<br />

PC<br />


Stereo-<strong>Photogrammetry</strong><br />

From Images to Object Space<br />

• For a stereo-pair, we can derive a 3-D<br />

representation of the object space covered by the<br />

overlap area as follows:<br />

– Perform RO of the stereo-pair under consideration<br />

(using at least five conjugate points) → stereo-model<br />

– Using some GCP, we can rotate, scale, and shift the<br />

stereo-model (AO) until it fits at the location of the<br />

ground control points (i.e., the residuals at the GCP are<br />

as small as possible).<br />

– For the absolute orientation, we need at least three<br />

ground control points (those points should not be<br />

collinear).<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

12


Model Space<br />

Model Space<br />

From Images to Object Space (RO)<br />

Model Space<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

13


From Images to Object Space (AO)<br />

Object Space<br />

Stereo Model<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

14


Photogrammetric Triangulation<br />

• Objective:<br />

– How can we reconstruct the object space from imagery<br />

without the need for three ground control points in each<br />

stereo-model?<br />

• Alternatives:<br />

– Strip Triangulation<br />

– Block Adjustment of Independent Models (BAIM)<br />

– Bundle Block Adjustment<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

15


Strip Triangulation<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

16


Strip Triangulation<br />

• Strip triangulation is used for mapping linear features (such<br />

as road and railroad network and pipelines).<br />

• Given: imagery along one strip with 60% overlap between<br />

successive imagery<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

17


• Procedure:<br />

Strip Triangulation<br />

– Perform RO of the first stereo-model (DRO or IRO)<br />

– Perform AO of the first stereo-model using 3GCP<br />

– Perform RO for the second model using only DRO (we<br />

do not want to disturb the orientation parameters for the<br />

second image)<br />

– Only scale is required to establish the AO for the<br />

second model.<br />

– Adjust the base until a point in the overlap area<br />

between the first and second model has the same<br />

elevation<br />

– For the remaining models, repeat the above three steps.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

18


Strip Triangulation<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

19


• Error Propagation:<br />

– Similar to an open traverse, errors will increase as the<br />

length of the strip increases.<br />

• Solution:<br />

Strip Triangulation<br />

– Implement GCP every three or four models<br />

– Apply corrections polynomials<br />

• Correction Polynomials:<br />

– They are used to reduce the difference between the<br />

photogrammetric and geodetic coordinates of the<br />

control points.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

20


Correction Polynomials<br />

Photogrammetric Points<br />

Geodetic Points<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

21


Z Z a p o<br />

Correction Polynomials<br />

• Separate polynomials are used for the X, Y, and Z<br />

coordinates.<br />

• For example:<br />

<br />

a<br />

g 1<br />

2 3<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

22<br />

X<br />

<br />

a<br />

Y<br />

•Z g ≡ Geodetic ground coordinates<br />

•Z p ≡ Photogrammetric ground coordinates<br />

•a o ≡ Constant shift in elevation<br />

•a 1X ≡ Pitch along the flight line<br />

•a 2Y ≡ Roll across the flight line<br />

•a 3XY ≡ Torsion of the strip<br />

<br />

a<br />

XY


Correction Polynomials<br />

• Using Ground Control Points (GCP), we can solve<br />

for the polynomial coefficients.<br />

• Precaution:<br />

• Make sure that you have enough GCP to recover the<br />

polynomial coefficients<br />

• Use low order polynomials to avoid undulations/over<br />

parameterization<br />

• For long strips, separate them into shorter strips with<br />

low order polynomials and use constraints to ensure<br />

smooth transition between strips.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

23


Accuracy of Strip Triangulation<br />

• The accuracy of points measured in the strip after<br />

applying the correction polynomial depends on the<br />

number of models bridged together without<br />

ground control points.<br />

• As a rule of thumb:<br />

– A group of ground control points should be used every<br />

four models.<br />

• 12 models: 3 groups of ground control points<br />

• 16 models: 4 groups of ground control points<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

24


1<br />

Accuracy of Strip Triangulation<br />

1<br />

sZ/ M (max)<br />

sXY/ M (max)<br />

sZ/ M (mean)<br />

sXY/ M (mean)<br />

• i number of models bridged together<br />

• Maximum (worst) accuracy takes place at the center<br />

between the control points.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

25<br />

i


Block Adjustment of Independent Models<br />

(BAIM)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

26


Block Adjustment<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

27


Block Adjustment<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

28


Block Adjustment<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

29


Block Adjustment of Independent Models<br />

• Given: A block of photographs with:<br />

– 60% overlap between successive images along the<br />

flight direction<br />

– 20% side lap between adjacent strips (across the flight<br />

direction)<br />

• Block Adjustment of Independent Models (BAIM)<br />

starts with model coordinate measurements after<br />

relative orientation.<br />

• Dependent or independent relative orientation can<br />

be used.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

30


Block Adjustment of Independent Models<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

31


Block Adjustment of Independent Models<br />

• Procedure:<br />

– Perform RO (DRO or IRO) for all the stereo-models in<br />

the project<br />

– The models are simultaneously rotated, scaled, and<br />

shifted until:<br />

• The tie points fit together as well as possible, and<br />

• The residuals at the location of the ground control points are as<br />

small as possible.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

32


1<br />

6<br />

BAIM: Concept<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

33<br />

2<br />

5<br />

3<br />

4


Tie Point<br />

Control Point<br />

1<br />

7<br />

4<br />

4<br />

Y<br />

Y<br />

I<br />

III<br />

2<br />

x<br />

x<br />

8<br />

5<br />

5<br />

5<br />

8<br />

5<br />

Y<br />

IV<br />

Before BAIM<br />

BAIM: Concept<br />

2 3<br />

Y<br />

II<br />

x<br />

x<br />

6<br />

6<br />

9<br />

Y G<br />

1 2<br />

I II<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

34<br />

4<br />

III<br />

7 8<br />

IV<br />

3<br />

5 6<br />

After BAIM<br />

9<br />

X G


Block Adjustment of Independent Models<br />

• BAIM can be carried out in either 2-D or 3-D.<br />

• Planimetric BAIM:<br />

– Given: 2-D model coordinates (X, Y) measured in<br />

relatively oriented and leveled models<br />

– Required: 2-D ground coordinates of these points as<br />

well as the transformation parameters associated with<br />

the involved models<br />

• Spatial BAIM:<br />

– Given: 3-D model coordinates (X, Y, Z) measured in<br />

relatively oriented models<br />

– Required: 3-D ground coordinates of these points as<br />

well as the transformation parameters associated with<br />

the involved models<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

35


Planimetric BAIM<br />

• We start by measuring (X, Y) model coordinates<br />

in relatively oriented and leveled models.<br />

• For leveled models, the Z-axes of the model and<br />

ground coordinate systems are parallel.<br />

• For leveled models, the relationship between<br />

planimetric model and ground coordinates is<br />

represented by 2-D similarity transformation.<br />

• Question: how can we obtain relatively oriented<br />

and leveled models?<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

36


Leveling Relatively Oriented Models<br />

• Without leveling, the mathematical relationship<br />

between 3-D model and ground coordinates is<br />

represented by 3-D similarity transformation.<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

G<br />

G<br />

G<br />

<br />

<br />

<br />

<br />

<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

T<br />

T<br />

T<br />

<br />

<br />

<br />

<br />

<br />

R(<br />

,<br />

,<br />

)<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

37<br />

S<br />

• For leveled models, ( and ) should be zeros.<br />

• Let’s look at the third equation:<br />

M<br />

M<br />

M


Leveling Relatively Oriented Models<br />

Z<br />

Z<br />

G<br />

G<br />

Z<br />

<br />

T<br />

Z<br />

T<br />

S<br />

S<br />

( r31<br />

X M r32<br />

YM<br />

r33<br />

[(sin <br />

<br />

<br />

sin <br />

(sin <br />

cos<br />

cos<br />

cos)<br />

cos<br />

sin <br />

cos<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

38<br />

<br />

<br />

Z<br />

M<br />

Z<br />

]<br />

M<br />

)<br />

cos<br />

)<br />

sin <br />

X<br />

M<br />

sin )<br />

Y<br />

• For leveling, we are only interested in recovering<br />

the and rotation angles. Therefore, we can set<br />

the rotation angle to zero.<br />

ZG ZT<br />

S ( cos<br />

sin X M sin YM<br />

cos<br />

cos<br />

ZM<br />

• Having four vertical control points, we can solve<br />

for Z T, and the scale factor.<br />

M<br />

)


