09.08.2013 Views

IASI on Metop-A Operational Level 2 retrievals after five years in orbit

IASI on Metop-A Operational Level 2 retrievals after five years in orbit

IASI on Metop-A Operational Level 2 retrievals after five years in orbit

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>on</strong> <strong>Metop</strong>-A: Operati<strong>on</strong>al <strong>Level</strong> 2 <strong>retrievals</strong><br />

<strong>after</strong> <strong>five</strong> <strong>years</strong> <strong>in</strong> <strong>orbit</strong><br />

Thomas August n , Dieter Klaes, Peter Schlüssel, Tim Hultberg, Marc Crapeau,<br />

Arl<strong>in</strong>do Arriaga, Anne O’Carroll, Dorothée Coppens, Rose Munro, Xavier Calbet<br />

EUMETSAT, Eumetsat Allee 1, D-64295 Darmstadt, Germany<br />

article <strong>in</strong>fo<br />

Available <strong>on</strong>l<strong>in</strong>e 9 March 2012<br />

Keywords:<br />

Hyperspectral <strong>in</strong>frared sound<strong>in</strong>g<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

<strong>Metop</strong><br />

Operati<strong>on</strong>al <strong>retrievals</strong><br />

1. Introducti<strong>on</strong><br />

1.1. The EUMETSAT Polar System<br />

abstract<br />

The EUMETSAT Polar System (EPS) is EUMETSAT’s<br />

c<strong>on</strong>tributi<strong>on</strong> to the Initial Jo<strong>in</strong>t Polar System (IJPS). The<br />

IJPS provides observati<strong>on</strong>s for operati<strong>on</strong>al meteorology<br />

and climate m<strong>on</strong>itor<strong>in</strong>g from both the mid morn<strong>in</strong>g <strong>orbit</strong>,<br />

under the resp<strong>on</strong>sibility of EUMETSAT, and the <strong>after</strong>no<strong>on</strong><br />

<strong>orbit</strong>, under the resp<strong>on</strong>sibility of NOAA.<br />

The <strong>Metop</strong> satellite series is the space comp<strong>on</strong>ent of<br />

the EUMETSAT Polar System (EPS). <strong>Metop</strong>-A, the first <strong>in</strong> a<br />

series of three spacecraft, was launched <strong>in</strong> October 2006.<br />

S<strong>in</strong>ce May 2007 it has provided data c<strong>on</strong>t<strong>in</strong>uously from<br />

the eight meteorological <strong>in</strong>struments <strong>on</strong> board. The three<br />

n<br />

Corresp<strong>on</strong>d<strong>in</strong>g author. Tel.: þ49 6151 807 5650;<br />

fax: þ49 6151 807 8380.<br />

E-mail address: thomas.august@eumetsat.<strong>in</strong>t (T. August).<br />

C<strong>on</strong>tents lists available at SciVerse ScienceDirect<br />

Journal of Quantitative Spectroscopy &<br />

Radiative Transfer<br />

0022-4073/$ - see fr<strong>on</strong>t matter & 2012 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.jqsrt.2012.02.028<br />

Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

journal homepage: www.elsevier.com/locate/jqsrt<br />

Geophysical parameters from the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>strument <strong>on</strong> <strong>Metop</strong>-A are essential products<br />

provided from EUMETSAT’s Central Facility <strong>in</strong> near real time. They <strong>in</strong>clude vertical<br />

profiles of temperature and humidity, related cloud <strong>in</strong>formati<strong>on</strong>, surface emissivity and<br />

temperature, and atmospheric compositi<strong>on</strong> parameters (CO, oz<strong>on</strong>e and several other<br />

trace gases). As compared to previous operati<strong>on</strong>al processor versi<strong>on</strong>s, the latest<br />

processor versi<strong>on</strong> 5 delivers significant improvements <strong>in</strong> retrieval performance for<br />

most major products. These <strong>in</strong>clude improvements to cloud properties products, cloud<br />

detecti<strong>on</strong> (with a positive impact <strong>on</strong> the knowledge of the sea surface temperature,<br />

SST), the temperature profile (especially <strong>in</strong> the mid and upper troposphere), and oz<strong>on</strong>e<br />

and carb<strong>on</strong> m<strong>on</strong>oxide total columns.<br />

This paper provides a comprehensive summary of the process<strong>in</strong>g algorithms, the<br />

latest scientific developments, and the related validati<strong>on</strong> studies and activities. It<br />

c<strong>on</strong>cludes with a discussi<strong>on</strong> of the future outlook.<br />

& 2012 Elsevier Ltd. All rights reserved.<br />

<strong>Metop</strong> satellites (with launches of <strong>Metop</strong>-B and -C<br />

planned <strong>in</strong> 2012 and 2017, respectively) will provide a<br />

c<strong>on</strong>t<strong>in</strong>uous service from the mid-morn<strong>in</strong>g <strong>orbit</strong> (9:30<br />

Local Solar Time equator cross<strong>in</strong>g time, descend<strong>in</strong>g node)<br />

for at least 15 <strong>years</strong>. More details <strong>on</strong> the EPS/<strong>Metop</strong><br />

system can be found <strong>in</strong> [1].<br />

The most <strong>in</strong>novative and <strong>on</strong>e of the key <strong>in</strong>struments <strong>on</strong><br />

<strong>Metop</strong> is the Infrared Atmospheric Sound<strong>in</strong>g Interferometer<br />

(<str<strong>on</strong>g>IASI</str<strong>on</strong>g>). Three <strong>in</strong>struments were developed for <strong>Metop</strong><br />

by CNES (Centre Nati<strong>on</strong>al d’Etudes Spatiales) <strong>in</strong> cooperati<strong>on</strong><br />

with EUMETSAT. They are built to provide temperature,<br />

moisture with unprecedented accuracy and<br />

resoluti<strong>on</strong> and additi<strong>on</strong>ally to provide <strong>in</strong>formati<strong>on</strong> for the<br />

m<strong>on</strong>itor<strong>in</strong>g of atmospheric trace gases. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> is a Michels<strong>on</strong><br />

<strong>in</strong>terferometer measur<strong>in</strong>g <strong>in</strong> the <strong>in</strong>frared. It measures 8461<br />

spectral samples between 3.62 and 15.5 mm with a resoluti<strong>on</strong><br />

of 0.5 cm 1 <strong>after</strong> apodisati<strong>on</strong>. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> scans across-track<br />

<strong>in</strong> 30 successive elementary fields of view (EFOV), each<br />

composed of 4 <strong>in</strong>stantaneous fields of view (IFOV). The<br />

EFOVs span a 748.331 range, symmetric with respect to


the Nadir, <strong>in</strong> steps of 3.331. The swath width <strong>on</strong> ground is<br />

approximately 2200 km, which provides global Earth coverage<br />

twice per day. The IFOV is a disc of 12 km diameter<br />

at sub-satellite po<strong>in</strong>t. The dimensi<strong>on</strong>s <strong>in</strong>crease to 39 km<br />

and 20 km at the swath edge <strong>in</strong> the across- and al<strong>on</strong>g-track<br />

directi<strong>on</strong>s, respectively. More details about the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>strument<br />

are available <strong>in</strong> [2,3].<br />

Operati<strong>on</strong>al products from EPS/<strong>Metop</strong> are generated <strong>in</strong><br />

the EPS Core Ground Segment, located at EUMETSAT headquarters<br />

<strong>in</strong> Darmstadt, Germany, and also <strong>in</strong> eight decentralised<br />

Satellite Applicati<strong>on</strong> Facilities (SAF), hosted by<br />

EUMETSAT Member States. More details <strong>on</strong> the EPS products<br />

and applicati<strong>on</strong>s are discussed <strong>in</strong> [1] and, more<br />

especially, <str<strong>on</strong>g>IASI</str<strong>on</strong>g> applicati<strong>on</strong>s are discussed by Hilt<strong>on</strong> et al. [4].<br />

1.2. The operati<strong>on</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>Level</strong> 2 products<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1341<br />

Development activities for the centrally processed <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 products [5] took place at EUMETSAT and were supported<br />

by science expert groups and additi<strong>on</strong>ally through<br />

dedicated <strong>in</strong>ternal and external studies. For <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong> particular,<br />

as a highly <strong>in</strong>novative <strong>in</strong>strument, c<strong>on</strong>siderable<br />

scientific support was required. For this purpose and to<br />

foster scientific development for <str<strong>on</strong>g>IASI</str<strong>on</strong>g> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> Sound<strong>in</strong>g<br />

Science Work<strong>in</strong>g Group (ISSWG) was established. A Science<br />

Plan [6] emerged which was used as a guidel<strong>in</strong>e for the<br />

product process<strong>in</strong>g development and for the group’s activities.<br />

There was a str<strong>on</strong>g heritage from the Atmospheric<br />

Infrared Sounder (AIRS) embarked <strong>on</strong> NASA’s Aqua satellite<br />

<strong>in</strong> 2002, which paved the way for the use of hyperspectral<br />

data <strong>in</strong> meteorology and climatology [7]. The<str<strong>on</strong>g>IASI</str<strong>on</strong>g><strong>Level</strong>2<br />

process<strong>in</strong>g development targeted the generati<strong>on</strong> of temperature<br />

and humidity profile <strong>in</strong>formati<strong>on</strong>, the associated<br />

surface <strong>in</strong>formati<strong>on</strong> and the retrieval of some trace gas<br />

species: CO, O 3,CH 4,N 2OandCO 2 from the beg<strong>in</strong>n<strong>in</strong>g of<br />

<strong>Metop</strong> operati<strong>on</strong>s. The vertical temperature and watervapour<br />

profiles are currently represented and distributed<br />

<strong>on</strong> a 90-level grid extend<strong>in</strong>g between 0.005 and 1050 hPa.<br />

The <strong>in</strong>dependence of the retrieval algorithms from Numerical<br />

Weather Predicti<strong>on</strong> (NWP) was a strict requirement<br />

from the beg<strong>in</strong>n<strong>in</strong>g. A large number of scientific studies<br />

both <strong>in</strong>ternal and external to the ISSWG, supported the<br />

evoluti<strong>on</strong> of the science plan and the processor development,<br />

thereby enabl<strong>in</strong>g the operati<strong>on</strong>al producti<strong>on</strong> of <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 products by the end of the <strong>in</strong>strument’s commissi<strong>on</strong><strong>in</strong>g.<br />

As with the other EPS products, the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 processor has<br />

been subject to post-launch developments to extend the<br />

scope of and improve further the products. These are<br />

referred to as ‘‘Day2’’ activities.<br />

The versi<strong>on</strong> 5 (v5) of the processor was released <strong>on</strong> the<br />

operati<strong>on</strong>al process<strong>in</strong>g cha<strong>in</strong> <strong>on</strong> 14 September 2010. In<br />

the follow<strong>in</strong>g we provide a full descripti<strong>on</strong> of this new<br />

processor versi<strong>on</strong>, the associated validati<strong>on</strong> results, the<br />

improvements with respect to versi<strong>on</strong> 4, and the latest<br />

developments for each of the retrieved parameters <strong>after</strong> 5<br />

<strong>years</strong> <strong>in</strong> operati<strong>on</strong>. Each parameter is covered <strong>in</strong> <strong>on</strong>e or<br />

more dedicated algorithm descripti<strong>on</strong> documents and<br />

validati<strong>on</strong> reports, which are cited <strong>in</strong> the text. They are<br />

accessible <strong>on</strong>-l<strong>in</strong>e <strong>in</strong> the ‘‘Data & Products secti<strong>on</strong>’’ at<br />

www.eumetsat.<strong>in</strong>t/Home/Ma<strong>in</strong>/DataProducts/Resources/<br />

<strong>in</strong>dex.htm (last accessed 17/01/2012) or alternatively <strong>on</strong><br />

request with the reference number.<br />

2. The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>Level</strong> 2 PPF versi<strong>on</strong> 5<br />

The <strong>Level</strong> 2 <str<strong>on</strong>g>IASI</str<strong>on</strong>g> Product Process<strong>in</strong>g Facility (PPF) has a<br />

modular structure, represented <strong>in</strong> Fig. 1. The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements<br />

and various auxiliary data (e.g. measurements from<br />

other EPS <strong>in</strong>struments, NWP forecasts etc.) are first collocated<br />

<strong>in</strong> a data pre-process<strong>in</strong>g step, which also <strong>in</strong>cludes the<br />

c<strong>on</strong>figurati<strong>on</strong> of the retrieval algorithms with coefficients<br />

and thresholds adapted to the time and locati<strong>on</strong> of the<br />

acquisiti<strong>on</strong>s. The cloud<strong>in</strong>ess with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> pixel is assessed<br />

<strong>in</strong> a sec<strong>on</strong>d step us<strong>in</strong>g a number of cloud detecti<strong>on</strong> methods.<br />

In the presence of a cloud, the cloud properties – fracti<strong>on</strong>al<br />

coverage, height and phase – are determ<strong>in</strong>ed. The retrieval<br />

steps follow with a series of statistical methods to estimate<br />

the temperature and humidity profiles, the surface emissivity<br />

as well as the sea and land surface temperature (SST and<br />

LST, respectively), and some trace gas species. A physical<br />

retrieval us<strong>in</strong>g the optimal estimati<strong>on</strong> method (OEM) is<br />

subsequently performed to ref<strong>in</strong>e the temperature and<br />

oz<strong>on</strong>e profiles. These successive process<strong>in</strong>g steps are<br />

detailed <strong>in</strong> the follow<strong>in</strong>g secti<strong>on</strong>s.<br />

2.1. Pre-process<strong>in</strong>g<br />

Besides the calibrated and apodised spectra stored <strong>in</strong><br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1c products, the L2 PPF <strong>in</strong>gests two types of<br />

auxiliary data.<br />

Fig. 1. Modular representati<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>Level</strong> 2 operati<strong>on</strong>al process<strong>in</strong>g cha<strong>in</strong> (versi<strong>on</strong> 5), operati<strong>on</strong>al s<strong>in</strong>ce 14/09/2010.


