07.08.2013 Views

NMR Techniques at Liquid Helium Temperatures - Low ...

NMR Techniques at Liquid Helium Temperatures - Low ...

NMR Techniques at Liquid Helium Temperatures - Low ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.3 <strong>NMR</strong> in 3 He 21<br />

An exactly equal situ<strong>at</strong>ion is the one where the transverse frequency fβ is swept<br />

while the field H has a constant value HL. Then we have fL = γHL and<br />

f 2 β = f 2 B + γ2H2 <br />

<br />

L f 2<br />

B + γ<br />

+<br />

2<br />

2H2 L<br />

2<br />

2<br />

− γ 2 f 2 B H2 L cos2 β. (2.45)<br />

Finally, we want to express f β via H β from the equ<strong>at</strong>ions above assuming th<strong>at</strong><br />

cosβ is the same. The resulting equ<strong>at</strong>ion is<br />

f 2 ⎛<br />

1<br />

β = ⎝ f<br />

2<br />

2 B + f 2 rf +<br />

<br />

<br />

<br />

( f 2 B − f 2 rf )(( f 2 B + 3 f 2 rf )H2 β − 4 f 2 rf H2 L )<br />

H 2 β<br />

⎞<br />

⎠. (2.46)<br />

Let us mark the field corresponding to cos2 = 1 5 (which corresponds to β ≈ 63.4◦ )<br />

as He and Eq. (2.43) transforms to<br />

f 2 B = 5 f 2 rfH2 e − f 2 rfH2 <br />

L<br />

. (2.47)<br />

H 2 e − 5H 2 L<br />

Combining the two above equ<strong>at</strong>ions we get<br />

<br />

<br />

f 2 β =<br />

f 2 rf<br />

3H 2 e − 5H 2 L<br />

− 2He<br />

5H 4 L<br />

H 2 β<br />

+ H 2 e<br />

H 2 e − 5H 2 L<br />

<br />

2 − H2 L<br />

H2 <br />

β<br />

− 5H2 <br />

L<br />

. (2.48)<br />

Simplifying this we get the approxim<strong>at</strong>e expression (omitting all 3rd order terms<br />

and higher) between the frequency and field scales:<br />

fβ − frf<br />

= δ f<br />

<br />

HL − Hβ Hβ<br />

=<br />

. (2.49)<br />

frf<br />

frf<br />

The difference between the exact transform<strong>at</strong>ion (Eq. (2.48)) and the approxim<strong>at</strong>e<br />

expression (Eq. (2.49)) is <strong>at</strong> maximum less than 1 0/00. Figure 2.6 shows the same<br />

d<strong>at</strong>a as Fig. 2.4 as a function of the frequency difference δ f from the Larmor<br />

frequency instead of the current used to cre<strong>at</strong>e field H.<br />

2.3.5 Temper<strong>at</strong>ure measurement from the <strong>NMR</strong> spectrum<br />

The longitudinal resonance frequency of 3 He-B, fB(p,T ), depends on pressure<br />

and temper<strong>at</strong>ure. We can write Eq. (2.42) in the form<br />

x =<br />

( fB<br />

fL )2 − 1<br />

H 2 L<br />

cos 2 β · ( fB<br />

fL )2 x − 1<br />

, (2.50)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!