Leveling Relatively Oriented Models<br />

• Leveling can be established in another way as<br />

follows:<br />

– Perform relative and absolute orientation for the first<br />

model using three ground control points.<br />

– Bridge other models using dependent relative<br />

orientation.<br />

• The leveling should be good enough such that the<br />

effect of the tilted height differences on the XYcoordinates<br />

is less than the photogrammetric<br />

accuracy of the planimetric accuracy.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

39


Effect of Leveling Errors<br />

• If we have leveling errors, then and are not<br />

exactly zero.<br />

– We still have residual angles (d and d).<br />

–Sin(d) d (in radians) cos(d) 1<br />

–Sin(d) d (in radians) cos(d) 1<br />

–dd 0.0<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

G<br />

G<br />

G<br />

X<br />

T cos<br />

<br />

<br />

<br />

<br />

<br />

<br />

YT<br />

<br />

S<br />

<br />

sin <br />

<br />

<br />

Z <br />

<br />

T d<br />

sin d<br />

cos<br />

sin <br />

cos<br />

d<br />

cos<br />

d<br />

sin <br />

d<br />

<br />

d<br />

<br />

<br />

1 <br />

• Let’s look into the effect of leveling errors on the<br />

planimetric coordinates.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

40<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

M<br />

M<br />

M


X<br />

Y<br />

G<br />

G<br />

<br />

<br />

Y<br />

Effect of Leveling Errors<br />

X<br />

T<br />

T<br />

<br />

<br />

S<br />

S<br />

[cos<br />

[sin <br />

X<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

41<br />

X<br />

M<br />

M<br />

<br />

sin Y<br />

cos<br />

Y ]<br />

M<br />

M<br />

<br />

<br />

S<br />

S<br />

d<br />

d<br />

• For a constant height Z M: S dZ M and S dZ M will be<br />

constant and their effect can be compensated for by X T and<br />

Y T.<br />

• In other words, the mathematical relationship between<br />

the model and ground coordinates can still be represented<br />

by 2-D similarity transformation.<br />

• If Z M is varying, height differences will have an effect on the<br />

planimetric coordinates:<br />

• dX G = S d dZ M<br />

• dY G = - S d dZ M<br />

• This effect should be less than the planimetric accuracy.<br />

]<br />

Z<br />

Z<br />

M<br />

M


Effect of Leveling Errors<br />

Planimetric Error<br />

t<br />

Leveling error<br />

t Height differences<br />

within the model<br />

Planimetric error should be less than the planimetric accuracy.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

42


• Given:<br />

Planimetric BAIM<br />

– Planimetric model coordinates of tie points (X M, Y M)<br />

• Tie points: Points that appear in more than one model<br />

– Planimetric ground coordinates of control points<br />

• Adjustment procedure:<br />

– The models are displaced (X T, Y T), rotated (), and<br />

scaled (S) until:<br />

• The tie points fit together as well as possible.<br />

• The residuals at the ground control points are as small as<br />

possible.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

43


• Mathematical model: 2-D similarity transformation<br />

X<br />

<br />

Y<br />

G<br />

G<br />

<br />

<br />

<br />

X<br />

<br />

Y<br />

T<br />

T<br />

X<br />

G X<br />

T<br />

<br />

YG<br />

YT<br />

a S cos<br />

b S sin <br />

Planimetric BAIM<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

S<br />

cos<br />

<br />

sin<br />

<br />

a b<br />

<br />

b<br />

a <br />

sin <br />

cos<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

44<br />

<br />

<br />

<br />

X<br />

Y<br />

M<br />

M<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

X<br />

Y<br />

M<br />

M<br />

<br />

<br />

<br />

Non Linear Model<br />

Linear Model


• Unknowns:<br />

– Transformation parameters (XT, YT, a, and b) for each<br />

model<br />

– Ground coordinates of tie points, which appear in more<br />

than one model<br />

• Observable quantities:<br />

Planimetric BAIM<br />

– Ground coordinates of control points<br />

– Model coordinates of tie points<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

45


1<br />

6<br />

Planimetric BAIM<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

46<br />

2<br />

5<br />

3<br />

4


Tie Point<br />

Control Point<br />

1<br />

7<br />

4<br />

4<br />

Y<br />

Y<br />

I<br />

III<br />

Planimetric BAIM: Example<br />

2<br />

x<br />

x<br />

8<br />

5<br />

5<br />

5<br />

8<br />

5<br />

2 3<br />

Y<br />

Y<br />

IV<br />

Before BAIM<br />

II<br />

x<br />

x<br />

6<br />

6<br />

9<br />

Y G<br />

1 2<br />

I II<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

47<br />

4<br />

III<br />

7 8<br />

IV<br />

3<br />

5 6<br />

After BAIM<br />

9<br />

X G


Planimetric BAIM: Example<br />

• Balance between observation equations and<br />

unknowns:<br />

– Unknowns:<br />

• 4x4=16 transformation parameters for four models<br />

• 5x2=10 ground coordinates of tie points<br />

– Observation equations:<br />

• 4x4x2= 32 equations derived from the 2-D similarity<br />

transformations<br />

– Redundancy:<br />

• 32 – 26 = 6<br />

• We would like to investigate the observation<br />

equations associated with control and tie points.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

48


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

49<br />

Planimetric BAIM: Ground Control Points<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

M<br />

M<br />

G<br />

M<br />

M<br />

G<br />

Y<br />

M<br />

X<br />

M<br />

T<br />

Y<br />

G<br />

Y<br />

M<br />

X<br />

M<br />

T<br />

X<br />

G<br />

e<br />

Y<br />

a<br />

e<br />

X<br />

b<br />

Y<br />

e<br />

Y<br />

e<br />

Y<br />

b<br />

e<br />

X<br />

a<br />

X<br />

e<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

M<br />

M<br />

G<br />

M<br />

M<br />

G<br />

Y<br />

X<br />

Y<br />

M<br />

M<br />

T<br />

G<br />

Y<br />

X<br />

X<br />

M<br />

M<br />

T<br />

G<br />

e<br />

a<br />

e<br />

b<br />

e<br />

Y<br />

a<br />

X<br />

b<br />

Y<br />

Y<br />

e<br />

b<br />

e<br />

a<br />

e<br />

Y<br />

b<br />

X<br />

a<br />

X<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

M<br />

M<br />

G<br />

M<br />

M<br />

G<br />

Y<br />

X<br />

Y<br />

Y<br />

Y<br />

X<br />

X<br />

X<br />

Y<br />

M<br />

M<br />

T<br />

G<br />

X<br />

M<br />

M<br />

T<br />

G<br />

e<br />

a<br />

e<br />

b<br />

e<br />

v<br />

e<br />

b<br />

e<br />

a<br />

e<br />

v<br />

where<br />

v<br />

Y<br />

a<br />

X<br />

b<br />

Y<br />

Y<br />

v<br />

Y<br />

b<br />

X<br />

a<br />

X<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

:<br />

• Underlined terms:<br />

• Unknown quantities


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

50<br />

Planimetric BAIM: Tie Points<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

M<br />

M<br />

M<br />

M<br />

Y<br />

M<br />

X<br />

M<br />

T<br />

G<br />

Y<br />

M<br />

X<br />

M<br />

T<br />

G<br />

e<br />

Y<br />

a<br />

e<br />

X<br />

b<br />

Y<br />

Y<br />

e<br />

Y<br />

b<br />

e<br />

X<br />

a<br />

X<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

M<br />

M<br />

M<br />

M<br />

Y<br />

X<br />

G<br />

M<br />

M<br />

T<br />

Y<br />

X<br />

G<br />

M<br />

M<br />

T<br />

e<br />

a<br />

e<br />

b<br />

Y<br />

Y<br />

a<br />

X<br />

b<br />

Y<br />

e<br />

b<br />

e<br />

a<br />

X<br />

Y<br />

b<br />

X<br />

a<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

~<br />

0<br />

~<br />

M<br />

M<br />

M<br />

M<br />

Y<br />

X<br />

Y<br />

Y<br />

X<br />

X<br />

Y<br />

G<br />

M<br />

M<br />

T<br />

X<br />

G<br />

M<br />

M<br />

T<br />

e<br />

a<br />

e<br />

b<br />

v<br />

e<br />

b<br />

e<br />

a<br />

v<br />

where<br />

v<br />

Y<br />

Y<br />

a<br />

X<br />

b<br />

Y<br />

v<br />

X<br />

Y<br />

b<br />

X<br />

a<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

:<br />

0<br />

~<br />

0<br />

~<br />

• Underlined terms:<br />

• Unknown quantities


Planimetric BAIM<br />

• Adding the observation equations from ground<br />

control and tie points, we get:<br />

y<br />

~<br />

0<br />

1<br />

<br />

<br />

<br />

<br />

A<br />

<br />

A<br />

11<br />

21<br />

0<br />

A<br />

22<br />

<br />

<br />

<br />

x<br />

<br />

x<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

e<br />

<br />

e<br />

1<br />

2<br />

<br />

<br />

<br />

Observation<br />

equations arising from GCP<br />

<br />

Observation<br />

equations from tie points<br />

• x 1 Unknown transformation parameters<br />

• 4 x # of models<br />

• x 2 Unknown ground coordinates of tie points<br />

• 2 x # of tie points<br />

• Note: (A 12) represents the partial derivatives of the<br />

observations arising from GCP w.r.t. the unknown ground<br />

coordinates of tie points (0).<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