1342<br />

Table 1<br />

Static atlases used <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF.<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Data type Name Resoluti<strong>on</strong><br />

Land/sea mask – Quadtree a<br />

Surface GTOPO 30 [10] 30 <strong>in</strong>. 30 <strong>in</strong>.<br />

elevati<strong>on</strong><br />

( 1 km)<br />

Emissivity Global land surface<br />

0.51 0.51<br />

Atlas<br />

climatology<br />

Full spectrum<br />

for <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements [9] (via PCs)<br />

M<strong>on</strong>thly means<br />

a A quadtree is a tree data structure stor<strong>in</strong>g values <strong>on</strong>ly for homogeneous<br />

regi<strong>on</strong>s rather than for every pixel. The spatial resoluti<strong>on</strong> is thus<br />

vary<strong>in</strong>g and adapted here to the land/sea coastal <strong>in</strong>formati<strong>on</strong>. The<br />

dataset detailed descripti<strong>on</strong> and usage can be found <strong>in</strong> the EUMETSAT<br />

Technical Note ‘‘Descripti<strong>on</strong> of Land/sea and Coastl<strong>in</strong>e Data Bases for<br />

AAPP upgrade’’, EUM/EPS/SYS/TEN/00/018.<br />

The first type are the static data: the auxiliary datasets<br />

c<strong>on</strong>figur<strong>in</strong>g the various algorithms <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF (e.g.<br />

thresholds) and the static atlases (listed <strong>in</strong> Table 1) used<br />

to compute the land/sea fracti<strong>on</strong>al coverage, the surface<br />

elevati<strong>on</strong> and the land surface emissivity with<strong>in</strong> a given<br />

field of view. In previous releases, the land surface<br />

emissivity was derived from the Internati<strong>on</strong>al Geosphere/Biosphere<br />

Programme (IGBP) land surface properties<br />

database [8]. In the operati<strong>on</strong>al processor versi<strong>on</strong> 5<br />

this is replaced by the recent land surface emissivity<br />

m<strong>on</strong>thly atlas based <strong>on</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements developed<br />

by Zhou et al. [9]. The emissivity is def<strong>in</strong>ed <strong>on</strong> a coarser<br />

grid (0.51 0.51 l<strong>on</strong>gitude/latitude) but is provided at the<br />

full <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectral resoluti<strong>on</strong>.<br />

The sec<strong>on</strong>d type of auxiliary <strong>in</strong>formati<strong>on</strong> is data flow<strong>in</strong>g<br />

<strong>in</strong> near real time (NRT) to support the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

<strong>retrievals</strong>, such as NWP forecasts from the European<br />

Centre for Medium-Range Weather Forecasts (ECMWF)<br />

and data from other <strong>in</strong>struments <strong>on</strong>-board <strong>Metop</strong>:<br />

namely the Advanced Very High Resoluti<strong>on</strong> Radiometer<br />

(AVHRR), the Advanced Microwave Sound<strong>in</strong>g Unit<br />

(AMSU) and the (Microwave Humidity Sounder) MHS<br />

L1B products [1]. The validity of these variable data and<br />

of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1C spectra is checked before process<strong>in</strong>g by<br />

<strong>in</strong>specti<strong>on</strong> of their quality flags when applicable, and by<br />

comparis<strong>on</strong> aga<strong>in</strong>st predef<strong>in</strong>ed and c<strong>on</strong>figurable validity<br />

bounds.<br />

2.1.1. Auxiliary data and measurements collocati<strong>on</strong><br />

When the spatial resoluti<strong>on</strong> of the auxiliary data is<br />

higher than the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOV the <strong>in</strong>formati<strong>on</strong> is averaged<br />

with<strong>in</strong> the IFOV and weighted with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> po<strong>in</strong>t spread<br />

functi<strong>on</strong> (PSF) to account for n<strong>on</strong>-homogeneities <strong>in</strong> the<br />

detector’s resp<strong>on</strong>se. This is the case with the digital<br />

elevati<strong>on</strong> model (DEM), the AVHRR cloud <strong>in</strong>formati<strong>on</strong><br />

and the land/sea mask.<br />

In c<strong>on</strong>trast, when the spatial resoluti<strong>on</strong> is of the order<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> footpr<strong>in</strong>t size (of 12 km at nadir), as with the<br />

numerical weather predicti<strong>on</strong> (NWP) forecast fields (this<br />

<strong>in</strong>formati<strong>on</strong> is used <strong>in</strong> the cloud detecti<strong>on</strong> <strong>on</strong>ly), the<br />

collocati<strong>on</strong> is performed us<strong>in</strong>g a nearest neighbour<br />

method or by bil<strong>in</strong>ear <strong>in</strong>terpolati<strong>on</strong> between the four<br />

nearest grid-po<strong>in</strong>ts. For the atmospheric forecast parameters<br />

provided <strong>on</strong> a vertical grid, such as the temperature,<br />

humidity and oz<strong>on</strong>e profiles, a vertical <strong>in</strong>terpolati<strong>on</strong><br />

is performed from the orig<strong>in</strong>al grid to the c<strong>on</strong>stant<br />

pressure grid used with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF prior to the<br />

horiz<strong>on</strong>tal <strong>in</strong>terpolati<strong>on</strong>. S<strong>in</strong>ce 08/11/2011, the 3-h forecasts<br />

(at 00, 03, 06, 09, 12, 15, 18, 21 UTC) from ECMWF<br />

are <strong>in</strong>gested. Older L2 products were processed with the<br />

6-h forecasts for the synoptic times 00, 06, 12 and 18 UTC.<br />

The forecast parameters are then <strong>in</strong>terpolated <strong>in</strong> time as a<br />

first order approximati<strong>on</strong> of the atmospheric state at the<br />

actual sens<strong>in</strong>g time.<br />

Collocati<strong>on</strong> of AMSU and MHS data has been already<br />

implemented <strong>in</strong> preparati<strong>on</strong> for the planned synergistic<br />

use of microwave measurements with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>frared<br />

(IR) spectra with<strong>in</strong> the cloud and atmospheric temperature<br />

and humidity profiles <strong>retrievals</strong>.<br />

2.1.2. Radiance noise filter<strong>in</strong>g<br />

The radiance noise filter<strong>in</strong>g is the last step of the data<br />

pre-process<strong>in</strong>g sequence and was <strong>in</strong>troduced with PPF v5.<br />

It c<strong>on</strong>sists of filter<strong>in</strong>g out part of the noise present <strong>in</strong> the<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1C spectra us<strong>in</strong>g pr<strong>in</strong>cipal comp<strong>on</strong>ent analysis (PCA)<br />

techniques. At <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectral resoluti<strong>on</strong>, the top of atmosphere<br />

(TOA) radiances sampled <strong>in</strong> the 8461 channels are<br />

spectrally correlated and do not represent as many<br />

<strong>in</strong>dependent <strong>in</strong>formati<strong>on</strong>. PCA theory states that these<br />

radiances can be represented by a small number of<br />

eigenvectors of their covariance matrix. A base of empirical<br />

orthog<strong>on</strong>al functi<strong>on</strong>s (EOF) was therefore computed at<br />

EUMETSAT from a large set of apodised <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1C spectra<br />

corresp<strong>on</strong>d<strong>in</strong>g to a representative collecti<strong>on</strong> of atmospheric<br />

situati<strong>on</strong>s. We c<strong>on</strong>sider here the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements<br />

as the sum of the TOA radiances and the<br />

<strong>in</strong>strument noise. While the atmospheric signal subspace<br />

lies <strong>in</strong> the most significant eigenvectors, the random<br />

comp<strong>on</strong>ent (i.e. the noise) is equally distributed <strong>in</strong> all<br />

eigenvectors. Hence, discard<strong>in</strong>g the eigenvectors of higher<br />

rank allows the TOA radiances to be rec<strong>on</strong>structed with<br />

part of the noise removed [11]. To rec<strong>on</strong>struct and noisefilter<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> bands 1, 2 and 3, respectively, 90, 120 and<br />

80 eigenvectors are currently used <strong>in</strong> operati<strong>on</strong>s. The<br />

difference between the orig<strong>in</strong>al and the rec<strong>on</strong>structed<br />

radiance is called the residual. For rare atmospheric<br />

situati<strong>on</strong>s – e.g. excepti<strong>on</strong>al volcanic erupti<strong>on</strong>s or wild<br />

fires with unique plume compositi<strong>on</strong>s – it might happen<br />

that some spectral features are not well represented by<br />

the eigenvectors. These situati<strong>on</strong>s are usually of particular<br />

<strong>in</strong>terest for specific research studies <strong>on</strong> atmospheric<br />

compositi<strong>on</strong> which might require the orig<strong>in</strong>al spectra<br />

while the operati<strong>on</strong>al purposes of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 products<br />

are better served with low-noise level (i.e. filtered)<br />

radiances. The ability to represent the atmospheric signal<br />

with these lead<strong>in</strong>g eigenvectors is rout<strong>in</strong>ely m<strong>on</strong>itored.<br />

The collecti<strong>on</strong> of spectra support<strong>in</strong>g the EOF has been<br />

iteratively extended and the eigenvectors updated to<br />

<strong>in</strong>clude rare spectra, e.g. from the Kasatochi erupti<strong>on</strong><br />

(08/08/2008) [12,13] and from the Russian Fires (summer<br />

2010) [14]. The reader is referred to the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> pr<strong>in</strong>cipal<br />

comp<strong>on</strong>ent compressi<strong>on</strong> product generati<strong>on</strong> specificati<strong>on</strong><br />

(EUM/OPS-EPS/SPE/08/0199) and validati<strong>on</strong> report


(EUM/OPS-EPS/REP/10/0148), accessible <strong>on</strong>-l<strong>in</strong>e at www.<br />

eumetsat.<strong>in</strong>t <strong>in</strong> the secti<strong>on</strong> Data & Products, for further<br />

details and c<strong>on</strong>figurati<strong>on</strong> descripti<strong>on</strong>.<br />

2.2. Cloud detecti<strong>on</strong><br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1343<br />

Efficient cloud detecti<strong>on</strong> is essential for accurate L2<br />

product generati<strong>on</strong> because most of the subsequent<br />

retrieval functi<strong>on</strong>s are tailored for cloud-free atmospheres.<br />

Thus, undetected cloud c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> would<br />

degrade the quality of the f<strong>in</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 products. The<br />

cloud screen<strong>in</strong>g <strong>in</strong> previous <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF versi<strong>on</strong>s relied<br />

solely <strong>on</strong> the NWP cloud test (see Secti<strong>on</strong> 2.3.1 below). In<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF v5 two additi<strong>on</strong>al cloud tests were added.<br />

They are described <strong>in</strong> Secti<strong>on</strong>s 2.3.2 and 2.3.3. A more<br />

recent detecti<strong>on</strong> technique based <strong>on</strong> artificial neural networks<br />

(ANN) is discussed <strong>in</strong> Secti<strong>on</strong> 2.4.1. It was <strong>in</strong>troduced<br />

<strong>in</strong> October 2011 for m<strong>on</strong>itor<strong>in</strong>g purposes <strong>on</strong>ly and<br />

will be used rout<strong>in</strong>ely start<strong>in</strong>g <strong>in</strong> 2012.<br />

2.2.1. NWP cloud test<br />

The NWP cloud test c<strong>on</strong>sists of compar<strong>in</strong>g the measured<br />

radiances <strong>in</strong> a selecti<strong>on</strong> of channels from IR atmospheric<br />

micro-w<strong>in</strong>dows with synthetic clear-sky TOA radiances calculatedforthesamescene.Theaprioriknowledgeofthe<br />

atmospheric state and of the surface temperature and w<strong>in</strong>ds<br />

comes from ECMWF forecasts. The surface emissivity is either<br />

computed with an analytical model for ocean surfaces <strong>after</strong><br />

Masuda [15] and Watts [16] or, for c<strong>on</strong>t<strong>in</strong>ental surfaces,<br />

retrieved from the static atlas described <strong>in</strong> Secti<strong>on</strong> 2.2. The<br />

synthetic clear-sky radiances are then computed with a fast<br />

radiative transfer model (FRTM). The FRTM was RT<str<strong>on</strong>g>IASI</str<strong>on</strong>g>-4 for<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF versi<strong>on</strong> 5.0 (and previous versi<strong>on</strong>s) but was<br />

replaced, with the release of versi<strong>on</strong> 5.2 <strong>in</strong> October 2011,<br />

with the state-of-the-art RTTOV-10. Both versi<strong>on</strong>s result from<br />

development of the FRTM implemented by Saunders et al.<br />

[17,18]. The reader is referred to the NWP-SAF product<br />

reports (www.research.metoffice.gov.uk/research/<strong>in</strong>terproj/<br />

nwpsaf/rtm/<strong>in</strong>dex.html) and to the ECMWF Technical Memo<br />

425 (2003) for a specific descripti<strong>on</strong> of the RTMs used <strong>in</strong><br />

operati<strong>on</strong>s.<br />

In this cloud test, if the observed and the synthetic<br />

radiances differ by more than a c<strong>on</strong>figurable threshold, then<br />

the scene is declared cloudy. In the current operati<strong>on</strong>al<br />

processor, this threshold is set to 1 K <strong>in</strong> brightness temperature.<br />

The threshold was determ<strong>in</strong>ed statistically with<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> observati<strong>on</strong>s. It accounts for the errors <strong>in</strong> the prior state,<br />

especially <strong>in</strong> the surface parameters. Studies are currently<br />

<strong>on</strong>go<strong>in</strong>g to calibrate this test. They <strong>in</strong>dicate that such a<br />

c<strong>on</strong>figurati<strong>on</strong> is more appropriate for sea than for land<br />

surfaces, where uncerta<strong>in</strong>ties <strong>in</strong> the surface temperature<br />

and emissivity sometimes translate <strong>in</strong>to errors much larger<br />

than 1 K <strong>in</strong> the computati<strong>on</strong> of synthetic brightness temperatures.<br />

As a c<strong>on</strong>sequence, it is believed that the residual<br />

cloud c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> is higher for land surfaces than for<br />

oceans. The choice of the IR micro-w<strong>in</strong>dow channels is also<br />

c<strong>on</strong>figurable. The channels 751 (832.5 cm 1 ) and 1023<br />

(900.25 cm 1 ) are currently used <strong>in</strong> the PPF v5. On average,<br />

approximately 75% of the IFOVs tested with this method are<br />

declared cloudy, with regi<strong>on</strong>al variati<strong>on</strong>s.<br />

2.2.2. AVHRR cloud fracti<strong>on</strong><br />

The imager AVHRR, fly<strong>in</strong>g with <str<strong>on</strong>g>IASI</str<strong>on</strong>g>, provides measurements<br />

<strong>in</strong> both visible and <strong>in</strong>frared bands, from which the<br />

presence of a cloud is evaluated for each pixel. It has a<br />

resoluti<strong>on</strong> of 1 km at Nadir. At this resoluti<strong>on</strong>, the pixels<br />

are classified as either clear or cloudy <strong>in</strong> a b<strong>in</strong>ary fashi<strong>on</strong>.<br />

The determ<strong>in</strong>ati<strong>on</strong> of the cloud mask is performed <strong>in</strong> the<br />

AVHRR L1 process<strong>in</strong>g cha<strong>in</strong>. The detecti<strong>on</strong> algorithms<br />

<strong>in</strong>volve various tests based <strong>on</strong> <strong>in</strong>ter-channel brightness<br />

differences <strong>in</strong> the <strong>in</strong>frared, reflectances <strong>in</strong> the visible and<br />

near-<strong>in</strong>frared (NIR), and some NWP forecast data. They<br />

are more exhaustively listed and described <strong>in</strong> Secti<strong>on</strong><br />

5.4.4 of the ‘‘EPS Ground Segment AVHRR L1 Product<br />

Generati<strong>on</strong> Specificati<strong>on</strong>’’, EUM/EPS/SYS/SPE/990004<br />

(available <strong>on</strong>-l<strong>in</strong>e at: www.eumetsat.<strong>in</strong>t).<br />

