07.08.2013 Views

APCOM'07 in conjunction with EPMESC XI, December 3-6, 2007 ...

APCOM'07 in conjunction with EPMESC XI, December 3-6, 2007 ...

APCOM'07 in conjunction with EPMESC XI, December 3-6, 2007 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ζ<br />

−1<br />

ζ<br />

imp<br />

( ∇ × F ) s ( ) s n ( ∇ × E)<br />

l − F ( ) ( ) L ( ) s kˆ<br />

2<br />

, ˆ µ −<br />

, s−n<br />

El<br />

= − jω<br />

Fs<br />

, Jˆ<br />

2<br />

Ω<br />

2<br />

s 2<br />

2 D<br />

L ( Ω ) L ( Ω )<br />

n=<br />

s+<br />

2<br />

∑<br />

n=<br />

s−2<br />

2 D<br />

2 D<br />

2. 2D Stokes problem We consider the SUPG (Streaml<strong>in</strong>e Upw<strong>in</strong>d Petrov-Galerk<strong>in</strong> [14]) stabilized weak<br />

formulation of the Stokes problem: F<strong>in</strong>d velocity and pressure fields ( , p ) ∈ ( u + V)<br />

× Q where<br />

1<br />

V = { v ∈ H ( Ω)<br />

: v = 0 on ΓD<br />

} and = ( Ω)<br />

2<br />

L<br />

∫ µ & ε ( ) : & ε ( v)<br />

Ω − ∫ p∇<br />

o vdΩ<br />

= ∫ ρb<br />

o vdΩ<br />

+ ∫<br />

Ω<br />

−<br />

Ω<br />

Ω<br />

Q such that (9-10):<br />

ΓN<br />

u D<br />

2 u d t o vdΓ<br />

(9)<br />

∫<br />

Ω<br />

∑∫<br />

K∈Th K<br />

∑∫<br />

K∈Th K<br />

N<br />

( ∇ o s(<br />

) )<br />

q∇ o vdΩ − τ ∇q<br />

o ∇pdK<br />

= τ ∇q<br />

o ˆ u dK . (10)<br />

h<br />

h<br />

The SUPG formulation is utilized to solve the plane flow of an isothermal fluid <strong>in</strong> a square lid-driven<br />

0 , 1 × 0,<br />

1 presented <strong>in</strong> Fig. 5. Fluid dynamic viscosity is def<strong>in</strong>ed as µ = 1 and the body force<br />

cavity ( ) ( )<br />

b = 0 . The stabilization coefficient is def<strong>in</strong>ed as τ<br />

K<br />

2<br />

αhK<br />

= <strong>with</strong> = 0.<br />

01<br />

2µ<br />

α .<br />

3. Non-stationary heat transfer problem The weak form of the non-stationary heat transfer problem:<br />

F<strong>in</strong>d the temperature distribution u uD<br />

+ V V =<br />

1<br />

v ∈ H Ω : v = 0 on Γ satisfy<strong>in</strong>g<br />

∈ where ( )<br />

{ }<br />

( ρc pu<br />

v)<br />

+ ∫ k∇u<br />

o ∇v<br />

dΩ<br />

+ ∫ βuv<br />

dΓN<br />

= ∫ fv dΩ<br />

+ ∫ ( βu<br />

N + q)<br />

v dΓN<br />

∀v<br />

∈V<br />

Ω<br />

&, (11)<br />

Ω<br />

ΓN<br />

( u(<br />

) , v)<br />

= ( ρc<br />

u , v)<br />

∀v<br />

∈V<br />

c p 0<br />

Ω p 0<br />

Ω<br />

Ω<br />

ΓN<br />

ρ (12)<br />

FE - discretization <strong>in</strong> time gives the follow<strong>in</strong>g matrix system:<br />

M u&<br />

+ Ku = f<br />

(13)<br />

Apply<strong>in</strong>g the trapezoidal rule for the time discretization we obta<strong>in</strong><br />

k + 1<br />

k k<br />

( M + αδ K)<br />

u = [ M − ( 1−<br />

α ) δ K]<br />

u + δ f<br />

where M is the mass matrix, δ is the time step, ∈[<br />

0,<br />

1]<br />

α gives different time <strong>in</strong>tegration schemes. We<br />

focus on the solution of the heat-transfer problem <strong>in</strong> the L-shape doma<strong>in</strong> presented <strong>in</strong> Fig. 6.<br />

Fig. 6 Geometry of the step problem<br />

The <strong>in</strong>itial temperature distribution is 0 0 = u at 0 = t . The L-shape doma<strong>in</strong> is heated/cooled <strong>with</strong> 1 ± = u N<br />

<strong>with</strong> β = 1 and no <strong>in</strong>ternal heat<strong>in</strong>g f = 0 .<br />

D<br />

∀F<br />

s<br />

(8)<br />

(14)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!