51


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

52<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

1<br />

1<br />

2<br />

2<br />

1<br />

0<br />

0<br />

,<br />

0<br />

0<br />

~<br />

P<br />

P<br />

e<br />

e<br />

o<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

~<br />

0<br />

0<br />

0<br />

ˆ<br />

ˆ<br />

0<br />

0<br />

0<br />

0<br />

1<br />

2<br />

1<br />

22<br />

21<br />

11<br />

2<br />

1<br />

22<br />

21<br />

11<br />

2<br />

1<br />

22<br />

21<br />

11<br />

y<br />

P<br />

P<br />

A<br />

A<br />

A<br />

x<br />

x<br />

A<br />

A<br />

A<br />

P<br />

P<br />

A<br />

A<br />

A<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

~<br />

ˆ<br />

ˆ 1<br />

11<br />

2<br />

1<br />

22<br />

2<br />

22<br />

21<br />

2<br />

22<br />

22<br />

2<br />

21<br />

21<br />

2<br />

21<br />

11<br />

1<br />

11<br />

Py<br />

A<br />

x<br />

x<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

~<br />

ˆ<br />

ˆ 1<br />

2<br />

1<br />

22<br />

12<br />

12<br />

11<br />

C<br />

x<br />

x<br />

N<br />

N<br />

N<br />

N<br />

T<br />

Planimetric BAIM


1<br />

N<br />

N<br />

11<br />

T<br />

12<br />

xˆ<br />

1<br />

xˆ<br />

1<br />

C<br />

~<br />

0<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

53<br />

<br />

<br />

N<br />

N<br />

• N11 is a block diagonal matrix with 4x4 sub-blocks<br />

along the diagonal.<br />

• N22 is a block diagonal matrix with 2x2 sub-blocks<br />

along the diagonal.<br />

• We can start by solving for x2 first as follows:<br />

xˆ<br />

N C N N xˆ<br />

1<br />

11<br />

1<br />

1<br />

11<br />

T 1<br />

N N N N <br />

xˆ<br />

2<br />

22<br />

<br />

<br />

12<br />

11<br />

12<br />

Planimetric BAIM<br />

12<br />

xˆ<br />

2<br />

<br />

T 1<br />

<br />

1<br />

T 1<br />

N22<br />

N12<br />

N11<br />

N12<br />

N12<br />

N11<br />

C1<br />

2<br />

<br />

N<br />

T<br />

12<br />

N<br />

12<br />

22<br />

1<br />

11<br />

xˆ<br />

2<br />

xˆ<br />

2<br />

C<br />

1<br />

1<br />

T 1<br />

N N N N <br />

where :<br />

np<br />

22<br />

<br />

12 11 12 2np<br />

2np<br />

number<br />

of<br />

tie<br />

points


xˆ<br />

xˆ<br />

xˆ<br />

xˆ<br />

1<br />

• Sequential solution of the parameters:<br />

• Option # 1: Solving for x2 first<br />

2<br />

1<br />

2<br />

<br />

<br />

<br />

N<br />

T 1<br />

N N N N <br />

1<br />

11<br />

22<br />

C<br />

1<br />

<br />

N<br />

12<br />

1<br />

11<br />

N<br />

11<br />

12<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

54<br />

xˆ<br />

2<br />

12<br />

1<br />

N<br />

• Option # 2: Solving for x 1 first<br />

1<br />

T <br />

1<br />

N11<br />

N12<br />

N22<br />

N12<br />

C 1<br />

T<br />

N<br />

<br />

11 N12<br />

N22<br />

N12<br />

1<br />

<br />

<br />

N<br />

1<br />

22<br />

N<br />

T<br />

12<br />

Planimetric BAIM<br />

xˆ<br />

1<br />

T<br />

12<br />

nm<br />

N<br />

1<br />

11<br />

where :<br />

C<br />

1<br />

4nm<br />

4nm<br />

<br />

number<br />

of<br />

models


Planimetric BAIM<br />

• Sequential solution of parameters:<br />

– Option # 1 is useful whenever 2np < 4nm.<br />

– Option # 2 is useful whenever 4nm < 2np.<br />

–Where:<br />

• np number of tie points<br />

• nm number of models<br />

• Remarks:<br />

– Refer the coordinates within each stereo-model to its<br />

centroid<br />

• Whenever we have X M or Y M, they would reduce to zero<br />

(improve the sparsity of the normal equation matrix).<br />

– A point that appears in one model is not useful<br />

(eliminate it from the adjustment).<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

55


X<br />

Y<br />

G<br />

X<br />

<br />

<br />

Y<br />

G<br />

G<br />

• Remarks: Instead of dealing with control points<br />

and tie points in different ways, we can do the<br />

following:<br />

– Treat all the points as tie points<br />

– Add pseudo observations for the ground control points<br />

• This approach is more general/flexible.<br />

G<br />

o<br />

<br />

o<br />

<br />

<br />

<br />

<br />

Y<br />

X<br />

T<br />

T<br />

<br />

<br />

Observed<br />

b<br />

a<br />

( X<br />

( X<br />

M<br />

M<br />

<br />

ground coordinates<br />

Planimetric BAIM<br />

<br />

e<br />

X<br />

e<br />

M<br />

X<br />

)<br />

M<br />

)<br />

<br />

<br />

a<br />

X<br />

<br />

<br />

Y<br />

G<br />

G<br />

b<br />

( Y<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

56<br />

<br />

<br />

<br />

( Y<br />

M<br />

<br />

M<br />

<br />

e<br />

<br />

e<br />

<br />

<br />

e<br />

X<br />

Y<br />

Y<br />

Go<br />

Go<br />

e<br />

M<br />

Y<br />

)<br />

<br />

<br />

<br />

M<br />

)<br />

e<br />

<br />

e<br />

<br />

e<br />

<br />

<br />

e<br />

X<br />

Y<br />

Go<br />

Go<br />

X<br />

Y<br />

M<br />

M<br />

<br />

<br />

<br />

<br />

<br />

<br />

~<br />

~<br />

0, <br />

0, <br />

G<br />

M


• Given:<br />

Spatial BAIM<br />

– 3-D model coordinates (XM, YM, ZM) of tie and control<br />

points in relatively oriented models<br />

– 3-D ground coordinates of control points<br />

• Required:<br />

– 3-D ground coordinates of tie points (3 np)<br />

• Where np is the number of tie points<br />

– The transformation parameters associated with each<br />

model (7 nm)<br />

• Where nm is the number of models<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

57


Spatial BAIM<br />

• During the adjustment procedure the models are<br />

rotated (), scaled (S) and Shifted (X T, Y T,<br />

Z T) until:<br />

– The tie points fit together as well as possible, and<br />

– The residuals at the ground control points are as small<br />

as possible.<br />

• The mathematical relationship between<br />

corresponding model and ground coordinates is<br />

defined by 3-D similarity transformation.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

58


Spatial BAIM: Mathematical Model<br />

O G<br />

Z G<br />

R( , , )<br />

S<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

59<br />

Y G<br />

X T<br />

Z M<br />

O M<br />

Y T<br />

Y M<br />

Z T<br />

X G<br />

X M


Spatial BAIM: Mathematical Model<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