The <strong>in</strong>tegrated AVHRR cloud fracti<strong>on</strong> (CFR) <strong>in</strong> this<br />

c<strong>on</strong>text is computed as the proporti<strong>on</strong> of AVHRR cloudy<br />

pixels with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> footpr<strong>in</strong>t, weighted by the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

po<strong>in</strong>t spread functi<strong>on</strong>. This <strong>in</strong>tegrated AVHRR CFR has<br />

been rout<strong>in</strong>ely embedded <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1C products s<strong>in</strong>ce<br />

18 May 2010 follow<strong>in</strong>g <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1 Day-2 developments. A<br />

scene is declared cloudy if the amount of AVHRR cloudy<br />

pixels with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOV exceeds a c<strong>on</strong>figurable threshold,<br />

set to 2% <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF versi<strong>on</strong> 5. On average,<br />

approximately 78% of the IFOVs tested with this method<br />

are declared cloudy. This AVHRR cloud test is systematically<br />

used <strong>in</strong> c<strong>on</strong>juncti<strong>on</strong> with the NWP cloud test and<br />

both methods agree <strong>in</strong> 90% of the cases. The use of<br />

different cloud tests <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> is specifically<br />

addressed <strong>in</strong> Secti<strong>on</strong> 2.2.5.<br />

2.2.3. Optical thickness test<br />

In this test, the atmospheric optical thickness is evaluated<br />

us<strong>in</strong>g the pr<strong>in</strong>cipal comp<strong>on</strong>ents of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectra<br />

as predictors <strong>in</strong> a l<strong>in</strong>ear regressi<strong>on</strong>. This retrieval bel<strong>on</strong>gs<br />

to an algorithms suite developed <strong>in</strong> [19] for retrieval of<br />

atmospheric and surface parameters <strong>in</strong> cloud-free as well<br />

as <strong>in</strong> partially cloudy c<strong>on</strong>diti<strong>on</strong>s. The result<strong>in</strong>g cloud<br />

optical thickness triggers the choice of regressi<strong>on</strong> coefficients<br />

tailored for the atmospheric and surface parameters<br />

retrieval under either clear or partially cloudy<br />

c<strong>on</strong>diti<strong>on</strong>s. This test was also <strong>in</strong>troduced with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

PPF v5 and, with the current c<strong>on</strong>figurati<strong>on</strong>, is the least<br />

c<strong>on</strong>servative of the three operati<strong>on</strong>al tests with a global<br />

cloud detecti<strong>on</strong> rate between 40% and 45%.<br />

2.2.4. Stand-al<strong>on</strong>e ANN cloud test<br />

This test is a novel cloud detecti<strong>on</strong> method based <strong>on</strong><br />

ANNs which was developed <strong>in</strong> the frame of an external<br />

study. The pr<strong>in</strong>ciple and performance of this method are<br />

summarised <strong>in</strong> this secti<strong>on</strong>. The full descripti<strong>on</strong> of the<br />

methodology is accessible <strong>in</strong> the EUMETSAT study reports<br />

by Brockmann et al. (‘‘Technical Report for the study <strong>on</strong><br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g>/AVHRR Visual Scenes Analysis and Cloud Detecti<strong>on</strong>—<br />

IAVISA, Issue 3.0, Revisi<strong>on</strong> 4’’, 21 November 2008, 85 pp.<br />

and ‘‘<str<strong>on</strong>g>IASI</str<strong>on</strong>g>/AVHRR Cloud detecti<strong>on</strong> and Characterisati<strong>on</strong>,<br />

v1.1’’, 21 July 2010, 100 pp.).<br />

The ANNs described here are multi-layer perceptr<strong>on</strong>s<br />

(MLP) with two or three hidden layers. They can be seen<br />

as n<strong>on</strong>-l<strong>in</strong>ear regressi<strong>on</strong> operators between a set of<br />

predictors, stored <strong>in</strong> an <strong>in</strong>put layer, and a predictand, <strong>in</strong>


1344<br />

this case the required cloud<strong>in</strong>ess estimate. The <strong>in</strong>puts are<br />

composed of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> radiances and AVHRR <strong>in</strong>formati<strong>on</strong>. The<br />

<strong>in</strong>put <str<strong>on</strong>g>IASI</str<strong>on</strong>g> radiances are sampled at selected wavelengths<br />

comm<strong>on</strong>ly used <strong>in</strong> cloud detecti<strong>on</strong> with IR data [20–22];<br />

they are listed <strong>in</strong> Table 2. The AVHRR <strong>in</strong>formati<strong>on</strong> c<strong>on</strong>sists<br />

of the means and standard deviati<strong>on</strong>s of the collocated<br />

radiance and reflectance clusters, which comprise the<br />

AVHRR radiance analyses present <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1C products.<br />

The <strong>in</strong>puts are propagated through the networks,<br />

where successive l<strong>in</strong>ear comb<strong>in</strong>ati<strong>on</strong>s and c<strong>on</strong>voluti<strong>on</strong>s<br />

apply. The l<strong>in</strong>ear comb<strong>in</strong>ati<strong>on</strong>s <strong>in</strong>volve different sets of<br />

weights and offsets. The c<strong>on</strong>voluti<strong>on</strong> (activati<strong>on</strong>) functi<strong>on</strong><br />

is <strong>in</strong> this case the logistic functi<strong>on</strong> f(x)¼1/(1þe x), which<br />

gives their n<strong>on</strong>-l<strong>in</strong>ear properties to the nets. The weights<br />

and offsets used to c<strong>on</strong>figure the networks are iteratively<br />

adjusted dur<strong>in</strong>g a so-called tra<strong>in</strong><strong>in</strong>g phase, where pairs of<br />

<strong>in</strong>put vectors (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AVHRR observati<strong>on</strong>s) and their<br />

associated outputs (IFOV cloud<strong>in</strong>ess) are successively<br />

presented to the network. The tra<strong>in</strong><strong>in</strong>g c<strong>on</strong>sists of<br />

Table 2<br />

List of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> channels used <strong>in</strong> the ANN cloud detecti<strong>on</strong>.<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Channels Wavenumber (cm 1 ) Channels Wavenumber (cm 1 )<br />

142 680.250 2733 1328.00<br />

546 781.250 3391 1492.50<br />

751 832.500 3770 1587.25<br />

754 833.250 3790 1592.25<br />

1023 900.500 6390 2242.25<br />

1059 909.500 6512 2272.75<br />

1282 965.250 7391 2492.50<br />

2019 1149.50 7547 2531.50<br />

2616 1298.75 8232 2702.75<br />

m<strong>in</strong>imis<strong>in</strong>g the errors between the retrieved output and<br />

the teach<strong>in</strong>g target (here the cloud<strong>in</strong>ess). This is achieved<br />

by simple back-propagati<strong>on</strong> of the error gradient [23].<br />

To c<strong>on</strong>stitute the teach<strong>in</strong>g patterns, the cloud<strong>in</strong>ess <strong>in</strong><br />

24923 <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs was assessed by visual <strong>in</strong>specti<strong>on</strong> of the<br />

collocated AVHRR images and classified <strong>in</strong>to four qualitative<br />

categories: clear-sky, low cloud fracti<strong>on</strong>, high cloud<br />

fracti<strong>on</strong> and full cloud coverage. Together with the corresp<strong>on</strong>d<strong>in</strong>g<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AVHRR observati<strong>on</strong>s, they will be<br />

referred to as the IAVISA database. These IFOVs were<br />

randomly selected to provide a full Earth coverage (see<br />

Fig. 2) and an equal representati<strong>on</strong> of day/night, land/sea,<br />

seas<strong>on</strong>al and geographical/climatological c<strong>on</strong>figurati<strong>on</strong>s.<br />

Dedicated artificial neural networks were tra<strong>in</strong>ed for each<br />

of the day/night and land/sea comb<strong>in</strong>ati<strong>on</strong>s. The IAVISA<br />

database was split <strong>in</strong>to a tra<strong>in</strong><strong>in</strong>g subset and a verificati<strong>on</strong><br />

subset (not used for tra<strong>in</strong><strong>in</strong>g), to evaluate the generalisati<strong>on</strong><br />

skill of the networks (i.e. ensure that they are not<br />

too specific to the tra<strong>in</strong><strong>in</strong>g data).<br />

The performances of the NWP and AVHRR cloud tests<br />

(see Secti<strong>on</strong>s 2.2.1 and 2.2.2) with these visually classified<br />

scenes were assessed and compared to the performances<br />

of the ANN cloud test. They are summarised <strong>in</strong> the<br />

c<strong>on</strong>t<strong>in</strong>gency Table 3. The global ability to correctly classify<br />

clear-sky and the capacity to screen out the cloud c<strong>on</strong>tam<strong>in</strong>ated<br />

IFOVs are <strong>in</strong>creased by approximately 25% with<br />

the ANN method <strong>in</strong> comparis<strong>on</strong> to the NWP test, with a<br />

success rate exceed<strong>in</strong>g 90%. The respective scores have<br />

also been studied <strong>in</strong>dividually for different surface types<br />

and day/night c<strong>on</strong>figurati<strong>on</strong>s. A more exhaustive performance<br />

analysis can be found <strong>in</strong> the EUMETSAT validati<strong>on</strong><br />

report EUM/MET/TEN/10/0343. The ANN test is usually<br />

more str<strong>in</strong>gent than the other tests, with better success<br />

rates for the identificati<strong>on</strong> of cloud-free IFOVs.<br />

Fig. 2. Distributi<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs <strong>in</strong> the IAVISA database used for tra<strong>in</strong><strong>in</strong>g the ANN cloud detecti<strong>on</strong>.


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1345<br />

2.2.5. Cloud tests comb<strong>in</strong>ati<strong>on</strong> and impact <strong>on</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

product quality<br />

Currently, all operati<strong>on</strong>al tests (NWP, AVHRR and<br />

optical thickness) are systematically applied. An IFOV is<br />

flagged cloudy if at least <strong>on</strong>e of these tests detects the<br />

presence of a cloud. While this c<strong>on</strong>servative approach<br />

<strong>in</strong>creases the c<strong>on</strong>fidence that the rema<strong>in</strong><strong>in</strong>g clear IFOVs<br />

Table 3<br />

C<strong>on</strong>t<strong>in</strong>gency table of the true (classified by visual <strong>in</strong>specti<strong>on</strong>) vs. retrieved<br />

cloud<strong>in</strong>ess with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> NWP and ANN cloud tests. The numbers <strong>in</strong>dicate<br />

the size of the subsamples classified by the respective tests.<br />

NWP test ANN test<br />

Clear Cloudy Clear Cloudy<br />

Visual classificati<strong>on</strong> Clear 4803 2456 6708 551<br />

Cloudy 4074 13,590 1363 16,301<br />

are <strong>in</strong>deed cloud-free it has the disadvantage of discard<strong>in</strong>g<br />

many pixels with false cloud detecti<strong>on</strong> from the<br />

subsequent atmospheric parameters <strong>retrievals</strong>. Approximately<br />

10–15% of the IFOVs are declared cloud-free with<br />

the current NWP and AVHRR tests but <strong>on</strong>ly about 5–8%<br />

would rema<strong>in</strong> if the n<strong>on</strong>-l<strong>in</strong>ear cloud test were simply<br />

used <strong>in</strong> additi<strong>on</strong> to the other two.<br />

Fig. 3 shows the agreement/disagreement rate between<br />

three cloud detecti<strong>on</strong> methods, computed for the period<br />

19–24 March 2010. It illustrates that simply c<strong>on</strong>sider<strong>in</strong>g<br />

the <strong>in</strong>tersecti<strong>on</strong> of the cloud tests repeatedly reject IFOVs<br />

<strong>in</strong> regi<strong>on</strong>s with a specific climatology or soil type. For<br />

<strong>in</strong>stance sea ice, c<strong>on</strong>t<strong>in</strong>ental snow cover and Polar Regi<strong>on</strong>s<br />

are typical areas where the cloud detecti<strong>on</strong>, and especially<br />

with the AVHRR and NWP tests, is less reliable. The<br />

reflectance properties of such surfaces are similar to those<br />

of clouds <strong>in</strong> the AVHRR visible channels and often c<strong>on</strong>fuse<br />

the albedo test. Visual <strong>in</strong>specti<strong>on</strong> c<strong>on</strong>firmed that this test<br />

Fig. 3. Average agreement rates between the ANN cloud detecti<strong>on</strong>s and the NWP tests (left), and AVHRR tests (right) dur<strong>in</strong>g the period 19–24 March<br />

2010. In red: the methods agree, <strong>in</strong> green: cloud tests disagree with clear-sky as per ANN test <strong>on</strong>ly, <strong>in</strong> blue: cloud tests disagree with cloud-free as per<br />

NWP test (top) or AVHRR (bottom) <strong>on</strong>ly. (For <strong>in</strong>terpretati<strong>on</strong> of the references to colour <strong>in</strong> this figure legend, the reader is referred to the web versi<strong>on</strong> of<br />

this article.)


