06.08.2013 Views

Controlling the motion of an atom in an optical cavity

Controlling the motion of an atom in an optical cavity

Controlling the motion of an atom in an optical cavity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

18 2.3. Experimental tr<strong>an</strong>sit signals <strong>of</strong> s<strong>in</strong>gle <strong>atom</strong>s<br />

2.3 Experimental tr<strong>an</strong>sit signals <strong>of</strong> s<strong>in</strong>gle <strong>atom</strong>s<br />

In <strong>the</strong> last section, it was shown <strong>the</strong>oretically that a s<strong>in</strong>gle <strong>atom</strong> <strong>in</strong> a high-f<strong>in</strong>esse <strong>cavity</strong><br />

c<strong>an</strong> have a large <strong>in</strong>fluence on <strong>the</strong> tr<strong>an</strong>smission <strong>of</strong> <strong>the</strong> <strong>cavity</strong>. This is <strong>in</strong>vestigated experimentally<br />

by send<strong>in</strong>g slow <strong>atom</strong>s through <strong>the</strong> high-f<strong>in</strong>esse <strong>cavity</strong> described <strong>in</strong> section 5.3<br />

<strong>an</strong>d measur<strong>in</strong>g <strong>the</strong> tr<strong>an</strong>smission <strong>of</strong> <strong>the</strong> <strong>cavity</strong>. The density <strong>of</strong> <strong>the</strong> <strong>atom</strong>ic cloud was chosen<br />

so low that <strong>the</strong> me<strong>an</strong> number <strong>of</strong> <strong>atom</strong>s <strong>in</strong> <strong>the</strong> <strong>cavity</strong> is much less th<strong>an</strong> one, so that only<br />

once every while, a s<strong>in</strong>gle <strong>atom</strong> is strongly coupled to <strong>the</strong> <strong>cavity</strong> mode. As <strong>the</strong> <strong>atom</strong>s<br />

move <strong>in</strong>dependently from each o<strong>the</strong>r (MFPR99), <strong>the</strong> probability <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g two <strong>atom</strong>s at<br />

<strong>the</strong> same time <strong>in</strong> <strong>the</strong> <strong>cavity</strong> is much smaller th<strong>an</strong> <strong>the</strong> probability <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g a s<strong>in</strong>gle <strong>atom</strong>.<br />

If <strong>the</strong> probe laser is <strong>in</strong> reson<strong>an</strong>ce with both <strong>the</strong> <strong>atom</strong> <strong>an</strong>d <strong>the</strong> empty <strong>cavity</strong>, i.e. ∆a =<br />

∆c = 0, a drop <strong>in</strong> <strong>the</strong> tr<strong>an</strong>smission <strong>of</strong> <strong>the</strong> <strong>cavity</strong> is expected if <strong>an</strong> <strong>atom</strong> enters <strong>the</strong> <strong>cavity</strong>.<br />

An experimental example is shown <strong>in</strong> Fig. 2.5. Most <strong>of</strong> <strong>the</strong> time, <strong>the</strong> tr<strong>an</strong>smission <strong>of</strong><br />

<strong>the</strong> <strong>cavity</strong> is high, but sometimes, <strong>the</strong>re are sudden drops <strong>in</strong> <strong>the</strong> tr<strong>an</strong>smission, which are<br />

caused by s<strong>in</strong>gle <strong>atom</strong>s <strong>in</strong> <strong>the</strong> <strong>cavity</strong>. The noise <strong>in</strong> <strong>the</strong> tr<strong>an</strong>smission signal is mostly due<br />

to shot noise. Remarkable is <strong>the</strong> high time resolution <strong>of</strong> 200 kHz, i.e. only 5 µs are needed<br />

to detect a strongly coupled <strong>atom</strong> <strong>in</strong> <strong>the</strong> <strong>cavity</strong>.<br />

In <strong>the</strong> next measurement, <strong>the</strong> probe laser was detuned from <strong>the</strong> empty <strong>cavity</strong> reson<strong>an</strong>ce.<br />

In this case, <strong>the</strong> <strong>atom</strong> c<strong>an</strong> shift <strong>the</strong> <strong>cavity</strong> <strong>in</strong>to reson<strong>an</strong>ce, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> <strong>cavity</strong><br />

tr<strong>an</strong>smission. An example is shown <strong>in</strong> Fig. 2.6.<br />

Thecomparisonwith<strong>the</strong>experimentshows that <strong>the</strong> classical <strong>the</strong>ory c<strong>an</strong> be used to<br />

calculate <strong>the</strong> tr<strong>an</strong>smission <strong>of</strong> <strong>the</strong> <strong>cavity</strong> if <strong>the</strong> <strong>atom</strong>s are not saturated. However, <strong>the</strong><br />

<strong>motion</strong> <strong>of</strong> <strong>the</strong> <strong>atom</strong>s <strong>in</strong> <strong>the</strong> <strong>cavity</strong> is also import<strong>an</strong>t for <strong>the</strong> tr<strong>an</strong>smission signals: In<br />

Fig. 2.5, a fast <strong>motion</strong> <strong>of</strong> <strong>the</strong> <strong>atom</strong>s across <strong>the</strong> <strong>an</strong>t<strong>in</strong>odes over <strong>the</strong> st<strong>an</strong>d<strong>in</strong>g wave had to be<br />

assumed <strong>in</strong> order to expla<strong>in</strong> <strong>the</strong> experimental signal, i.e. <strong>the</strong> tr<strong>an</strong>smission <strong>of</strong> <strong>the</strong> <strong>cavity</strong><br />

was averaged over <strong>the</strong> st<strong>an</strong>d<strong>in</strong>g wave. This fast <strong>motion</strong> is due to heat<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>atom</strong>s by<br />

<strong>the</strong> light force <strong>in</strong> <strong>the</strong> <strong>cavity</strong>. The heat<strong>in</strong>g c<strong>an</strong>not be calculated correctly if <strong>the</strong> light field<br />

<strong>in</strong> <strong>the</strong> <strong>cavity</strong> is assumed to be classical. Therefore, a qu<strong>an</strong>tum model for <strong>the</strong> light field is<br />

considered <strong>in</strong> <strong>the</strong> next chapter. Qu<strong>an</strong>tum models are also needed to describe saturation<br />

effects <strong>in</strong> a strongly coupled <strong>atom</strong>s-<strong>cavity</strong> system.<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!