G<br />

G<br />

G<br />

<br />

<br />

<br />

<br />

<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

T<br />

T<br />

T<br />

<br />

<br />

<br />

<br />

<br />

R(<br />

,<br />

,<br />

)<br />

X<br />

<br />

<br />

Y<br />

<br />

Z<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

60<br />

S<br />

M<br />

M<br />

M


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

61<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T<br />

G<br />

T<br />

G<br />

T<br />

G<br />

T<br />

M<br />

M<br />

M<br />

Z<br />

Z<br />

Y<br />

Y<br />

X<br />

X<br />

R<br />

S<br />

Z<br />

Y<br />

X<br />

)<br />

,<br />

,<br />

(<br />

/<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T<br />

G<br />

T<br />

G<br />

T<br />

G<br />

M<br />

M<br />

M<br />

Z<br />

Z<br />

Y<br />

Y<br />

X<br />

X<br />

M<br />

S<br />

Z<br />

Y<br />

X<br />

)<br />

,<br />

,<br />

(<br />

Spatial BAIM: Mathematical Model


1<br />

6<br />

Example (BAIM)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

62<br />

2<br />

5<br />

3<br />

4


4<br />

4<br />

1<br />

7<br />

I<br />

III<br />

Example (Spatial BAIM)<br />

2<br />

5<br />

5<br />

8<br />

5<br />

2<br />

8<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

63<br />

5<br />

II<br />

IV<br />

3<br />

6<br />

9<br />

6<br />

Tie points<br />

GCP


Tie Point<br />

Control Point<br />

1<br />

7<br />

4<br />

4<br />

Y<br />

Y<br />

I<br />

III<br />

2<br />

x<br />

Example (Spatial BAIM)<br />

x<br />

8<br />

5<br />

5<br />

5<br />

8<br />

5<br />

2 3<br />

Y<br />

Y<br />

IV<br />

Before BAIM<br />

II<br />

x<br />

x<br />

6<br />

6<br />

9<br />

Y G<br />

1 2<br />

I II<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

64<br />

4<br />

III<br />

7 8<br />

IV<br />

3<br />

5 6<br />

After BAIM<br />

9<br />

X G


• What is the balance between the observations and<br />

unknowns?<br />

– Unknowns:<br />

• 4 * 7 AO parameters<br />

• 5 * 3 GC of tie points<br />

• Total of 43<br />

– Equations:<br />

• 4 (models) x 4 (points/model) x 3 (equations/point) = 48<br />

– Redundancy:<br />

• 5<br />

Example (Spatial BAIM)<br />

• This is a non-linear system: approximations and<br />

partial derivatives are required.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

65


The Structure of the Observation Equations<br />

• Y = a(X) + e e ~ (0, 2 P -1 )<br />

• Using approximate values for the unknown<br />

parameters (Xo ) and partial derivatives, the above<br />

equations can be linearized leading to the<br />

following equations:<br />

• y48x1 = A48x43 x43x1 + e48x1 e ~ (0, 2 P-1 )<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

66


The Structure of the Observation Equations<br />

I II III IV 2 4568<br />

A = y =<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

67


N<br />

N<br />

Structure of the Normal Matrix<br />

11<br />

T<br />

12<br />

N<br />

N<br />

12<br />

22<br />

<br />

<br />

<br />

<br />

I II III IV 2 4 5 6 8<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

68


Spatial BAIM: Final Remarks<br />

• To stabilize the heights along the strip, we should use the<br />

projection centers as tie points.<br />

• To stabilize the heights across the strip, we can do one of<br />

the following:<br />

– Implement a side lap of 60%<br />

– Use cross strips while using the projection centers as tie points<br />

– Apply chains of vertical control points across the strip<br />

– Use GPS observations at the projection centers<br />

• We can sequentially solve for the parameters.<br />

– Solve for the ground coordinates of tie points first whenever 3np <<br />

7nm<br />

– Solve for the transformation parameters for the models first<br />

whenever 7nm < 3np<br />

– Where: (np number of tie points) and (nm number of models)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

69


Accuracy of BAIM<br />

• Due to the reduction in the involved GCP, we<br />

should expect a degradation in the accuracy when<br />

compared with this associated with a single model.<br />

• Planimetric accuracy is not affected by the<br />

accuracy of the measured model heights or by the<br />

layout/distribution of vertical control points.<br />

• In a similar way, height accuracy is not affected<br />

by the accuracy of measured model planimetric<br />

coordinates or the the distribution of horizontal<br />

control points.<br />

• Therefore, planimetric and height accuracies can<br />

be treated separately.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

70


• We can derive the accuracy of the derived<br />

parameters after the adjustment as follows:<br />

D{<br />

xˆ<br />

} <br />

where :<br />

Q{<br />

xˆ<br />

} <br />

<br />

2<br />

o<br />

<br />

N<br />

2<br />

o<br />

1<br />

Q{<br />

xˆ<br />

}<br />

Variance of<br />

Accuracy of BAIM<br />

observation<br />

unit weight<br />

(variance componenet)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

71<br />

of<br />

• Question: what numerical value should we expect<br />

for the variance component?