1346<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

usually overestimates the presence of clouds. The NWP test<br />

requires an accurate descripti<strong>on</strong> of the atmospheric temperature<br />

and humidity, which the forecast fields are less<br />

able to provide at high latitudes, as well as an accurate<br />

knowledge of the surface temperature and emissivity. At a<br />

surface temperature of 270 K, the cloud detecti<strong>on</strong> threshold<br />

of 1 K described <strong>in</strong> Secti<strong>on</strong> 2.2.1 corresp<strong>on</strong>ds to an error<br />

smaller than 2% <strong>in</strong> the surface emissivity at the wavelengths<br />

c<strong>on</strong>sidered for this test. Measurements of natural<br />

materials [24] however show that the natural variability of<br />

the surface emissivity for water, ice and snow covers is as<br />

high as 5% <strong>in</strong> this spectral regi<strong>on</strong> and depend <strong>on</strong> the ice and<br />

snow type, density and moisture. This variability is not<br />

necessarily captured by the static emissivity database.<br />

Furthermore, the land/sea classificati<strong>on</strong> is so far still a<br />

static process with the c<strong>on</strong>sequence that the IFOVs covered<br />

by sea-ice are still treated as open oceans. The current<br />

developments <strong>in</strong> this area <strong>in</strong>volve the synergistic use of the<br />

microwave measurements from the AMSU compani<strong>on</strong><br />

<strong>in</strong>strument <strong>on</strong>-board <strong>Metop</strong> to dist<strong>in</strong>guish pla<strong>in</strong> water<br />

and sea ice.<br />

Similarly, clouds are systematically <strong>in</strong>correctly reported<br />

<strong>in</strong> the Ganges and Indus crop land valleys by the NWP test.<br />

C<strong>on</strong>versely, the AVHRR and NWP tests statistically report<br />

more cloud-free IFOVs <strong>in</strong> the <strong>in</strong>ter-tropical belt over the<br />

oceans than the ANN test. Visual <strong>in</strong>specti<strong>on</strong>s, as illustrated<br />

by Fig. 4, c<strong>on</strong>firm the actual presence of clouds reported by<br />

the ANN classificati<strong>on</strong> when this method disagrees with<br />

the other two. However, the n<strong>on</strong>-l<strong>in</strong>ear test was not<br />

tra<strong>in</strong>ed to detect dust clouds, which the NWP and especially<br />

the AVHRR tests usually capture more efficiently.<br />

This can be seen <strong>in</strong> the sub-Saharan belt where the AVHRR<br />

images c<strong>on</strong>firm a large dust storm event which was not<br />

detected by the ANN test but is correctly reported by the<br />

AVHRR <strong>in</strong>tegrated cloud <strong>in</strong>formati<strong>on</strong>.<br />

The identificati<strong>on</strong> of clear-sky is important as the retrieval<br />

algorithms def<strong>in</strong>ed <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 science plan are<br />

nom<strong>in</strong>ally tailored for cloud-free radiances. The impact of<br />

cloud c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>, and therefore the ability to tolerate it,<br />

does however vary with the atmospheric parameter <strong>in</strong><br />

questi<strong>on</strong>, the retrieval method and the required product<br />

accuracy def<strong>in</strong>ed <strong>in</strong> the EPS End User Requirements Document<br />

(reference EUM/EPS/MIS/REQ/93/001 available <strong>on</strong>-l<strong>in</strong>e<br />

at: www.eumetsat.<strong>in</strong>t). Clerbaux et al. [25], for <strong>in</strong>stance,<br />

retrieve CO c<strong>on</strong>centrati<strong>on</strong>s from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements with<br />

potential IFOV cloud coverage of up to 25% us<strong>in</strong>g a retrieval<br />

scheme designed for clear radiances. While this is c<strong>on</strong>sistent<br />

with the expected accuracy of 10% for the CO total column,<br />

such high cloud fracti<strong>on</strong>s are not compatible with the<br />

accuracy requirement of 0.4 K for clear-sky sea surface<br />

temperature <strong>retrievals</strong>. In subsequent secti<strong>on</strong>s we illustrate<br />

the impact of the three cloud tests discussed <strong>in</strong> this secti<strong>on</strong><br />

<strong>on</strong> the SST product yield and quality.<br />

The reference SST product, from the Advanced Al<strong>on</strong>g<br />

Track Scann<strong>in</strong>g Radiometer (AATSR) <strong>in</strong>strument <strong>on</strong>-board<br />

ENVISAT [26], the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 SST retrieval and the <strong>in</strong>tercomparis<strong>on</strong><br />

protocol are described <strong>in</strong> Secti<strong>on</strong> 2.5.3. The<br />

<strong>in</strong>ter-comparis<strong>on</strong>s are performed dur<strong>in</strong>g the period 19–24<br />

March 2010 where <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AATSR acquisiti<strong>on</strong>s over the<br />

same area were taken with<strong>in</strong> 20 m<strong>in</strong> of <strong>on</strong>e another.<br />

Fig. 5a–c shows maps of the SST departures (AATSR–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>)<br />

<strong>after</strong> cloud filter<strong>in</strong>g with the AVHRR, the NWP and the<br />

ANN test respectively. Fig. 5e–g shows the corresp<strong>on</strong>d<strong>in</strong>g<br />

distributi<strong>on</strong>s of the AATSR–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST differences. All three<br />

distributi<strong>on</strong>s have a ma<strong>in</strong> Gaussian mode with an asymmetric<br />

tail c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g less than 10% of the sample where<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST are colder by up to 2 K than the AATSR SST. This<br />

tail is the result of undetected cloud and dust c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>.<br />

While the overall statistics are similar for all three<br />

cloud-tests (positive bias and standard deviati<strong>on</strong> of<br />

approximately 0.47 K) the central mode is narrower with<br />

the ANN than with the NWP and the AVHRR cloud<br />

filter<strong>in</strong>g (a standard deviati<strong>on</strong> of 0.25 versus 0.30 K,<br />

respectively). Furthermore, the visual <strong>in</strong>specti<strong>on</strong> of<br />

AVHRR images and MODIS aerosol optical depth products<br />

[27] (as shown <strong>in</strong> Fig. 6 and available at: http://disc.sci.<br />

gsfc.nasa.gov/giovanni/overview/<strong>in</strong>dex.html, last accessed<br />

19/01/2012) c<strong>on</strong>firmed the presence of dust aerosols off<br />

the West African coast, <strong>in</strong> the Arabian Sea and off the East<br />

Asian coast. The dust patterns correlate with the larger<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AATSR SST discrepancies. The yield with the ANN<br />

test is also 30% smaller. Outside these three dust c<strong>on</strong>tam<strong>in</strong>ated<br />

areas, identified us<strong>in</strong>g the MODIS aerosol<br />

product, the AATSR–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST departure <strong>after</strong> the ANN<br />

cloud filter<strong>in</strong>g is nearly Gaussian, with a bias and standard<br />

deviati<strong>on</strong> of þ0.25 and 0.22 K, respectively. This c<strong>on</strong>firms<br />

Fig. 4. Cloud detecti<strong>on</strong>s <strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs over central Pacific Ocean <strong>in</strong> March 2010 (black: clear, white: cloudy). From left to right: ANN cloud test, ‘NWP<br />

cloud test’, AVHRR CFR test, over an AVHRR image composite (channels 3 and 4). The clouds show up <strong>in</strong> p<strong>in</strong>k/red and the ocean surface <strong>in</strong> cyan. (For<br />

<strong>in</strong>terpretati<strong>on</strong> of the references to colour <strong>in</strong> this figure legend, the reader is referred to the web versi<strong>on</strong> of this article.)


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1347<br />

Fig. 5. Impact of the cloud tests <strong>on</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 SST yield and quality as compared to AATSR L2P SST.


1348<br />

the superior skill of the ANN cloud test for clear-sky<br />

identificati<strong>on</strong> (see Fig. 5d and h) over oceans.<br />

Work is still <strong>on</strong>go<strong>in</strong>g <strong>in</strong> the area of dust detecti<strong>on</strong> and<br />

<strong>on</strong> the comb<strong>in</strong>ed use of the various cloud detecti<strong>on</strong><br />

schemes with the objective of br<strong>in</strong>g<strong>in</strong>g the ANN tests <strong>in</strong>to<br />

operati<strong>on</strong>s <strong>in</strong> 2012. The ultimate c<strong>on</strong>figurati<strong>on</strong> will maximise<br />

the quantity and the quality of the f<strong>in</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

<strong>retrievals</strong> available.<br />

2.3. Cloud characterisati<strong>on</strong><br />

If a cloud is detected <strong>in</strong> an <str<strong>on</strong>g>IASI</str<strong>on</strong>g> field of view, its<br />

characterisati<strong>on</strong> <strong>in</strong> terms of cloud microphysics, fracti<strong>on</strong>al<br />

coverage and cloud top pressure (CTP) is performed. In<br />

previous versi<strong>on</strong>s of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF, the cloud fracti<strong>on</strong> and<br />

cloud top height determ<strong>in</strong>ed with AVHRR were comb<strong>in</strong>ed<br />

with the <strong>retrievals</strong> made from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements with the<br />

CO2-slic<strong>in</strong>g method (see Secti<strong>on</strong> 2.3.2 below). Because of<br />

their different characteristics this was modified and <strong>on</strong>ly<br />

the CO2-slic<strong>in</strong>g <strong>retrievals</strong> are reta<strong>in</strong>ed <strong>in</strong> the L2 products<br />

from versi<strong>on</strong> 5.0. Assessment of cloud<strong>in</strong>ess with<strong>in</strong> each<br />

AVHRR pixel is <strong>in</strong>deed b<strong>in</strong>ary: either the pixel is clear or it<br />

is cloudy, regardless of the fracti<strong>on</strong>al cover with<strong>in</strong> the pixel<br />

and of the cloud optical depth, whereas the CO2-slic<strong>in</strong>g<br />

returns the effective cloud amount (ECA). The latter takes<br />

<strong>in</strong>to account the cloud transparency and is more c<strong>on</strong>sistent<br />

with the radiative transfer <strong>in</strong> the atmosphere.<br />

2.3.1. Cloud phase retrieval<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 6. MODIS aerosol optical depth at 550 nm for the period 19–24 March 2010, http://disc.sci.gsfc.nasa.gov/giovanni/overview/<strong>in</strong>dex.html [27].<br />

2.3.1.1. Methodology and algorithm descripti<strong>on</strong>. The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

PPF c<strong>on</strong>ta<strong>in</strong>s a cloud-phase-determ<strong>in</strong>ati<strong>on</strong> method that is<br />

based <strong>on</strong> a published algorithm described <strong>in</strong> the MODIS<br />

ATBD <strong>on</strong> ‘‘Cloud top properties and cloud phase, v5’’ [81],<br />

which is <strong>in</strong> turn based <strong>on</strong> the algorithm described <strong>in</strong> [28].<br />

We describe here modificati<strong>on</strong>s to and validati<strong>on</strong> of the<br />

algorithm. It was further compared aga<strong>in</strong>st a method<br />

described <strong>in</strong> [29].<br />

The methodology is based <strong>on</strong> the different spectral<br />

emissivity of water and ice clouds <strong>in</strong> the spectral regi<strong>on</strong><br />

between 8 and 12 mm. In case of clouds, the slope of the<br />

emissi<strong>on</strong> changes, so that the difference DT1¼Tb(8 mm)<br />

Tb(11 mm) <strong>in</strong> comparis<strong>on</strong> to a sec<strong>on</strong>d difference DT2¼<br />

Tb(11 mm) Tb(12 mm) varies depend<strong>in</strong>g <strong>on</strong> the cloud<br />

phase. The corresp<strong>on</strong>d<strong>in</strong>g test until <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF v4 reads:<br />

If DT1 DT2Zt1 then the cloud phase is ice,<br />

else if t14DT1 DT2Zt2 then the cloud phase<br />

is mixed,<br />

else the cloud phase is liquid. The thresholds t1 and t2 as<br />

well as the exact wavelengths with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectrum<br />

are c<strong>on</strong>figurable and can be optimised <strong>on</strong> the basis of<br />

<strong>in</strong>dependent knowledge.<br />

The algorithm implemented <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF V5.0<br />

c<strong>on</strong>sists of that described above, plus an additi<strong>on</strong>al test. A<br />

third threshold can be set to identify ice clouds based <strong>on</strong><br />

the fact that super-cooled water cannot exist at temperatures<br />

below t3¼ 40 1C; i.e. at temperatures lower than<br />

t3 the cloud phase must be ice. This threshold must be set<br />

us<strong>in</strong>g a w<strong>in</strong>dow channel near 11 mm, which is close to the<br />

cloud-top temperature <strong>in</strong> case of opaque clouds. In the<br />

case of semi-transparent clouds this test will <strong>on</strong>ly predict<br />

ice if the cloud-top temperature is much lower than t3,<br />

and therefore also provides correct results.<br />

2.3.1.2. An alternative method. Another cloud-phase test,<br />

published by Wei et al. [29], has been implemented as a<br />

prototype for comparis<strong>on</strong> with the algorithms described<br />

<strong>in</strong> Secti<strong>on</strong> 2.3.1.1. This method was optimised for the use<br />

with AIRS data. Ice clouds are detected<br />

if Tb(900 cm 1 )o238 K<br />

or Tb(1231 cm 1 ) Tb(900 cm 1 )40.5 K<br />

or Tb(1231 cm 1 ) Tb(900 cm 1 )4 0.5 K and<br />

Tb(900 cm 1)4258 K.


Otherwise, liquid phase is assumed. No provisi<strong>on</strong> is<br />

made for mixed-phase clouds.<br />

2.3.1.3. Reference data set and validati<strong>on</strong> results. For the<br />

validati<strong>on</strong> of cloud-phase determ<strong>in</strong>ati<strong>on</strong> and for the<br />

def<strong>in</strong>iti<strong>on</strong> of new thresholds (tra<strong>in</strong><strong>in</strong>g), a set of 672<br />

globally distributed co-located <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AVHRR data has<br />

been compiled. The data set c<strong>on</strong>sists of day-time scenes<br />

<strong>on</strong>ly, allow<strong>in</strong>g proper identificati<strong>on</strong> of ice clouds <strong>in</strong> the<br />

multi-spectral AVHRR imagery, us<strong>in</strong>g measurements of<br />

the reflected solar radiati<strong>on</strong> <strong>in</strong> the visible and near<strong>in</strong>frared<br />

spectral regi<strong>on</strong>s. In particular the use of the<br />

1.6 mm channel allows proper identificati<strong>on</strong> of ice clouds<br />

due to their low reflectivity <strong>in</strong> this channel as compared<br />

to the short-wave channels. The visual <strong>in</strong>specti<strong>on</strong> of RGB<br />

pseudo-colour images from AVHRR channels 1, 2, and 3a<br />

allows the discrim<strong>in</strong>ati<strong>on</strong> of ice and liquid phases. Mixed<br />

phases are not however easily identified.<br />

The data set composed of 672 AVHRR scenes and<br />

associated <str<strong>on</strong>g>IASI</str<strong>on</strong>g> samples has been collected and visually<br />

<strong>in</strong>terpreted with respect to cloud phase. It <strong>in</strong>cludes 371<br />

samples with ice clouds, 228 samples with liquid phase,<br />

and 73 samples with mixed phase. A separati<strong>on</strong> <strong>in</strong>to two<br />

subsets allows for tra<strong>in</strong><strong>in</strong>g and validati<strong>on</strong>.<br />

Us<strong>in</strong>g the orig<strong>in</strong>al coefficients implemented <strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

PPF V4.3.2, 79.0% of the cloud phases are determ<strong>in</strong>ed<br />

correctly. The method <strong>in</strong> [29] provides 78.6% correctly<br />

determ<strong>in</strong>ed cloud phases. Subsequently, the algorithm<br />

has been amended as described <strong>in</strong> Secti<strong>on</strong> 2.3.1.1. The<br />

spectral sample positi<strong>on</strong>s as well as the thresholds have<br />

been modified to enhance the performance. The f<strong>in</strong>al<br />

versi<strong>on</strong> of the tuned algorithm detects 84.5% of the cloud<br />

phases correctly. Am<strong>on</strong>g the ice samples 97.3% are correctly<br />

determ<strong>in</strong>ed, while of the liquid samples 84.6% are<br />

determ<strong>in</strong>ed correctly. The algorithm does not have any<br />

skill <strong>in</strong> detect<strong>in</strong>g mixed-phase clouds, <strong>on</strong>ly 5.5% are<br />

correctly identified, the majority of mixed-phase clouds<br />

are reproduced as ice clouds. The reas<strong>on</strong> for this is the<br />

uncerta<strong>in</strong> visual determ<strong>in</strong>ati<strong>on</strong> of mixed-phase clouds. In<br />

practice, however, mixed phase clouds will always be<br />

detected as either ice or liquid clouds depend<strong>in</strong>g <strong>on</strong> the<br />

relative proporti<strong>on</strong>s.<br />

The algorithm described <strong>in</strong> Secti<strong>on</strong> 2.3.1.1 requires the<br />

follow<strong>in</strong>g brightness temperatures and is c<strong>on</strong>figured with<br />

the follow<strong>in</strong>g thresholds:<br />

DT1 ¼ Tbð1209:75cm 1 Þ2Tbð900:25cm 1 Þ<br />

DT2 ¼ Tbð900:25cm 1 Þ2Tbð829:00cm 1 Þ<br />

t1 ¼ 0:9K<br />

t2 ¼ 1:15K<br />

t3 ¼ 233:15K:<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1349<br />

2.3.2. The CO 2-slic<strong>in</strong>g method<br />

The cloud top pressure (CTP), and subsequently the<br />

cloud top temperature (CTT) obta<strong>in</strong>ed us<strong>in</strong>g a reference<br />

temperature profile, together with the cloud fracti<strong>on</strong><br />

(CFR) are additi<strong>on</strong>al parameters provided <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> level<br />

2 cloud products. They are currently retrieved with the<br />

CO2-slic<strong>in</strong>g method <strong>in</strong> the operati<strong>on</strong>al processor. Validati<strong>on</strong><br />

results are presented and discussed here.<br />

The CO2-slic<strong>in</strong>g method established by Menzel et al.<br />

[30] and Smith and Frey [31] for high resoluti<strong>on</strong> <strong>in</strong>terferometer<br />

sounders was adapted to <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>after</strong> Arriaga, 2007<br />

(EUMETSAT Technical Report: ‘‘CO2 Slic<strong>in</strong>g Algorithm for<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 Product Process<strong>in</strong>g Facility’’, EUM/MET/REP/07/<br />

0305). It was implemented <strong>in</strong> the first versi<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

PPF to rout<strong>in</strong>ely retrieve the cloud top height and equivalent<br />

cloud amount with<strong>in</strong> a <str<strong>on</strong>g>IASI</str<strong>on</strong>g> field of view. In this<br />

implementati<strong>on</strong>, the observati<strong>on</strong>s <strong>in</strong> CO 2-channels sensitive<br />

to different pressure levels are associated with their<br />

clear-sky synthetic radiances counterparts. The forward<br />

computati<strong>on</strong> is performed with RTTOV us<strong>in</strong>g as <strong>in</strong>put the<br />

atmospheric profile forecast from ECMWF. A reference<br />

channel (currently at 796.75 cm 1 ) and 41 channels<br />

selected <strong>in</strong> the CO 2-band between 707.5 and 756 cm 1 ,<br />

c<strong>on</strong>figure the cloud-top retrieval. The equivalent cloud<br />

amount is estimated us<strong>in</strong>g a w<strong>in</strong>dow channel<br />

(900.50 cm 1 ) and the retrieved CTP. When a low cloud<br />

is suspected, the collocated forecast model temperature<br />

profile is <strong>in</strong>spected for a potential <strong>in</strong>versi<strong>on</strong>. If a temperature<br />

<strong>in</strong>versi<strong>on</strong> is found, the cloud top pressure is placed<br />

below the base of the <strong>in</strong>versi<strong>on</strong>. Retrievals are attempted<br />

<strong>on</strong>ly if the c<strong>on</strong>trast between observed and simulated clear<br />

radiances is larger than the <strong>in</strong>strument noise. In additi<strong>on</strong>,<br />

the algorithm also returns a quality <strong>in</strong>dicator flag and<br />

<strong>retrievals</strong> with ECA lower than 10% are discarded as they<br />

are usually associated with too large uncerta<strong>in</strong>ties.<br />

2.3.2.1. Validati<strong>on</strong> of the cloud fracti<strong>on</strong>. The use of a simple<br />

digital camera equipped with a fish-eye lens <strong>in</strong> support of<br />

cloud detecti<strong>on</strong> and m<strong>on</strong>itor<strong>in</strong>g has developed <strong>in</strong> recent<br />

<strong>years</strong> [32]. The validati<strong>on</strong> of the retrieved cloud fracti<strong>on</strong> as<br />

compared to such whole sky imagery was performed <strong>in</strong><br />

2008 dur<strong>in</strong>g the dedicated EPS validati<strong>on</strong> campaign which<br />

took place from June to September 2007 at the meteorological<br />

stati<strong>on</strong> of L<strong>in</strong>denberg, Germany. A Daylight VIS/NIR<br />

Whole Sky Imager (WSI) manufactured at the University of<br />

California San Diego has been operat<strong>in</strong>g <strong>in</strong> L<strong>in</strong>denberg<br />

s<strong>in</strong>ce 2003. The <strong>in</strong>strument acquires images of the upper<br />

hemisphere with a view<strong>in</strong>g angle of 1801 <strong>in</strong> different<br />

spectral regi<strong>on</strong>s at time steps of 5–10 m<strong>in</strong> between<br />

sunrise and sunset. Calibrated and corrected basic<br />

image data are stored. Automatic post process<strong>in</strong>g<br />

algorithms provide cloud cover and cloud distributi<strong>on</strong><br />

of both optically th<strong>in</strong> and thick clouds. More details <strong>on</strong><br />

the <strong>in</strong>strument and <strong>on</strong> the results of measurements<br />

<strong>in</strong>clud<strong>in</strong>g comparis<strong>on</strong>s of WSI data with c<strong>on</strong>venti<strong>on</strong>al<br />

cloud observati<strong>on</strong>s are given by Feister and Shields [33].<br />

Ground-based measurements with<strong>in</strong> 10 m<strong>in</strong> of the<br />

overpass time were matched to the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs with<strong>in</strong> 11<br />

of L<strong>in</strong>denberg. The associated cloud fracti<strong>on</strong>s are shown <strong>in</strong><br />

Fig. 7, where <strong>on</strong>ly scenes with <strong>on</strong>e cloud layer are shown.<br />

Horiz<strong>on</strong>tal error bars show the variability of the cloud<br />

fracti<strong>on</strong> with<strong>in</strong> 10 m<strong>in</strong> of the overpass time while the<br />

vertical error bars show the spatial variability (with<strong>in</strong><br />

11 of the L<strong>in</strong>denberg site) as seen by <str<strong>on</strong>g>IASI</str<strong>on</strong>g> with the<br />

CO2-slic<strong>in</strong>g algorithm. The area encompassed by the WSI<br />

does not exactly co<strong>in</strong>cide <strong>in</strong> size and locati<strong>on</strong> with the<br />

collocated <str<strong>on</strong>g>IASI</str<strong>on</strong>g> foot-pr<strong>in</strong>ts, as illustrated by Fig. 8, which


1350<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 7. Comparis<strong>on</strong> of cloud fracti<strong>on</strong> as measured from the L<strong>in</strong>denberg<br />

Whole Sky Imager (WSI) and the <strong>on</strong>e from the CO 2 slic<strong>in</strong>g algorithm <strong>in</strong><br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF.<br />

Fig. 8. C<strong>on</strong>vective cells near L<strong>in</strong>dcolourenberg (red square) at overpass<br />

20070620190941. The cloud cover from surface observati<strong>on</strong>s is 87%. The<br />

retrieved cloud fracti<strong>on</strong> with<strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs (ellipses) is overlayed <strong>on</strong> the<br />

AVHRR 10.8 mm image. (For <strong>in</strong>terpretati<strong>on</strong> of the references to colour <strong>in</strong><br />

this figure legend, the reader is referred to the web versi<strong>on</strong> of this<br />

article.)<br />

expla<strong>in</strong>s the size of the errors bars and prevents a full<br />

quantitative validati<strong>on</strong>. The <strong>in</strong>ter-comparis<strong>on</strong> shows a<br />

good general agreement between the two products and<br />

visual <strong>in</strong>specti<strong>on</strong>s of the retrieved cloud coverage with<br />

AVHRR images c<strong>on</strong>firmed the quality of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 ECA<br />

(see an example <strong>in</strong> Fig. 9). The retrieved equivalent cloud<br />

amount was recently validated aga<strong>in</strong>st the visual cloud<strong>in</strong>ess<br />

classificati<strong>on</strong> <strong>in</strong> the IAVISA database (presented <strong>in</strong><br />

Secti<strong>on</strong> 2.2.4). It c<strong>on</strong>firmed the general good quality of the<br />

CO 2-slic<strong>in</strong>g results but also dem<strong>on</strong>strated the limitati<strong>on</strong>s<br />

of the method for low-c<strong>on</strong>trast scenes, i.e. when the cloud<br />

fracti<strong>on</strong> is smaller than 20% and/or when the cloud top<br />

temperature is too close to the surface temperature, as<br />

Fig. 9. Retrieved cloud fracti<strong>on</strong> with<strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs over a cold fr<strong>on</strong>t <strong>in</strong> the<br />

North-West Atlantic imaged at 0.6 mm with AVHRR.<br />

happens with low-level clouds. For these c<strong>on</strong>figurati<strong>on</strong>s, a<br />

complementary method has been developed for the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 PPF with the ‘w 2 method’ (see Secti<strong>on</strong> 2.3.3 below).<br />

Furthermore, the current implementati<strong>on</strong> of the CO 2slic<strong>in</strong>g<br />

method cannot cope with multi-layer clouds<br />

with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> field of view and the current developments<br />

aim to use the AVHRR cloud <strong>in</strong>formati<strong>on</strong> based <strong>on</strong><br />

the cluster analysis for these situati<strong>on</strong>s.<br />

2.3.2.2. Validati<strong>on</strong> of the cloud top pressure with L<strong>in</strong>denberg<br />

cloud radar. The retrieved cloud top pressure was also<br />

validated <strong>in</strong> 2008 aga<strong>in</strong>st ground-based cloud-radar<br />

operated at the meteorological stati<strong>on</strong> of L<strong>in</strong>denberg,<br />

Germany, dur<strong>in</strong>g an atmospheric sound<strong>in</strong>g campaign<br />

from June to September 2007 <strong>in</strong> support of the<br />

validati<strong>on</strong> of <strong>Metop</strong> products. It is acknowledged that<br />

this validati<strong>on</strong> work is so far limited to this specific site.<br />

However, the campaign <strong>in</strong>volved a large variety of cloud<br />

types reported by an expert observer (Ac, Cb, Cc, Cb calvus,<br />

Cg, Cs, Cu, Ci, Sc, St), al<strong>on</strong>e or <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong>, and a large<br />

range of cloud elevati<strong>on</strong>s between 950 and 200 hPa. The<br />

full analyses and validati<strong>on</strong> results of the retrieved cloud<br />

fracti<strong>on</strong> and cloud top pressure are available <strong>in</strong> the<br />

validati<strong>on</strong> report by Arriaga et al. ‘‘EPS <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF<br />

Validati<strong>on</strong> Report: Cloud Top Pressure and Effective<br />

Cloud Amount’’ (EUM/MET/REP/09/0698).<br />

Cloud radars measure profiles of the <strong>in</strong>tensity of<br />

particle-backscattered signals and their Doppler shift to<br />

derive <strong>in</strong>formati<strong>on</strong> about particle size, c<strong>on</strong>centrati<strong>on</strong> and<br />

moti<strong>on</strong>. The cloud radar used <strong>in</strong> this study is a vertically<br />

po<strong>in</strong>t<strong>in</strong>g Doppler radar measur<strong>in</strong>g at 35.5 GHz, manufactured<br />

by Metek GmbH, Elmshorn, Germany, and is operated<br />

c<strong>on</strong>t<strong>in</strong>uously. The measurements are 10-s averaged<br />

cloud reflectivity records, sampled every m<strong>in</strong>ute. Local<br />

atmospheric sound<strong>in</strong>gs support the c<strong>on</strong>versi<strong>on</strong> of the<br />

cloud top (base) height to pressure levels. The use of<br />

the cloud radar at L<strong>in</strong>denberg and the limitati<strong>on</strong>s of the<br />

ground-based cloud detecti<strong>on</strong> and characterisati<strong>on</strong> are<br />

discussed by Hennemuth et al. [34]. In particular, some<br />

optically relevant clouds with too small particles, such as<br />

cumulus humilis and high cirrus, may fall below the radar<br />

detecti<strong>on</strong> threshold.


Dur<strong>in</strong>g the validati<strong>on</strong> campaign, a total of 161 overpasses<br />

with valid <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements and cloud product<br />

<strong>retrievals</strong> were available with<strong>in</strong> 50 km of the L<strong>in</strong>denberg<br />

meteorological stati<strong>on</strong>. For the reas<strong>on</strong>s cited above, no<br />

radar cloud measurements were available <strong>in</strong> 64 cases. 15<br />

cases were further excluded because <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and the groundbased<br />

radar were sens<strong>in</strong>g different cloud structures <strong>in</strong><br />

different layers, due to large scale cloud heterogeneities<br />

(full details <strong>on</strong> the cloud heterogeneity evaluati<strong>on</strong> and<br />

handl<strong>in</strong>g <strong>in</strong> the validati<strong>on</strong> report by Arriaga, 2009). A total<br />

of 82 match-ups were reta<strong>in</strong>ed for validati<strong>on</strong> of the CTP<br />

and are presented <strong>in</strong> Fig. 10. The correlati<strong>on</strong> is high with a<br />

global bias of 29.4 hPa (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> products higher) and standard<br />

deviati<strong>on</strong> of 49.2 hPa. These statistics vary with the<br />

cloud elevati<strong>on</strong> and the details are presented <strong>in</strong> Table 4.<br />

2.3.2.3. Inter-comparis<strong>on</strong> with CALIOP cloud top pressure.<br />

More recently, a validati<strong>on</strong> of the cloud height assignment<br />

from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> dedicated to the Polar Regi<strong>on</strong>s was <strong>in</strong>itiated <strong>in</strong><br />

order to support the development of the EPS Day-2 Polar<br />

w<strong>in</strong>d product. The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> products were <strong>in</strong>ter-compared<br />

to the <strong>retrievals</strong> from the Cloud–Aerosol Lidar with<br />

Fig. 10. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> retrieved vs. ground-based radar measured cloud-top<br />

pressure (hPa) over L<strong>in</strong>denberg dur<strong>in</strong>g the EPS Validati<strong>on</strong> Campaign<br />

from June to September 2007.<br />

Table 4<br />

Bias and standard deviati<strong>on</strong> of the retrieved cloud top pressure (hPa).<br />

CTP (hPa) Retrieved cloud top pressure<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1351<br />

Radar Nb cases Bias Std<br />

Above 400 37 þ57.1 46.6<br />

400–700 26 þ19.1 37.4<br />

Below 700 19 10.5 32.7<br />

Orthog<strong>on</strong>al Polarisati<strong>on</strong> (CALIOP) <strong>in</strong>strument. CALIOP<br />

was launched <strong>on</strong>-board the Cloud–Aerosol Lidar and<br />

Infrared Pathf<strong>in</strong>der Satellite Observati<strong>on</strong>s (CALIPSO)<br />

satellite [35] <strong>in</strong> April 2006 as part of the NASA A-Tra<strong>in</strong>.<br />