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

72<br />

M<br />

M<br />

M<br />

M<br />

Y<br />

X<br />

Y<br />

Y<br />

X<br />

X<br />

Y<br />

G<br />

M<br />

M<br />

T<br />

X<br />

G<br />

M<br />

M<br />

T<br />

e<br />

a<br />

e<br />

b<br />

v<br />

e<br />

b<br />

e<br />

a<br />

v<br />

where<br />

v<br />

Y<br />

Y<br />

a<br />

X<br />

b<br />

Y<br />

v<br />

X<br />

Y<br />

b<br />

X<br />

a<br />

X<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

:<br />

0<br />

~<br />

0<br />

~<br />

ts<br />

measuremen<br />

coordinate<br />

model<br />

of<br />

Accuracy<br />

:<br />

2<br />

2<br />

2<br />

M<br />

M<br />

y<br />

x<br />

where<br />

a<br />

b<br />

b<br />

a<br />

I<br />

a<br />

b<br />

b<br />

a<br />

v<br />

v<br />

D<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

BAIM: Variance Component


vx<br />

<br />

D<br />

<br />

vy<br />

<br />

a S cos<br />

b S sin <br />

a<br />

Accuracy of BAIM<br />

2<br />

b<br />

v<br />

D<br />

v<br />

x<br />

y<br />

2<br />

<br />

<br />

<br />

<br />

<br />

S<br />

S<br />

2<br />

M<br />

2<br />

2<br />

<br />

a<br />

<br />

<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

73<br />

2<br />

M<br />

2<br />

I<br />

b<br />

0<br />

2<br />

2<br />

a<br />

2<br />

0<br />

b<br />

• If we assigned a weight of unity for the observations, then the<br />

estimated variance component should be o S M.<br />

• Variance component: variance of model coordinate<br />

measurements expressed in ground units<br />

2


Planimetric Accuracy of BAIM<br />

• Assume that we have:<br />

– Four ground control points at the corners of the block<br />

– The worst accuracy within the block is represented by<br />

max<br />

– The mean accuracy within the block is represented by<br />

mean<br />

• Then:<br />

– The accuracy deteriorates as the size of the block<br />

increases.<br />

– The worst accuracy occurs at the center of the edges of<br />

the block.<br />

• Following are some examples of expected<br />

accuracies.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

74


Planimetric Accuracy of BAIM<br />

• 2 Strips x 4 Models:<br />

• 4 Strips x 8 Models:<br />

1.<br />

40<br />

2.<br />

25<br />

1.<br />

44<br />

1.<br />

44<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

75<br />

o<br />

o<br />

1.<br />

2<br />

2.<br />

28<br />

2.<br />

28<br />

o<br />

o<br />

1.<br />

66<br />

o<br />

o<br />

o<br />

o<br />

1.<br />

40<br />

2.<br />

25<br />

o<br />

o


Planimetric Accuracy of BAIM<br />

• 6 Strips x 12 Models:<br />

• 8 Strips x 16 Models:<br />

3.<br />

14<br />

4.<br />

06<br />

3.<br />

16<br />

3.<br />

16<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

76<br />

o<br />

o<br />

2.<br />

17<br />

4.<br />

08<br />

2.<br />

71<br />

4.<br />

08<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

3.<br />

14<br />

4.<br />

06<br />

o<br />

o


Planimetric Accuracy of BAIM<br />

• Now, let’s investigate the effect of adding a dense<br />

pattern of ground control points at the boundaries<br />

of the block:<br />

– Ground control point every model across the strips of<br />

the block<br />

– Ground control point every other model along the strips<br />

of the block<br />

• 2 Strips x 4 Models:<br />

<br />

<br />

mean<br />

max<br />

0.<br />

94<br />

1.<br />

01 <br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

77<br />

<br />

<br />

o<br />

o


Planimetric Accuracy of BAIM<br />

• 4 Strips x 8 Models:<br />

• 6 Strips x 12 Models:<br />

• 8 Strips x 16 Models:<br />

1.<br />

01 <br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

78<br />

<br />

<br />

<br />

<br />

<br />

<br />

mean<br />

max<br />

mean<br />

max<br />

mean<br />

max<br />

<br />

<br />

<br />

0.<br />

95<br />

1.<br />

00<br />

1.<br />

10<br />

<br />

<br />

o<br />

<br />

<br />

o<br />

1.<br />

03 <br />

<br />

1.<br />

15<br />

o<br />

o<br />

o<br />

o


Planimetric Accuracy of BAIM<br />

• By adding a dense pattern of ground control points<br />

along the boundaries of the block:<br />

– The accuracy is almost independent of the size of the<br />

block (i.e., it does not deteriorate as the size of the<br />

block increases).<br />

– The accuracy is almost equal to that of a single model.<br />

• Having a dense pattern of ground control points at<br />

the boundary as well as additional point at the<br />

center of the block do not significantly improve<br />

the planimetric accuracy.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

79


Empirical Formulas for Square Blocks<br />

• P 1: Dense chain of control points along the<br />

boundaries of the block:<br />

– Number of ground control points is proportional to the<br />

size of the block.<br />

mean ( 0.<br />

7 0.<br />

29 log10<br />

ns ) o<br />

Where : n number of strips<br />

s<br />

• P 2: 16 control points along the boundaries of the<br />

block (regardless of the size of the block)<br />

<br />

mean<br />

<br />

Where : n<br />

( 0.<br />

83<br />

0.<br />

02<br />

number<br />

n ) <br />

strips<br />

s<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

80<br />

<br />

of<br />

s<br />

o


Empirical Formulas for Square Blocks<br />

• P 3: 8 control points along the boundaries of the<br />

block (regardless of the size of the block)<br />

<br />

mean<br />

<br />

Where : n<br />

( 0.<br />

83<br />

s<br />

0.<br />

05<br />

number<br />

n ) <br />

strips<br />

• P 4: 4 control points along the boundaries of the<br />

block (regardless of the size of the block)<br />

<br />

mean<br />

<br />

Where : n<br />

( 0.<br />

47<br />

s<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

81<br />

<br />

<br />

0.<br />

25<br />

number<br />

of<br />

of<br />

s<br />

n ) <br />

s<br />

o<br />

o<br />

strips


Vertical Accuracy of BAIM<br />

• Height accuracy is weak across the strips.<br />

• Therefore, chains of vertical control points across<br />

the strips are recommended.<br />

• We use chains of vertical control points every imodels.<br />

• To improve the height accuracy along the upper<br />

and lower edges of the block, we implement a<br />

vertical control point every i/2 models.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

82


i<br />

Vertical Accuracy of BAIM<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

83<br />

<br />

<br />

Z<br />

Z<br />

mean<br />

maax<br />

<br />

<br />

( 0.<br />

34<br />

( 0.<br />

27<br />

<br />

<br />

0.<br />

22<br />

0.<br />

31<br />

i)<br />

<br />

i)<br />

<br />

Z<br />

Z<br />

o<br />

o


Bundle Block Adjustment<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

84


Bundle Block Adjustment<br />

• Direct relationship between image and ground<br />

coordinates.<br />

• We measure the image coordinates in the images<br />

of the block.<br />

• Using the collinearity equations, we can relate the<br />

image coordinates, the corresponding ground<br />

coordinates, the IOP, and the EOP.<br />

• Using a simultaneous least squares adjustment, we<br />

can solve for the:<br />

– The ground coordinates of the tie points<br />

–The EOP<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

85


Bundle Block Adjustment<br />

• The image coordinate measurements and the IOP<br />

define a bundle of light rays.<br />

• The EOP define the position and the attitude of the<br />

bundles in space.<br />

• During the adjustment: The bundles are rotated<br />

() and shifted (Xo, Yo, Zo) until:<br />

– Conjugate light rays intersect as well as possible at the<br />

locations of object space tie points.<br />

– Light rays corresponding to ground control points pass<br />

through the object points as close as possible.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

86


Bundle Block Adjustment<br />

Ground Control Points<br />

Tie Points<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

87


Least Squares Adjustment in<br />

<strong>Photogrammetry</strong><br />

• Prior to the adjustment, we need to identify:<br />

– The unknown parameters<br />

– Observable quantities<br />

– The mathematical relationship between the unknown<br />

parameters and the observable quantities<br />

• Linearize the mathematical relationship (if it is not<br />

linear)<br />

• Apply least squares adjustment formulas<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

88


Unknown Parameters<br />

• Unknown parameters might include:<br />

– Ground coordinates of tie points (points that<br />

appear in more than one image)<br />

– Exterior orientation parameters of the involved<br />

imagery<br />

– Interior orientation parameters of the involved<br />

cameras (for camera calibration purposes)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

89


Observable Quantities<br />

• Observable quantities might include:<br />

– The ground coordinates of control points<br />

– Image coordinates of tie as well as control<br />

points<br />

– Interior orientation parameters of the involved<br />

cameras<br />

– Exterior orientation parameters of the involved<br />

imagery (from a GPS/INS unit onboard)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

90


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

91<br />

Mathematical Model<br />

)<br />

,<br />

0<br />

(<br />

~<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

1<br />

2<br />

33<br />

23<br />

13<br />

32<br />

22<br />

12<br />

33<br />

23<br />

13<br />

31<br />

21<br />

11<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

P<br />

e<br />

e<br />

e<br />

y<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

c<br />

y<br />

y<br />

e<br />

x<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

Z<br />

Z<br />

r<br />

Y<br />

Y<br />

r<br />

X<br />

X<br />

r<br />

c<br />

x<br />

x<br />

o<br />

y<br />

x<br />

y<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

p<br />

a<br />

x<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

O<br />

A<br />

p<br />

a


y<br />

y<br />

A<br />

x<br />

e<br />

<br />

2<br />

o<br />

<br />

P<br />

A<br />

1<br />

x<br />

<br />

n1<br />

n<br />

m<br />

m1<br />

n1<br />

n<br />

n<br />

Least Squares Adjustment<br />

e<br />

Gauss Markov Model<br />

Observation Equations<br />

observation<br />

design<br />

vector<br />

noise<br />

of<br />

variance<br />

matrix<br />

vector<br />

unknowns<br />

contaminating<br />

covariance<br />

2<br />

( 0,<br />

<br />

P<br />

the observation<br />

matrix<br />

the<br />

noise<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

92<br />

e<br />

~<br />

o<br />

1<br />

)<br />

of<br />

vector<br />

vector


Least Squares Adjustment<br />

xˆ<br />

D<br />

e~<br />

ˆ<br />

<br />

<br />

xˆ<br />

2<br />

o<br />

<br />

( A<br />

<br />

<br />

y<br />

T<br />

<br />

<br />

( e~<br />

PA)<br />

2<br />

o<br />

Axˆ<br />

T<br />

1<br />

( A<br />

Pe~<br />

)<br />

PA)<br />

( n<br />

m)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

93<br />

T<br />

A<br />

/<br />

T<br />

Py<br />

1


Y a(<br />

X ) e<br />

a(<br />

X ) is<br />

Y a(<br />

X<br />

Where<br />

X<br />

o<br />

Y a(<br />

X<br />

a<br />

A <br />

X<br />

o<br />

o<br />

y A x e<br />

Where<br />

:<br />

:<br />

y Y<br />

a(<br />

X<br />

X<br />

a<br />

) <br />

X<br />

a<br />

) <br />

X<br />

o<br />

o<br />

)<br />

Non Linear System<br />

the non linear function<br />

We use Taylor Series<br />

X<br />

is approximat e<br />

X<br />

o<br />

o<br />

Expansion<br />

( X X<br />

values<br />

( X X<br />

o<br />

o<br />

) e<br />

for<br />

) e<br />

unknown<br />

parameters<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

94<br />

the<br />

(We ignore<br />

higher<br />

order<br />

terms)<br />

• Iterative solution for the unknown parameters<br />

• When should we stop the iterations?