It is the first space-borne Lidar to provide l<strong>on</strong>g-term<br />

atmospheric measurements, with unique cloud profil<strong>in</strong>g<br />

capabilities. CALIOP provides high resoluti<strong>on</strong> vertical<br />

profiles of clouds and aerosols with a resoluti<strong>on</strong> of 30 m<br />

from ground to 8 km and of 60 m between 8 and 20 km<br />

[36]. The cloud products v3 at 1-km horiz<strong>on</strong>tal resoluti<strong>on</strong><br />

[37] are used <strong>in</strong> this study. They are available at NASA’s<br />

<strong>on</strong>-l<strong>in</strong>e Earth Science Discovery Tool http://reverb.echo.<br />

nasa.gov/ (last accessed 19/01/2012). Simultaneous<br />

observati<strong>on</strong>s by <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and CALIOP <strong>on</strong>ly occur at Polar<br />

latitudes, due to the <strong>orbit</strong>s of their respective spacecrafts:<br />

09h30 descend<strong>in</strong>g node for <strong>Metop</strong> and 13h30 ascend<strong>in</strong>g<br />

node for CALIPSO. Collocati<strong>on</strong>s <strong>in</strong> the period September to<br />

December 2010 with a maximum time difference of<br />

10 m<strong>in</strong> and a maximum distance of 10 km between the<br />

CALIOP pixel and the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOV centre are selected.<br />

Additi<strong>on</strong>ally, <strong>on</strong>ly homogeneous s<strong>in</strong>gle layer clouds, as<br />

def<strong>in</strong>ed by CALIOP, are reta<strong>in</strong>ed for comparis<strong>on</strong>; i.e.<br />

where the CTPs measured by CALIOP do not vary by<br />

more than 50 hPa standard deviati<strong>on</strong> with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> field<br />

of view. A total of 4568 match-ups are c<strong>on</strong>sidered which<br />

are displayed <strong>in</strong> the scatter plot <strong>in</strong> Fig. 11. The colour<br />

cod<strong>in</strong>g refers to the retrieved <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 ECA. The few outliers<br />

seen <strong>in</strong> the graph, with <str<strong>on</strong>g>IASI</str<strong>on</strong>g> CTP around 100 hPa, are<br />

actually artefacts due to an algorithm <strong>in</strong>itialisati<strong>on</strong> issue,<br />

which does not affect the other CTP <strong>retrievals</strong>. It was<br />

corrected with revisi<strong>on</strong> 5.2 which became operati<strong>on</strong>al <strong>in</strong><br />

October 2011. The discrepancies between the two satellite<br />

cloud height assignments are larger for the IFOVs with an<br />

ECAs of 25% and below. For ECAs larger than 30% the<br />

correlati<strong>on</strong> is high (r 0.9). Two modes are observed,<br />

spann<strong>in</strong>g the lower and higher halves of the troposphere.<br />

Between 1000 and 550 hPa CTPs from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> show a small<br />

bias of 15 hPa (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> lower) and a standard deviati<strong>on</strong> of<br />

approximately 90 hPa. The dispersi<strong>on</strong> is smaller (standard<br />

deviati<strong>on</strong> of around 60 hPa), with however a larger bias<br />

(110 hPa, <str<strong>on</strong>g>IASI</str<strong>on</strong>g> higher) for clouds located above 550 hPa.<br />

One should recall that the CO 2-slic<strong>in</strong>g with IR measurements<br />

characterises the effective radiative height of a<br />

cloud while the Lidar locates a physical cloud boundary.<br />

The two may differ depend<strong>in</strong>g <strong>on</strong> the cloud opacity and<br />

this accounts for the biases observed between the two<br />

cloud height assignments. Similar offsets were recently<br />

reported by Kim et al. [38] compar<strong>in</strong>g the cloud top heights<br />

derived from CALIOP and those retrieved <strong>in</strong> the IR from<br />

MODIS with the CO 2-slic<strong>in</strong>g method. Inaccuracies <strong>in</strong> the<br />

forecast atmospheric profiles support<strong>in</strong>g the CO2-slic<strong>in</strong>g<br />

retrieval are also source of errors [39].<br />

2.3.3. The w 2 -method<br />

This method c<strong>on</strong>sists of modell<strong>in</strong>g the differences<br />

between measured and simulated clear radiances with a<br />

m<strong>on</strong>o-layer cloud for channels selected <strong>in</strong> CO2 l<strong>in</strong>es. For<br />

implementati<strong>on</strong> and theoretical performances see<br />

EUMETSAT technical note ‘‘Assessment of the chi-square<br />

method for cloud top pressure and equivalent cloud<br />

amount <strong>retrievals</strong> with measurements from <str<strong>on</strong>g>IASI</str<strong>on</strong>g>’’ (EUM/


1352<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> top cloud pressure [hPa]<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

1000<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> vs CALIOP TCP depend<strong>in</strong>g <strong>on</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO2−slic<strong>in</strong>g ECA<br />

(scatter_caliop_iasi_eca, stdev


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1353<br />

– the sk<strong>in</strong> surface temperature (for ocean and c<strong>on</strong>t<strong>in</strong>ental<br />

surfaces)<br />

– the surface emissivity at twelve c<strong>on</strong>figurable channels<br />

– a coarse O3, profile <strong>in</strong> thick partial columns (0–6 km,<br />

0–12 km, 0–16 km)<br />

– the total column of CO, O3, CH4, N2O and CO2.<br />

A brief overview of the retrieval algorithms is given<br />

here while validati<strong>on</strong> methodology and results of the<br />

respective parameters is summarised <strong>in</strong> Secti<strong>on</strong>s 2.5–2.7.<br />

2.4.1. The statistical <strong>retrievals</strong><br />

The retrieval of the full state vector listed above is <strong>on</strong>ly<br />

attempted for cloud-free pixels. In case of a partial cloud<br />

c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>, the geophysical retrieval is achieved with<br />

EOF regressi<strong>on</strong> and limited to temperature and humidity.<br />

The reader is referred to the work by Zhou [19] for the<br />

complete descripti<strong>on</strong> of the algorithm <strong>in</strong> cloudy c<strong>on</strong>diti<strong>on</strong>s<br />

and its performance. In clear-sky, a collecti<strong>on</strong> of<br />

statistical methods is applied first, which c<strong>on</strong>sists of EOF<br />

l<strong>in</strong>ear and ANN n<strong>on</strong>-l<strong>in</strong>ear regressi<strong>on</strong>s. In the EOF<br />

method, the pr<strong>in</strong>cipal comp<strong>on</strong>ent scores of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

radiances are computed and are <strong>in</strong>put to the l<strong>in</strong>ear<br />

regressi<strong>on</strong> for determ<strong>in</strong>ati<strong>on</strong> of the sea surface temperature<br />

(SST) [42], the oz<strong>on</strong>e, temperature and humidity<br />

profiles [19] as well as the land surface temperature and<br />

emissivity [9].<br />

Artificial neural networks are used to retrieve the total<br />

column amount of CO, CH4, N2O and CO2. The algorithm<br />

was adapted from the work of Hadji-Lazaro et al. [43] and<br />

Turquety et al. [44] to account for the <strong>in</strong>strument view<strong>in</strong>g<br />

angle, variable surface emissivity and <strong>in</strong>terfer<strong>in</strong>g atmospheric<br />

species. The ANNs <strong>in</strong>gest radiances <strong>in</strong> selected and<br />

c<strong>on</strong>figurable absorpti<strong>on</strong> and basel<strong>in</strong>e channels as well as a<br />

coarse atmospheric temperature profile, the surface pressure<br />

and the satellite zenith angle. Improvements were<br />

sought also <strong>in</strong> the preparati<strong>on</strong> of normalised and centred<br />

<strong>in</strong>puts to optimise the learn<strong>in</strong>g skills and speed [23]. The<br />

descripti<strong>on</strong> of the updated algorithm which became<br />

operati<strong>on</strong>al with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF versi<strong>on</strong> 5 <strong>on</strong> 14/09/<br />

2010 is available <strong>on</strong>-l<strong>in</strong>e at: www.eumetsat.<strong>in</strong>t (August T.,<br />

2010, ‘‘An Improved Artificial Neural Network CO Retrieval<br />

for <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 Processor’’, EUM/MET/TEN/09/0232).<br />

The geophysical parameters retrieved with the statistical<br />

methods may c<strong>on</strong>stitute the f<strong>in</strong>al L2 product or serve<br />

as a first guess for the optimal estimati<strong>on</strong> retrieval<br />

(Secti<strong>on</strong> 2.4.2). The choice is c<strong>on</strong>figurable <strong>in</strong>dividually<br />

for each parameter and is also a functi<strong>on</strong> of the quality<br />

of the respective statistic and iterative <strong>retrievals</strong>.<br />

2.4.2. The retrieval us<strong>in</strong>g optimal estimati<strong>on</strong><br />

The OEM is the f<strong>in</strong>al retrieval module <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

process<strong>in</strong>g cha<strong>in</strong> and implements the standard optimal<br />

estimati<strong>on</strong> <strong>after</strong> Rodgers [45]. The core algorithm <strong>in</strong> the<br />

PPF versi<strong>on</strong> 5 is similar to the algorithm <strong>in</strong> former<br />

revisi<strong>on</strong>s [5]. The c<strong>on</strong>figurati<strong>on</strong> and the state-vector<br />

compositi<strong>on</strong> have changed <strong>in</strong> the PPF versi<strong>on</strong> 5.0; they<br />

are presented here.<br />

2.4.2.1. Atmospheric state vector and cost functi<strong>on</strong><br />

m<strong>in</strong>imisati<strong>on</strong>. In additi<strong>on</strong> to the surface temperature (Ts)<br />

and to the temperature (T) and humidity (q) profiles<br />

which were simultaneously retrieved already <strong>in</strong> the<br />

previous versi<strong>on</strong>s, the oz<strong>on</strong>e profile (O3) has become an<br />

active state vector parameter and is now simultaneously<br />

retrieved with<strong>in</strong> the OEM. The basis of the retrieval is the<br />

m<strong>in</strong>imisati<strong>on</strong> of a cost functi<strong>on</strong> of the classical form:<br />

j ¼ðx xaÞ T UB 1 Uðx xaÞþðFðxÞ yÞ T UR 1 UðFðxÞ yÞ ð2Þ<br />

The first term of the sum represents a c<strong>on</strong>stra<strong>in</strong>t <strong>on</strong> the<br />

atmospheric state vector to be retrieved, x, <strong>in</strong> terms of an<br />

a priori vector xa and its covariance matrix B. The sec<strong>on</strong>d<br />

term describes the c<strong>on</strong>stra<strong>in</strong>t generated by weight<strong>in</strong>g the<br />

departure of the measurements (y) from simulated<br />

radiances computed with the forward model F(x), tak<strong>in</strong>g<br />

the retrieved state vector x as <strong>in</strong>put, by the <strong>in</strong>strument<br />

noise covariance matrix R. The state vector x is modified<br />

<strong>in</strong> successive iterati<strong>on</strong>s <strong>in</strong> order to m<strong>in</strong>imise J us<strong>in</strong>g the<br />

Levenberg–Marquardt method. The m<strong>in</strong>imisati<strong>on</strong> is performed<br />

<strong>in</strong> brightness temperature space and the c<strong>on</strong>vergence<br />

criteri<strong>on</strong> is a threshold <strong>on</strong> the norm of the gradient<br />

of the cost functi<strong>on</strong>. For operati<strong>on</strong>al performance and<br />

timel<strong>in</strong>ess reas<strong>on</strong>s, a maximum of 5 iterati<strong>on</strong>s is allowed<br />

and the state vector x is accepted and stored <strong>in</strong>to the f<strong>in</strong>al<br />

L2 product if the residual F(x) y is smaller than a<br />

c<strong>on</strong>figurable threshold.<br />

With<strong>in</strong> the cost functi<strong>on</strong>, the vertical profiles to be<br />

retrieved used to be expressed <strong>on</strong> a pressure grid <strong>in</strong> the<br />

previous PPF versi<strong>on</strong>s. T, q and O3 are now represented by<br />

their pr<strong>in</strong>cipal comp<strong>on</strong>ents <strong>in</strong> the EOF space of the atmospheric<br />

profiles. In this approach 28, 18 and 9 PCs were<br />

reta<strong>in</strong>ed to represent the temperature (<strong>in</strong> K), the humidity<br />

and oz<strong>on</strong>e (both <strong>in</strong> ln(ppmv)) profiles, respectively. More<br />

details <strong>on</strong> the algorithm descripti<strong>on</strong> can be c<strong>on</strong>sulted <strong>on</strong>l<strong>in</strong>e<br />

at www.eumetsat.<strong>in</strong>t <strong>in</strong> the ‘‘EPS <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 Product<br />

Generati<strong>on</strong> Specificati<strong>on</strong>’’ (EUM/OPS-EPS/SPE/08/0199).<br />

2.4.2.2. Radiative transfer model, channel selecti<strong>on</strong>, bias<br />

correcti<strong>on</strong> and observati<strong>on</strong> error covariance matrix. The<br />

functi<strong>on</strong> F <strong>in</strong> (2) is the radiative transfer model RTTOV-<br />

10 (presented <strong>in</strong> Secti<strong>on</strong> 2.2.1), <strong>in</strong> use s<strong>in</strong>ce October 2011<br />

with the <strong>in</strong>troducti<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF v5.2 (RT<str<strong>on</strong>g>IASI</str<strong>on</strong>g>-4<br />

was used <strong>in</strong> prior versi<strong>on</strong>s). The channel selecti<strong>on</strong> was<br />

modified and 316 channels from the list established by<br />

Collard [46] are used <strong>in</strong> the PPF v5 whereas the <strong>retrievals</strong><br />

were based <strong>on</strong> 222 channels <strong>in</strong> previous releases.<br />

In the sec<strong>on</strong>d term of the cost functi<strong>on</strong> (2), the<br />

measurements are fitted with simulated radiances. It is<br />

therefore essential to account beforehand for any systematic<br />

differences between the measurements and the<br />

forward computati<strong>on</strong>s, which may orig<strong>in</strong>ate <strong>in</strong> <strong>in</strong>strument<br />

errors or <strong>in</strong> <strong>in</strong>accuracies <strong>in</strong> the radiative transfer<br />

model. Global biases have been calculated from a set of<br />

pairs of radiance vectors, <strong>on</strong>e observed by <str<strong>on</strong>g>IASI</str<strong>on</strong>g> (referred to<br />

as OBS), the other calculated from some measure of truth<br />

(called CALC here<strong>after</strong>). The (OBS CALC) statistics were<br />

computed <strong>on</strong> clear sky ocean FOVs, us<strong>in</strong>g collocated<br />

ECMWF analysis profiles for the atmospheric state vector<br />

and RTTOV as a forward model. The systematic departures<br />

evaluated this way are used to tune the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements<br />

before <strong>in</strong>gesti<strong>on</strong> <strong>in</strong> this retrieval module.


1354<br />

The measurement error covariance matrix R <strong>in</strong> (2) was<br />

computed from these clear sky (OBS CALC) differences.<br />

Thus, besides the <strong>in</strong>strument noise (reduced with the<br />

noise filter<strong>in</strong>g, see Secti<strong>on</strong> 2.2.2 above), it also c<strong>on</strong>ta<strong>in</strong>s<br />

c<strong>on</strong>tributi<strong>on</strong>s from the model error. The full measurement<br />

error covariance matrix is now exploited. This also allows<br />

the correlati<strong>on</strong>s <strong>in</strong>troduced by the noise filter<strong>in</strong>g and the<br />

correlati<strong>on</strong>s due to model errors to be captured.<br />

2.4.2.3. Background a priori and covariance matrix, first<br />

guess. Until versi<strong>on</strong> 4.3, the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPFs were<br />

c<strong>on</strong>figured with a unique covariance matrix and n<strong>in</strong>e<br />

regi<strong>on</strong>al latitude-dependent a priori atmospheric state<br />

vectors which were based <strong>on</strong> the climatology established<br />

by Chevallier <strong>in</strong> 2001 from ECMWF analysis fields<br />

(<strong>in</strong> Chevallier F., 2001. ‘‘Sampled Database of 60 <strong>Level</strong>s<br />

Atmospheric Profiles from the ECMWF Analysis’’. Technical<br />

Report, ECMWF EUMETSAT SAF programme Research<br />

Report 4; ECMWF). In versi<strong>on</strong> 5.0, a global aprioriis used<br />

with a unique covariance matrix, computed from a<br />

collecti<strong>on</strong> of ECMWF analysis records cover<strong>in</strong>g all seas<strong>on</strong>s.<br />

The choice of a unique background rather than the coarse<br />

latitude stratificati<strong>on</strong> was made to avoid geographical<br />

disc<strong>on</strong>t<strong>in</strong>uities. With this c<strong>on</strong>figurati<strong>on</strong>, regi<strong>on</strong>al variati<strong>on</strong>s<br />

can also be expla<strong>in</strong>ed by the measurements rather than by<br />

the vary<strong>in</strong>g a priori.<br />

The atmospheric parameters to be retrieved are <strong>in</strong>itialised<br />

with the statistical <strong>retrievals</strong>, discussed <strong>in</strong> Secti<strong>on</strong><br />

2.4.1 above. The geophysical state vector has also a static<br />

part, i.e. <strong>on</strong>e that is not modified <strong>in</strong> successive iterati<strong>on</strong>s.<br />

For <strong>in</strong>stance, the profiles of CO2,CO,N2O and CH4 are set to<br />

the default trace gas profiles used <strong>in</strong> RTTOV-10 and kept<br />

fixed dur<strong>in</strong>g the iterati<strong>on</strong>s. Surface pressure and w<strong>in</strong>d<br />

vectors are obta<strong>in</strong>ed from ECMWF forecasts and the surface<br />

emissivity is either computed follow<strong>in</strong>g Masuda [15]<br />

over oceans or taken from a m<strong>on</strong>thly emissivity climatology<br />

database over land (see Secti<strong>on</strong> 2.1).<br />

2.5. The surface products<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

2.5.1. Land surface temperature<br />

The land surface temperature (LST) and land surface<br />

emissivity (LSE) enter<strong>in</strong>g the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 are currently taken<br />

from the statistical <strong>retrievals</strong> (Secti<strong>on</strong> 2.4.1). As part of the<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 validati<strong>on</strong> activities, the errors <strong>in</strong> the LST products<br />

were assessed by <strong>in</strong>ter-comparis<strong>on</strong> with the LST products<br />

generated at the Land Surface Analysis (LSA) SAF from the<br />

Sp<strong>in</strong>n<strong>in</strong>g Enhanced Visible and InfraRed Imager (SEVIRI)<br />

measurements acquired from the Meteosat Sec<strong>on</strong>d Generati<strong>on</strong><br />

(MSG) satellites, available <strong>in</strong> the EUMETSAT Earth<br />

Observati<strong>on</strong> data portal (https://eoportal.eumetsat.<strong>in</strong>t). This<br />

validati<strong>on</strong> study was therefore limited to the porti<strong>on</strong> of the<br />

Earth visible from the MSG geostati<strong>on</strong>ary <strong>orbit</strong>, namely<br />

ma<strong>in</strong>ly Africa, Europe and the Eastern part of South America.<br />

The short periodicity of the LSA LST products, repeated<br />

every 15 m<strong>in</strong>., however allowed very close temporal co<strong>in</strong>cidences<br />

between the two products which is essential as the<br />

surface sk<strong>in</strong> temperature diurnal variati<strong>on</strong>s can be as high<br />

as 6 1C/hforsomesoiltypes<strong>in</strong>deserts[47]. SEVIRIdata<br />

products from nom<strong>in</strong>al mode hav<strong>in</strong>g a spatial resoluti<strong>on</strong> of<br />

approximately 3 km at the sub-satellite po<strong>in</strong>t were used.<br />

The LSA-SAF product retrieved from SEVIRI measurements<br />

is based <strong>on</strong> a generalised split-w<strong>in</strong>dow algorithm<br />

us<strong>in</strong>g two adjacent channels—IR10.8 and IR12.0 mm. It<br />

was validated aga<strong>in</strong>st MODIS LST products and <strong>in</strong>-situ LST<br />

<strong>retrievals</strong> [48]. At night time, biases (standard deviati<strong>on</strong>)<br />

of around þ1.75 K (1.5 K) were found aga<strong>in</strong>st the former<br />

(LSA m<strong>in</strong>us MODIS) and of 1.7 K (2 K) aga<strong>in</strong>st the latter<br />

(LSA products be<strong>in</strong>g colder than <strong>in</strong>-situ <strong>retrievals</strong>).<br />

Each LSA LST comes with a quality flag <strong>in</strong>dicat<strong>in</strong>g the<br />

degree of c<strong>on</strong>fidence and the error associated with the<br />

retrieval. For this study, we <strong>on</strong>ly reta<strong>in</strong>ed the products with<br />

‘‘above nom<strong>in</strong>al’’ and ‘‘nom<strong>in</strong>al’’ quality for both the<br />

retrieved LST and surface emissivity. Departures (LSA SAF<br />

m<strong>in</strong>us <str<strong>on</strong>g>IASI</str<strong>on</strong>g>) were computed for each match-up where at<br />

least four good LSA LST <strong>retrievals</strong> were found with<strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

field of view. The match<strong>in</strong>g SEVIRI po<strong>in</strong>ts were averaged and<br />

used <strong>on</strong>ly if their standard deviati<strong>on</strong>s rema<strong>in</strong>ed lower than<br />

5 K to avoid highly heterogeneous scenes. The <strong>in</strong>ter-comparis<strong>on</strong>s<br />

were performed for day- and night-times separately<br />

to discrim<strong>in</strong>ate the effect of the different <strong>Metop</strong>/<br />

MSG–Sun–Surface geometry. At night-time the absence of<br />

solar illum<strong>in</strong>ati<strong>on</strong> allows a direct comparis<strong>on</strong> of the LST<br />

retrieved or modelled from different <strong>in</strong>struments. Dur<strong>in</strong>g<br />

daytime, the comparis<strong>on</strong> is affected by the different Sun–<br />

surface–<strong>in</strong>strument geometries, as a result of shadows due<br />

to orography or vegetati<strong>on</strong> for example. For a given place<br />

and time, the better the alignment between the <strong>in</strong>strument,<br />

the Sun and the scene, the smaller is the observed shadow<br />

fracti<strong>on</strong> and the warmer the sensed LST. This effect is visible<br />

<strong>in</strong> Fig. 13, where the LST–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> mean difference varies by 2 K<br />

with scan angle <strong>in</strong> daytime and rema<strong>in</strong>s c<strong>on</strong>stant to better<br />

than 0.5 K at night time. The statistics are computed for the<br />

overall SEVIRI doma<strong>in</strong> with the exclusi<strong>on</strong> of the Sahara,<br />

where the PPF LST <strong>retrievals</strong> dur<strong>in</strong>g daytime <strong>in</strong> particular<br />

exhibit large variances. The African Sahara and the Arabian<br />

Pen<strong>in</strong>sula were then isolated and the statistics specifically<br />

repeated for these particular soil types.<br />

Fig. 14 illustrates the average and standard deviati<strong>on</strong> of<br />

(LSA–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) LST between the 19 and 24 March 2010 at night<br />

time. The distributi<strong>on</strong>s of the departures dur<strong>in</strong>g day and<br />

night times, displayed <strong>in</strong> Fig. 15, are essentially Gaussians<br />

(red shape), with the excepti<strong>on</strong> of few outliers. The correlati<strong>on</strong><br />

between the two products is of 0.98 over n<strong>on</strong>-desert<br />

places and of 0.7 for the Sahara. The best agreements are<br />

achieved at night, where the rms errors amount to about 2 K<br />

with usual surfaces. Larger differences were found <strong>in</strong><br />

elevated regi<strong>on</strong>s and for bare arid soils <strong>in</strong> the Sahara and<br />

the Arabic Pen<strong>in</strong>sula with a particular m<strong>in</strong>eralogy, especially<br />

<strong>in</strong> the Rub’ Al Khali subregi<strong>on</strong>. In additi<strong>on</strong>, global comparis<strong>on</strong>s<br />

aga<strong>in</strong>st the ECMWF LST analyses for the same period<br />

were performed. The results are summarised <strong>in</strong> Table 5. Itis<br />

referred to the dedicated validati<strong>on</strong> report (August, 2010,<br />

‘‘<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 Surface Temperature: PPF v5 Validati<strong>on</strong> Results’’,<br />

EUM/MET/TEN/10/0188) for a more detailed analysis of the<br />

<strong>in</strong>ter-comparis<strong>on</strong> between the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 LST and LSA LST<br />

products as well as with the ECMWF analysis field.<br />

2.5.2. Land surface emissivity<br />

The land surface emissivity product is distributed <strong>in</strong> a<br />

pre-operati<strong>on</strong>al mode <strong>in</strong> 12 sampled channels. It has so<br />

far ma<strong>in</strong>ly been compared to the Global Infrared Land


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1355<br />

Fig. 13. LST (LSA–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) departures distributi<strong>on</strong> vs. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> scan positi<strong>on</strong><br />

(Nadir at step 15) <strong>in</strong> the 19–24 March 2010 period at night (top) and day<br />

(bottom) time.<br />

Surface Emissivity database [49] (see EUMETSAT report,<br />

Hultberg, 2010, ‘‘Surface Emissivity with<strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF<br />

v5’’, EUM/OPS-EPS/TEN/10/0203). Validati<strong>on</strong> studies are<br />

<strong>on</strong>go<strong>in</strong>g to characterise it further. In future <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

processor versi<strong>on</strong>s, the OEM will <strong>in</strong>gest these <strong>retrievals</strong><br />

as an <strong>in</strong>put <strong>in</strong>stead of the emissivity m<strong>on</strong>thly climatology<br />

<strong>in</strong>troduced <strong>in</strong> Secti<strong>on</strong> 2.1. Retrieval of the land surface<br />

emissivity simultaneously with the temperature and<br />

humidity profiles is also planned, with a positive impact<br />

expected <strong>in</strong> the lower troposphere.<br />

2.5.3. Sea surface temperature<br />

The sea surface temperature selected for the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

products is currently based <strong>on</strong> the EOF retrieval, where<br />

PCs of the first two <str<strong>on</strong>g>IASI</str<strong>on</strong>g> bands are used for the l<strong>in</strong>ear<br />

regressi<strong>on</strong> (EOF <strong>in</strong> Secti<strong>on</strong> 2.4.1). The validati<strong>on</strong> of this<br />

product <strong>in</strong>volved <strong>in</strong>ter-comparis<strong>on</strong>s with other spaceborne<br />

sensors and to <strong>in</strong>-situ measurements from drift<strong>in</strong>g<br />

buoys. They are summarised here.<br />

2.5.3.1. Comparis<strong>on</strong> to AATSR SST products. In an <strong>in</strong>itial<br />

assessment phase, the SST <strong>retrievals</strong> from the Advanced<br />

Al<strong>on</strong>g-Track Scann<strong>in</strong>g Radiometer (AATSR) were used as<br />

reference products. The reader is referred to Llewellyn-<br />

J<strong>on</strong>es et al., 2001 ‘‘AATSR: Global-change and surfacetemperature<br />

measurements from ENVISAT’’ <strong>in</strong> the<br />

European Space Agency (ESA) Bulett<strong>in</strong> 105, pp. 10–21<br />

(available <strong>on</strong>l<strong>in</strong>e at: http://www.esa.<strong>in</strong>t/esapub/bullet<strong>in</strong>/<br />

bullet105/bul105_1.pdf, last accessed 09/02/2012) for the<br />

descripti<strong>on</strong> of the <strong>in</strong>strument and of the missi<strong>on</strong><br />

objectives. As with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF, the AATSR processor<br />

is designed to retrieve the surface sk<strong>in</strong> temperature. The<br />

reference products <strong>in</strong> this study are the L2 ATS_NR_2P<br />

generated <strong>in</strong> the frame of the Group for High-Resoluti<strong>on</strong><br />

SST (GHRSST) [50] (www.ghrsst.org, last accessed 23/01/<br />

2012). They have a horiz<strong>on</strong>tal resoluti<strong>on</strong> of 1 km and were<br />

validated aga<strong>in</strong>st <strong>in</strong>-situ measurements (buoys and ships)<br />

and airborne radiometers [26]. The retrieval algorithm<br />

<strong>in</strong>cludes atmospheric correcti<strong>on</strong>s cover<strong>in</strong>g multi-spectral<br />

and dual-angle view capability. The L1 measurements<br />

underwent dedicated calibrati<strong>on</strong>s [51]. Ill<strong>in</strong>gworth et al.<br />

[52] evaluated the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AATSR radiance <strong>in</strong>tercalibrati<strong>on</strong><br />

at 11 and 12 mm and c<strong>on</strong>cluded that the<br />

brightness temperatures agreed with<strong>in</strong> 0.3 K, with even<br />

smaller differences of the order 0.1 K at 11 mm. The AATSR<br />

SST products are characterised by a slight warm bias of<br />

0.05 K at night (0.1 K for daytime) and by a typical<br />

standard deviati<strong>on</strong> of 0.25 K dur<strong>in</strong>g night-time (0.35 K<br />

dur<strong>in</strong>g day) [26,53].<br />

The <strong>in</strong>ter-comparis<strong>on</strong> was performed <strong>on</strong> the same 6day<br />

period (19–24 March 2010) used for the LST. As for<br />

the collocati<strong>on</strong> of AATSR pixels to <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOVs, <strong>on</strong>ly the<br />

clear cases as identified <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> process<strong>in</strong>g cha<strong>in</strong> were<br />

reta<strong>in</strong>ed where at least 200 good AATSR pixels (accord<strong>in</strong>g<br />

to the L2 SST quality flags) could be found <strong>in</strong> a radius of<br />