Example (4 Images in Two Strips)<br />

1<br />

3 4<br />

5 6<br />

2 1<br />

3 4<br />

5 6<br />

I II<br />

3 4<br />

5 6<br />

7<br />

8 7<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

95<br />

2<br />

3 4<br />

5 6<br />

III IV<br />

8<br />

Control Point<br />

Tie Point


Balance Between Observations & Unknowns<br />

• Number of observations:<br />

– 4 x 6 x 2 = 48 observations (collinearity equations)<br />

• Number of unknowns:<br />

– 4 x 6 + 3 x 4 = 36 unknowns<br />

• Redundancy:<br />

–12<br />

• Assumptions:<br />

– IOP are known and errorless.<br />

– Ground coordinates of control points are errorless.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

96


Structure of the Design Matrix (BA)<br />

• Y = a(X) + e e ~ (0, 2 P -1 ).<br />

• Using approximate values for the unknown<br />

parameters (Xo ) and partial derivatives, the above<br />

equations can be linearized leading to the<br />

following equations:<br />

• y48x1 = A48x36 x36x1 + e36x1 e ~ (0, 2 P-1 ).<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

97


A =<br />

Structure of the Design Matrix (BA)<br />

I II III IV 3 456<br />

y =<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

98


N<br />

N<br />

Structure of the Normal Matrix<br />

11<br />

T<br />

12<br />

N<br />

N<br />

12<br />

22<br />

<br />

<br />

<br />

<br />

I II III IV<br />

3 4 5 6<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

99


Sample Data:<br />

• All the points appear in all the images.<br />

• Two images were captured by each camera.<br />

• 2 cameras<br />

• 4 images<br />

• 16 points<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

100


Structure of the Normal Matrix: Example<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

101


Observation Equations<br />

y<br />

2<br />

n1<br />

nm<br />

m1<br />

n1<br />

o<br />

A x e e ~ ( 0,<br />

P<br />

y<br />

y<br />

n1<br />

n1<br />

<br />

<br />

A<br />

1<br />

n6<br />

m1<br />

1<br />

1<br />

A1<br />

A2<br />

en1<br />

n6<br />

m1<br />

x<br />

6m1<br />

1<br />

n3<br />

m2<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

102<br />

<br />

A<br />

2<br />

n3<br />

m2<br />

x<br />

x<br />

<br />

2<br />

6m1<br />

1<br />

x<br />

3m21<br />

2<br />

<br />

<br />

3m21<br />

• n Number of observations (image coordinate measurements)<br />

• m Number of unknowns:<br />

• m 1 Number of images 6 m 1 (EOP of the images)<br />

• m 2 Number of tie points 3 m 2 (ground coordinates of tie points)<br />

• m = 6 m 1 + 3 m 2<br />

<br />

e<br />

n1<br />

1<br />

)


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

103<br />

Normal Equation Matrix<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

3<br />

1<br />

1<br />

6<br />

2<br />

1<br />

2<br />

3<br />

2<br />

3<br />

1<br />

6<br />

2<br />

3<br />

2<br />

3<br />

1<br />

6<br />

1<br />

6<br />

1<br />

6<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

)<br />

3<br />

6<br />

(<br />

22<br />

12<br />

12<br />

11<br />

2<br />

1<br />

2<br />

1<br />

)<br />

3<br />

6<br />

(<br />

)<br />

3<br />

6<br />

(<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m<br />

C<br />

C<br />

Py<br />

A<br />

Py<br />

A<br />

y<br />

P<br />

A<br />

A<br />

C<br />

N<br />

N<br />

N<br />

N<br />

N<br />

A<br />

A<br />

P<br />

A<br />

A<br />

N<br />

T<br />

T<br />

T<br />

T<br />

m<br />

m<br />

T<br />

T<br />

T<br />

m<br />

m<br />

m<br />

m


• N11 is a block diagonal matrix with 6x6 sub-blocks<br />

along the diagonal.<br />

• N22 is a block diagonal matrix with 3x3 sub-blocks<br />

along the diagonal.<br />

N<br />

<br />

N<br />

<br />

11<br />

T<br />

12<br />

Normal Equation Matrix<br />

6m1<br />

6<br />

m1<br />

3m26<br />

m1<br />

N<br />

N<br />

12<br />

22<br />

6m1<br />

3m2<br />

3m23<br />

m2<br />

xˆ<br />

<br />

xˆ<br />

<br />

C<br />

<br />

C<br />

<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

104<br />

<br />

<br />

<br />

1<br />

2<br />

6m1<br />

1<br />

3m21<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

6 m11<br />

3m21


N<br />

xˆ<br />

xˆ<br />

2<br />

1<br />

Reduction of the Normal Equation Matrix<br />

T<br />

12<br />

3m26<br />

m1<br />

3m21<br />

6m1<br />

1<br />

<br />

<br />

N<br />

N<br />

11<br />

T<br />

12<br />

6m1<br />

6<br />

m1<br />

3m26<br />

m1<br />

xˆ<br />

1<br />

xˆ<br />

• Solving for x 2 first:<br />

6m1<br />

1<br />

1<br />

6 m11<br />

<br />

<br />

N<br />

6m1<br />

3m2<br />

3m23<br />

m2<br />

3m21<br />

3m21<br />

6 m11<br />

3m21<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

105<br />

N<br />

12<br />

22<br />

<br />

1<br />

1<br />

N C N N xˆ<br />

6 m16<br />

m1<br />

N22 T<br />

N12<br />

1<br />

N11<br />

N12<br />

1C2 T<br />

N12<br />

1<br />

N11<br />

C1<br />

<br />

1<br />

N C<br />

1<br />

N N xˆ<br />

<br />

11<br />

11<br />

3m23<br />

m2<br />

6 m16<br />

m1<br />

1<br />

1<br />

6m1<br />

1<br />

6m1<br />

1<br />

3m26<br />

m1<br />

11<br />

11<br />

6m1<br />

6<br />

m1<br />

6m1<br />

6<br />

m1<br />

6m1<br />

6<br />

m1<br />

12<br />

12<br />

6m1<br />

3m2<br />

6m1<br />

3m2<br />

6m1<br />

3m2<br />

2<br />

2<br />

3m21<br />

3m21<br />

xˆ<br />

2<br />

xˆ<br />

<br />

2<br />

N<br />

3m21<br />

22<br />

<br />

<br />

3m23<br />

m2<br />

C<br />

xˆ<br />

1<br />

C<br />

2<br />

2<br />

3m21<br />

3m26<br />

m1<br />

<br />

C<br />

2<br />

3m21<br />

6m1<br />

6<br />

m1<br />

•3m 2 < 6m 1<br />

• Remember: N 11 is a block diagonal matrix with 6x6 sub-blocks<br />

along the diagonal.<br />

6 m11


N<br />

xˆ<br />

1<br />

xˆ<br />

6 m16<br />

m1<br />

6m1<br />

1<br />

2<br />

Reduction of the Normal Equation Matrix<br />

11<br />

3m21<br />

<br />

<br />

xˆ<br />

1<br />

N<br />

N<br />

6 m11<br />

11<br />

T<br />

12<br />

6m1<br />

6<br />

m1<br />

3m26<br />

m1<br />

xˆ<br />

1<br />

xˆ<br />

• Solving for x 1 first:<br />

6m1<br />

1<br />

1<br />

6 m11<br />

<br />

<br />

N<br />

6m1<br />

3m2<br />

3m23<br />

m2<br />

3m21<br />

3m21<br />

6 m11<br />

3m21<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

106<br />

N<br />

12<br />

22<br />

xˆ<br />

2<br />

xˆ<br />

2<br />

<br />

<br />

C<br />

1<br />

C<br />

<br />

1<br />

1<br />

T<br />

N C N N xˆ<br />

N11 N12<br />

1<br />

N22<br />

T<br />

N12<br />

1C1N12 1<br />

N22<br />

C2<br />

<br />

1<br />

N C<br />

1<br />

N<br />

T<br />

N xˆ<br />

<br />

6m1<br />

6m1<br />

22<br />

<br />

3m23<br />

m2<br />

N<br />

12<br />

3m23<br />

m2<br />

2<br />

3m21<br />

6m1<br />

3m2<br />

22<br />

3m23<br />

m2<br />

22<br />

3m23<br />

m2<br />

3m23<br />

m2<br />

2<br />

3m21<br />

12<br />

3m26<br />

m1<br />

3m26<br />

m1<br />

22<br />

1<br />

3m23<br />

m2<br />

6m1<br />

1<br />

6m1<br />

1<br />

12<br />

3m26<br />

m1<br />

1<br />

6m1<br />

3m2<br />

2<br />

6m1<br />

1<br />

<br />

C<br />

1<br />

6m1<br />

1<br />

3m22<br />

m2<br />

•6m 1 < 3m 2<br />

• Remember: N 22 is a block diagonal matrix with 3x3 sub-blocks<br />

along the diagonal.<br />

3m21


Reduction of the Normal Equation Matrix<br />

• Variance covariance matrix of the estimated parameters:<br />

D{ xˆ<br />

} <br />

D{<br />

xˆ<br />

1<br />

2<br />

6 m11<br />

3 m21<br />

}<br />

1<br />

1<br />

T <br />

N N N N<br />

2<br />

o 116<br />

m16<br />

m1<br />

126<br />

m 3m<br />

223m<br />

3m<br />

123m<br />

6<br />

m<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

107<br />

1<br />

2<br />

1<br />

T<br />

1<br />

<br />

N N N N<br />

2<br />

o 223m<br />

3m<br />

123m<br />

6<br />

m 116<br />

m 6<br />

m 126<br />

m 3m<br />

2<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2


Building the Normal Equation Matrix<br />

• We would like to investigate the possibility of<br />

sequentially building up the normal equation<br />

matrix without fully building the design matrix.<br />

• (xij, yij) image coordinates of the ith point in the jth image<br />

y A x A x e<br />

y<br />

21<br />

21<br />

ij<br />

ij<br />

<br />

1<br />

26ij<br />

1 A1<br />

A2<br />

e21ij<br />

26ij<br />

1<br />

61<br />

j<br />

23ij<br />

23ij<br />

x<br />

<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

108<br />

2<br />

x<br />

61<br />

j<br />

2<br />

31i<br />

2<br />

<br />

31i<br />

21<br />

ij


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

109<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ij<br />

ij<br />

ij<br />

ij<br />

i<br />

j<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

i<br />

j<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

i<br />

j<br />

ij<br />

ij<br />

ij<br />

y<br />

P<br />

A<br />

y<br />

P<br />

A<br />

x<br />

x<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

A<br />

P<br />

A<br />

y<br />

P<br />

A<br />

A<br />

x<br />

x<br />

A<br />

A<br />

P<br />

A<br />

A<br />

e<br />

x<br />

x<br />

A<br />

A<br />

y<br />

ij<br />

T<br />

ij<br />

T<br />

ij<br />

T<br />

ij<br />

T<br />

ij<br />

T<br />

ij<br />

T<br />

ij<br />

T<br />

T<br />

ij<br />

T<br />

T<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

2<br />

1<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

2<br />

3<br />

2<br />

6<br />

1<br />

3<br />

1<br />

6<br />

3<br />

2<br />

2<br />

3<br />

6<br />

2<br />

2<br />

3<br />

3<br />

2<br />

2<br />

6<br />

6<br />

2<br />

2<br />

6<br />

2<br />

3<br />

2<br />

6<br />

1<br />

3<br />

1<br />

6<br />

3<br />

2<br />

6<br />

2<br />

2<br />

3<br />

2<br />

6<br />

1<br />

3<br />

1<br />

6<br />

3<br />

2<br />

6<br />

2<br />

Normal Equation Matrix


A<br />

<br />

A<br />

<br />

N<br />

<br />

<br />

N<br />

T<br />

1<br />

62ij<br />

T<br />

2<br />

32ij<br />

11<br />

T<br />

12<br />

ij<br />

ij<br />

P<br />

ij<br />

P<br />

ij<br />

A<br />

1<br />

A<br />

N<br />

N<br />

1<br />

26ij<br />

26ij<br />

12<br />

22<br />

ij<br />

ij<br />

Normal Equation Matrix<br />

<br />

<br />

<br />

99<br />

A<br />

A<br />

T<br />

1<br />

62ij<br />

T<br />

2<br />

32ij<br />

x<br />

<br />

x<br />

<br />

1<br />

61<br />

j<br />

2<br />

P<br />

ij<br />

P<br />

31i<br />

ij<br />

A<br />

A<br />

<br />

<br />

<br />

91<br />

91<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

110<br />

2<br />

2<br />

23ij<br />

23ij<br />

x<br />

<br />

x<br />

<br />

C<br />

<br />

<br />

C<br />

1<br />

1<br />

2<br />

61<br />

j<br />

2<br />

ij<br />

31i<br />

ij<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

A<br />

<br />

A<br />

<br />

T<br />

1<br />

62ij<br />

T<br />

2<br />

32ij<br />

• Note: We cannot solve this matrix for the:<br />

• The Exterior Orientation Parameters of the j th image<br />

• The ground coordinates of the i th point<br />

P<br />

ij<br />

P<br />

ij<br />

y<br />

y<br />

21<br />

ij<br />

21<br />

ij


N<br />

<br />

N<br />

<br />

11<br />

T<br />

12<br />

Normal Equation Matrix<br />

6m1<br />

6<br />

m1<br />

3m26<br />

m1<br />

N<br />

N<br />

12<br />

22<br />

6m1<br />

3m2<br />

3m23<br />

m2<br />

xˆ<br />

<br />

xˆ<br />

<br />

C<br />

<br />

C<br />

<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

111<br />

<br />

<br />

<br />

1<br />

2<br />

6m1<br />

1<br />

3m21<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

6 m11<br />

3m21<br />

• Question: How can we sequentially build the above matrices?<br />

• Assumption: All the points are common to all the images.


N<br />

11<br />

( 6m1<br />

6<br />

m1<br />

)<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

m<br />

2<br />

<br />

1<br />

N<br />

0<br />

0<br />

<br />

<br />

0<br />

11<br />

i1<br />

N 11 -Matrix<br />

m<br />

2<br />

<br />

i 1<br />

0<br />

N<br />

0<br />

<br />

<br />

0<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

112<br />

11<br />

i 2<br />

• If all the points are not common to all the images:<br />

• The summation should be carried over all the points<br />

that appear in the image under consideration.<br />

m<br />

2<br />

<br />

i 1<br />

0<br />

0<br />

N<br />

<br />

<br />

0<br />

11<br />

i 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

m<br />

2<br />

<br />

i 1<br />

0<br />

0<br />

0<br />

<br />

<br />

N<br />

11<br />

im1


N<br />

22<br />

( 3m23<br />

m2<br />

)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

m<br />

1<br />

<br />

j 1<br />

N<br />

0<br />

0<br />

<br />

<br />

0<br />

22<br />

1 j<br />

N 22 -Matrix<br />

m<br />

1<br />

<br />

j 1<br />

0<br />

N<br />

0<br />

<br />

<br />

0<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

113<br />

22<br />

2 j<br />

• If all the points are not common to all the images:<br />

• The summation should be carried over all the images<br />

within which the point under consideration appears.<br />

m<br />

1<br />

<br />

j 1<br />

0<br />

0<br />

N<br />

<br />

<br />

0<br />

22<br />

3 j<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

m<br />

1<br />

<br />

j 1<br />

0<br />

0<br />

0<br />

<br />

<br />

N<br />

22<br />

m2<br />

j


N<br />

12<br />

( 6 m13<br />

m2<br />

)<br />

N12<br />

<br />

<br />

N12<br />

N12<br />

<br />

<br />

<br />

<br />

N<br />

121<br />

N 12 -Matrix<br />

11<br />

12<br />

13<br />

m1<br />

N<br />

N<br />

N<br />

N<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

114<br />

12<br />

12<br />

12<br />

<br />

<br />

12<br />

21<br />

22<br />

23<br />

2 m1<br />

N<br />

N<br />

N<br />

N<br />

12<br />

12<br />

12<br />

<br />

<br />

12<br />

31<br />

32<br />

23<br />

3m1<br />

<br />

<br />

<br />

<br />

• If point “i” does not appear in image “j”:<br />

•(N 12) ij = 0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

N<br />

N<br />

N<br />

N<br />

12<br />

12<br />

12<br />

<br />

<br />

12<br />

m21<br />

m2<br />

2<br />

m2<br />

3<br />

m2m1


C<br />

1<br />

6m1<br />

1<br />

<br />

<br />

i<br />

<br />

<br />

i <br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

m<br />

2<br />

<br />

1<br />

m<br />

2<br />

<br />

1<br />

m<br />

2<br />

<br />

1<br />

m<br />

2<br />

<br />

1<br />

C<br />

C<br />

C<br />

<br />

<br />

C<br />

1<br />

1<br />

1<br />

1<br />

i1<br />

i 2<br />

i 3<br />

im1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

C - Matrix<br />

3m21<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

• Once again, we assumed that all the points are common to all<br />

the images.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

115<br />

C<br />

2<br />

m<br />

1<br />

<br />

j 1<br />

m<br />

1<br />

<br />

j 1<br />

m<br />

1<br />

<br />

j 1<br />

m<br />

1<br />

<br />

j 1<br />

C<br />

C<br />

C<br />

<br />

<br />

C<br />

2<br />

2<br />

2<br />

2<br />

1 j<br />

2 j<br />

3 j<br />

m2<br />

j


Accuracy of Bundle Block Adjustment<br />

• The accuracy of the estimated EOP as well as the<br />

ground coordinates of tie points can be obtained<br />

by the product of:<br />

– The estimated variance component, and<br />

– The inverse of the normal equation matrix (cofactor<br />

matrix)<br />

• For planning purposes, we can use the same rules<br />

applied for BAIM.<br />

• However, the accuracy of a single model has to be<br />

modified.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

116


Accuracy of Bundle Block Adjustment<br />

• Accuracy of a single model: If we have<br />

– Bundle block adjustment with additional parameters<br />

that compensate for various distortions<br />

– Regular blocks with 60%overlap and 20% side lap<br />

– Signalized targets<br />

XY 3<br />

m<br />

Z 0.<br />

003%<br />

of the camera principal distance<br />

Z 0.<br />

004%<br />

of the camera principal distance<br />

These accuracies are given in the image space<br />

(NA and WA cameras)<br />

(SWA cameras)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

117


Camera Classification<br />

• < 75 Normal angle camera (NA)<br />

• 100 > > 75 Wide angle camera (WA)<br />

• > 100 Super wide angle camera (SWA)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

118


Advantages of Bundle Block Adjustment<br />

• Most accurate triangulation technique since we have direct<br />

transformation between image and ground coordinates<br />

• Straight forward to include parameters that compensate for<br />

various deviations from the collinearity model<br />

• Straight forward to include additional observations:<br />

– GPS observations at the exposure stations<br />

– Object space distances<br />

• Can be used for normal, convergent, aerial, and close range<br />

imagery<br />

• After the adjustment, the EOP can be set on analogue and<br />

analytical plotters for compilation purposes.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

119


Disadvantages of Bundle Block Adjustment<br />

• Model is non linear: approximations as well as<br />

partial derivatives are needed.<br />

• Requires computer intensive computations<br />

• Analogue instruments cannot be used (they cannot<br />

measure image coordinate measurements).<br />

• The adjustment cannot be separated into<br />

planimetric and vertical adjustment.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

120


Strip Triangulation: Final Remarks<br />

• Elementary Unit: Stereo models after absolute<br />

orientation<br />

• Measurements: Photogrammetric ground<br />

coordinates<br />

• Mathematical model: Polynomial corrections<br />

• Instruments: Analogue and analytical plotters as<br />

well as <strong>Digital</strong> Photogrammetric Workstations<br />

(DPW)<br />

• Required computer power: Low<br />

• Expected accuracy: Low<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

121


BAIM: Final Remarks<br />

• Elementary Unit: Stereo models after relative<br />

orientation<br />

• Measurements: Model coordinates<br />

• Mathematical model: 2-D/3-D similarity<br />

transformation<br />

• Instruments: Analogue and analytical plotters as<br />

well as <strong>Digital</strong> Photogrammetric Workstations<br />

(DPW)<br />

• Required computer power: Large<br />

• Expected accuracy: Medium<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

122


Bundle Adjustment: Final Remarks<br />

• Elementary Unit: Images<br />

• Measurements: Image coordinates<br />

• Mathematical model: Collinearity equations<br />

• Instruments: Comparators, analytical plotters, and<br />

<strong>Digital</strong> Photogrammetric Workstations (DPW)<br />

• Required computer power: Very large<br />

• Expected accuracy: High<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

123


• Resection<br />

• Intersection<br />

• Stereo-pair orientation<br />

• Relative orientation<br />

– Discussed in chapter 1<br />

Special Cases<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

124


Resection<br />

• We are dealing with one image.<br />

• We would like to determine the EOP of this image<br />

using GCP.<br />

• Q: What is the minimum GCP requirements?<br />

– At least 3 non-collinear GCP are required to estimate<br />

the 6 EOP.<br />

– At least 5 non-collinear (well distributed in 3-D) GCP<br />

are required to estimate the 6 EOP and the 3 IOP (x p,<br />

y p, c).<br />

• Critical surface:<br />

– The GCP and the perspective center lie on a common<br />

cylinder<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

125


Resection<br />

exterior orientation<br />

interior orientation<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

126


Resection - Critical Surface<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

127


Intersection<br />

• We are dealing with two images.<br />

• The EOP of these images are available.<br />

• The IOP of the involved camera(s) are also<br />

available.<br />

• We want to estimate the ground coordinates of<br />

points in the overlap area.<br />

• For each tie point, we have:<br />

– 4 Observation equations<br />

– 3 Unknowns<br />

– Redundancy = 1<br />

• Non-linear model: approximations are needed.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

128


a<br />

PC<br />

Intersection<br />

Object Point (A)<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

129<br />

PC<br />


O l<br />

Intersection: Linear Model<br />

V l<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

130<br />

B<br />

X<br />

<br />

<br />

<br />

Y<br />

<br />

<br />

Z <br />

V r<br />

O r


V<br />

<br />

V<br />

r<br />

l<br />

<br />

<br />

<br />

B<br />

<br />

R<br />

R<br />

Intersection: Linear Model<br />

X<br />

<br />

Y<br />

<br />

<br />

Z<br />

l<br />

r<br />

O<br />

O<br />

O<br />

l<br />

r<br />

r<br />

r<br />

r<br />

( , , <br />

( , , <br />

l<br />

X Ol<br />

<br />

YOl<br />

<br />

Z <br />

Ol<br />

<br />

xl<br />

xp<br />

<br />

<br />

) <br />

yl<br />

y p <br />

<br />

c <br />

xr<br />

xp<br />

<br />

<br />

) <br />

yr<br />

y p <br />

<br />

c <br />

r<br />

• These vectors are given w.r.t.the<br />

ground coordinate system.<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

131


V<br />

l<br />

<br />

X<br />

<br />

Y<br />

<br />

<br />

Z<br />

o<br />

o<br />

o<br />

r<br />

r<br />

r<br />

<br />

B<br />

<br />

<br />

<br />

<br />

X<br />

Yo<br />

Z<br />

<br />

V<br />

l<br />

o<br />

o<br />

l<br />

l<br />

r<br />

Intersection: Linear Model<br />

<br />

<br />

<br />

<br />

<br />

<br />

R<br />

x<br />

<br />

<br />

y<br />

<br />

x<br />

y<br />

c<br />

x<br />

<br />

<br />

y<br />

<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

132<br />

l<br />

p<br />

<br />

<br />

<br />

<br />

<br />

R<br />

( , , ) l p<br />

( , , )<br />

l<br />

l<br />

l<br />

• Three equations in two unknowns ()<br />

• They are linear equations.<br />

r<br />

r<br />

r<br />

r<br />

r<br />

x<br />

y<br />

c<br />

p<br />

p


Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

133<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c<br />

y<br />

y<br />

x<br />

x<br />

R<br />

Z<br />

Y<br />

X<br />

Z<br />

Y<br />

X<br />

p<br />

l<br />

p<br />

l<br />

O<br />

O<br />

O<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

)<br />

,<br />

,<br />

( <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c<br />

y<br />

y<br />

x<br />

x<br />

R<br />

Z<br />

Y<br />

X<br />

Z<br />

Y<br />

X<br />

p<br />

r<br />

p<br />

r<br />

O<br />

O<br />

O<br />

r<br />

r<br />

r<br />

r<br />

r<br />

r<br />

)<br />

,<br />

,<br />

( <br />

<br />

<br />

<br />

Or:<br />

Intersection: Linear Model


• Given:<br />

Stereo-pair Orientation<br />

– Stereo-pair: two images with at least 50% overlap<br />

– Image coordinates of some tie points<br />

– Image and ground coordinates of control points<br />

• Required:<br />

– The ground coordinates of the tie points<br />

– The EOP of the involved images<br />

• Mini-Bundle Adjustment Procedure<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

134


• Example:<br />

–Given:<br />

• 1 Stereo-pair<br />

• 20 tie points<br />

• No ground control points<br />

– Question:<br />

• Can we estimate the ground coordinates of the tie points as<br />

well as the exterior orientation parameters of that stereo-pair?<br />

–Answer:<br />

• NO<br />

Stereo-pair Orientation<br />

Advanced Topics in <strong>Photogrammetry</strong> Ayman F. Habib<br />

135

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!