15 km around the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOV centre. Additi<strong>on</strong>ally, the<br />

match-ups were rejected if the standard deviati<strong>on</strong> of<br />

AATSR SST over the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> footpr<strong>in</strong>t exceeded 0.4 K <strong>in</strong> order<br />

to analyse homogeneous scenes <strong>on</strong>ly and limit the impact<br />

of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> po<strong>in</strong>t spread functi<strong>on</strong> <strong>in</strong> the <strong>in</strong>ter-comparis<strong>on</strong>s.<br />

A total of approximately 60,000 match-ups were f<strong>in</strong>ally<br />

c<strong>on</strong>sidered <strong>in</strong> this study.<br />

The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 SST has a global cold bias of 0.44 K and<br />

a standard deviati<strong>on</strong> of approximately 0.40 K. As seen<br />

<strong>in</strong> Fig. 5, the distributi<strong>on</strong>s of AATSR–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST have a<br />

Gaussian ma<strong>in</strong> mode, c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g at least 90% of the<br />

samples and peak<strong>in</strong>g at þ0.27 K. The standard deviati<strong>on</strong><br />

of the fitted Gaussian is also smaller and drops down to<br />

0.28 K at night-time, when AATSR products are expected<br />

to be the most accurate. A small fracti<strong>on</strong> (5–10%) of the<br />

<strong>retrievals</strong> lies outside this ma<strong>in</strong> mode. The associated<br />

departures are typically of 1–1.5 K (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> colder) but can <strong>on</strong><br />

rare occasi<strong>on</strong>s be as high as a few Kelv<strong>in</strong>. This asymmetric<br />

tail is mostly attributed to undetected clouds and aerosols<br />

(dust clouds) c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> as discussed <strong>in</strong> Secti<strong>on</strong> 2.2.5,


1356<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 14. LSA–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> LST mean (top) and standard deviati<strong>on</strong> (bottom) <strong>in</strong> the 19–24 March 2010 period.<br />

whichartificiallycoolstheretrievedSST.Thiseffectisshown<br />

<strong>in</strong> Fig. 16, where the differences (AATSR <str<strong>on</strong>g>IASI</str<strong>on</strong>g>) <strong>in</strong> SST <strong>in</strong> the<br />

Arabian Sea <strong>on</strong> 19/03/2010 correlate with higher dust load.<br />

The (AATSR–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) SST statistics computed outside the geographic<br />

areas with high aerosol optical depths, as identified<br />

with MODIS products, have a mean of approximately þ0.3 K<br />

and a standard deviati<strong>on</strong> of the same order. The current<br />

operati<strong>on</strong>al implementati<strong>on</strong> does not however <strong>in</strong>clude such<br />

an aerosol filter<strong>in</strong>g. These figures, although still theoretical as<br />

l<strong>on</strong>g as aerosols are not effectively detected, can be extrapolated<br />

to the sea areas which are climatologically clean of<br />

dust. Similar comparis<strong>on</strong>s were repeated with ECMWF<br />

analyses fields, which c<strong>on</strong>firmed the slight cold bias <strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

SST and the good precisi<strong>on</strong> assessed with AATSR. The<br />

departures from AATSR and ECMWF SST were assessed as a<br />

functi<strong>on</strong> of view<strong>in</strong>g geometry, which revealed a slight<br />

angular variati<strong>on</strong> of approximately 0.3 K amplitude <strong>in</strong> the<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST bias from Nadir to the swath edge.<br />

2.5.3.2. S<strong>in</strong>gle sensor error estimate and quality levels. To<br />

promote the use of comb<strong>in</strong>ed multiple SST datasets the SST<br />

community has agreed <strong>on</strong> a specificati<strong>on</strong> for all global<br />

satellite-derived level-2 SST products with<strong>in</strong> the GHRSST<br />

[50] (www.ghrsst.org, last accessed 23/01/2012). Highresoluti<strong>on</strong><br />

products are provided to the operati<strong>on</strong>al<br />

oceanographic, meteorological and climate community <strong>on</strong><br />

a daily basis <strong>in</strong> a comm<strong>on</strong> netCDF format. The GHRSST<br />

level-2 format is identified as ‘L2P’ and c<strong>on</strong>ta<strong>in</strong>s<br />

observati<strong>on</strong>al error estimates called S<strong>in</strong>gle Sensor Error<br />

Statistics (SSES). The good performances described <strong>in</strong> the<br />

previous secti<strong>on</strong> motivated the creati<strong>on</strong> of a dem<strong>on</strong>strati<strong>on</strong><br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST L2P product as a c<strong>on</strong>tributi<strong>on</strong> to the GHRSST, for<br />

which trial-dissem<strong>in</strong>ati<strong>on</strong> started <strong>on</strong> 24/03/2011. Six levels<br />

of quality are def<strong>in</strong>ed for the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2P SST from 0 to 5 with<br />

2 be<strong>in</strong>g the first usable quality and 5, the best quality.<br />

The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST error has been further estimated by<br />

comparis<strong>on</strong> to other satellite SST products, namely from


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1357<br />

Fig. 15. LST (LSA–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) distributi<strong>on</strong>s at day (left) and night (right) times, for n<strong>on</strong>-arid areas (top row) and Sahara (bottom row) <strong>in</strong> the 19–24 March 2010<br />

period.<br />

Table 5<br />

Summary of the respective (LSA,ECMWF–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) LST departures for the 19–24 March 2010 period: bias, standard deviati<strong>on</strong> and correlati<strong>on</strong> coefficient. In<br />

parentheses, the statistics of the Gaussian fitt<strong>in</strong>g the ma<strong>in</strong> mode.<br />

the <strong>in</strong>struments AVHRR/<strong>Metop</strong> and AATSR, as well as with<br />

drift<strong>in</strong>g buoy <strong>in</strong>-situ measurements, <strong>in</strong> order to establish<br />

SSES for <str<strong>on</strong>g>IASI</str<strong>on</strong>g>. A summary of the validati<strong>on</strong> approach and<br />

of the results is presented here (they are more exhaustively<br />

discussed <strong>in</strong> EUMETSAT validati<strong>on</strong> report from<br />

O’Carroll A., 2010, ‘‘Validati<strong>on</strong> of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2Pcore Sea Surface<br />

Temperature’’, EUM/MET/DOC/10/0472).<br />

Day Night<br />

Bias s r Bias s r<br />

LSA–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> No Sahara 0.6 ( 0.7) K 2.4 (1.8) K 0.97 1.6 ( 1.2) K 1.6 (1.0) K 0.99<br />

Sahara 1.7 ( 1.3) K 4.6 (3.3) K 0.75 4.4 ( 2.9) K 5.6 (3.0) K 0.65<br />

ECMWF–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> No mounta<strong>in</strong>s, no Poles, no Sahara 4.0 ( 3.2) K 3.6 (3.1) K 0.97 1.9 ( 0.9) K 2.9 (1.7) K 0.99<br />

Sahara 5.7 ( 5.4) K 5.7 (5.2) K 0.66 3.5 ( 2.3) K 5.0 (2.6) K 0.73<br />

Poles (Antarctica, Arctic) 2.9 ( 1.8) K 3.3 (2.5) K 0.92 3.6 ( 1.1) K 6.9 (2.0) K 0.83<br />

The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SSTs have been rout<strong>in</strong>ely compared to the<br />

EUMETSAT Ocean and Sea-Ice Satellite Applicati<strong>on</strong> Facility<br />

(OSI-SAF) AVHRR/<strong>in</strong> situ Matchup Dataset (MDB) (Le<br />

Borgne et al., ‘‘Operati<strong>on</strong>al SST retrieval from METOP/<br />

AVHRR validati<strong>on</strong> report’’, Ocean and Sea-Ice SAF CDOP<br />

report, Versi<strong>on</strong> 2.0, July 2008) to provide a multi-matchup<br />

dataset (MMD) of collocated <str<strong>on</strong>g>IASI</str<strong>on</strong>g>, AVHRR and drift<strong>in</strong>g


1358<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 16. Clear-sky (AATSR–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) SST plotted over an AVHRR image (visible channel) of the Arabian Sea <strong>on</strong> 19 March 2010. Land and clouds appear <strong>in</strong><br />

saturated white, dust loads colourlight grey.<br />

buoy SSTs. This MMD was used to determ<strong>in</strong>e the biases<br />

and errors of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SSTs. In order to enable direct<br />

comparis<strong>on</strong> with buoy sub-sk<strong>in</strong> SSTs, 0.17 K are added to<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> sk<strong>in</strong> SSTs <strong>after</strong> D<strong>on</strong>l<strong>on</strong> et al. [54], <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

provid<strong>in</strong>g the sk<strong>in</strong> surface temperature. Quality c<strong>on</strong>trol<br />

of the buoy data requires the buoy SSTs to be with<strong>in</strong> 5 K of<br />

climatology and a buoy blacklist supplied by the Ocean<br />

and Sea-Ice SAF (OSI-SAF) is used <strong>in</strong> additi<strong>on</strong>. As for the<br />

AVHRR products, the c<strong>on</strong>fidence flags are used to select<br />

good quality <strong>retrievals</strong> (QC flag 42) and match-ups are<br />

c<strong>on</strong>sidered if the AVHRR SST over an <str<strong>on</strong>g>IASI</str<strong>on</strong>g> footpr<strong>in</strong>t is less<br />

than 0.3 K. Additi<strong>on</strong>ally, al<strong>on</strong>g the GHRSST guidel<strong>in</strong>es, the<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> and <strong>in</strong> situ SST time difference must be with<strong>in</strong> 2 h;<br />

<strong>on</strong>ly drift<strong>in</strong>g buoys are used and <strong>on</strong>ly night-time <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

observati<strong>on</strong>s over sea are used <strong>in</strong> order to reduce diurnal<br />

variati<strong>on</strong>s.<br />

As the retrieval method does not provide an associated<br />

error estimate and a major error c<strong>on</strong>tributi<strong>on</strong> to SST<br />

<strong>retrievals</strong> is the amount of water vapour <strong>in</strong> the atmosphere<br />

[55], climatological SSTs are used to def<strong>in</strong>e <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

SST quality levels by stratificati<strong>on</strong> aga<strong>in</strong>st the <strong>in</strong>tegrated<br />

water vapour (IWV), <strong>in</strong> order to def<strong>in</strong>e the SSES thresholds<br />

and criteria. The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> water vapour profiles c<strong>on</strong>ta<strong>in</strong>ed<br />

<strong>in</strong> the L2 product are taken as <strong>in</strong>put. AVHRR, buoys and<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> match-up databases are rout<strong>in</strong>ely c<strong>on</strong>structed and<br />

the characterisati<strong>on</strong> of the errors <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SSTs, stratified<br />

aga<strong>in</strong>st the IWV is updated at EUMETSAT <strong>on</strong> a 6m<strong>on</strong>th<br />

basis to complete the <strong>in</strong>formati<strong>on</strong> <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST<br />

L2Pcore product. With the <strong>in</strong>troducti<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF<br />

v5, the bias <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SSTs compared to drift<strong>in</strong>g buoy<br />

SSTs, assessed between October 2010 and March 2011,<br />

gave a value of 0.3 K (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> colder) with a standard<br />

deviati<strong>on</strong> of 0.3 K. Comparis<strong>on</strong>s aga<strong>in</strong>st AVHRR SSTs gave<br />

a <str<strong>on</strong>g>IASI</str<strong>on</strong>g> SST bias of 0.33 K (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> colder) and standard<br />

deviati<strong>on</strong> of 0.28 K, over the same period. In additi<strong>on</strong>,<br />

given three different observati<strong>on</strong> sources, it is possible to<br />

estimate the overall standard deviati<strong>on</strong> of error of the<br />

observati<strong>on</strong> type [56], assum<strong>in</strong>g that the errors between<br />

the observati<strong>on</strong>s are uncorrelated. The global standard<br />

deviati<strong>on</strong> of errors us<strong>in</strong>g this method, over the period<br />

October 2010 to March 2011, are 0.26 K (<str<strong>on</strong>g>IASI</str<strong>on</strong>g>), 0.14 K<br />

(AVHRR), and 0.19 K (drift<strong>in</strong>g buoys).<br />

Future developments for this product will address the<br />

slight angular dependency and the <strong>in</strong>clusi<strong>on</strong> of the band 3<br />

(shorter wavelengths) <strong>in</strong> the retrieval at night time.<br />

Another aspect where improvements are anticipated is<br />

<strong>in</strong> the detecti<strong>on</strong> of dust layers with <str<strong>on</strong>g>IASI</str<strong>on</strong>g> for SST product<br />

quality flagg<strong>in</strong>g and possible correcti<strong>on</strong>.<br />

2.6. Temperature and humidity profiles<br />

2.6.1. Results of L<strong>in</strong>denberg validati<strong>on</strong> campaign<br />

To the first order, the validati<strong>on</strong> of remotely-sensed<br />

atmospheric profiles can c<strong>on</strong>sist of a level-to-level comparis<strong>on</strong><br />

with some <strong>in</strong>dependent representati<strong>on</strong> of the true<br />

atmospheric state. The reference data can be for <strong>in</strong>stance<br />

acquired <strong>in</strong>-situ by airborne, radio-s<strong>on</strong>de or drop-s<strong>on</strong>de<br />

systems. This is the approach followed <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> product<br />

assessment part of the ESA GlobVapour project, which<br />

aims at generat<strong>in</strong>g validated multi-annual global water<br />

vapour datasets with error estimates. (www.globvapour.<br />

<strong>in</strong>fo, last accessed 23/01/2012). One limitati<strong>on</strong> is that the<br />

retrieval and the reference system do not give a representati<strong>on</strong><br />

of the true state with the same vertical resoluti<strong>on</strong>.<br />

In fact, the OEM retrieval scheme dictates that the<br />

f<strong>in</strong>al retrieved state vector is a comb<strong>in</strong>ati<strong>on</strong> of the true<br />

state vector and of the a priori that c<strong>on</strong>stra<strong>in</strong>s Eq. (2).<br />

The a priori enters the retrieval for the porti<strong>on</strong>s of the


atmosphere where the measurements do not carry<br />

enough <strong>in</strong>formati<strong>on</strong> or are not given enough weight e.g.<br />

too large measurement noise <strong>in</strong> R <strong>in</strong> (2). Rodgers [45]<br />

showed that from (2) derives:<br />

^x ¼ Axv þðI AÞxa þe ð3Þ<br />

where ^x is the retrieved vector, enter<strong>in</strong>g the L2 product, x v<br />

is the true atmospheric state and xa the a priori profile. A<br />

is a matrix called the averag<strong>in</strong>g kernel, giv<strong>in</strong>g a measure<br />

of the vertical resoluti<strong>on</strong> and vertical sensitivity of a given<br />

parameter. I is the identity matrix and e is the retrieval<br />

error to be assessed. The trace of A gives a measure of the<br />

<strong>in</strong>dependent pieces of <strong>in</strong>formati<strong>on</strong> retrieved from the<br />

measurements, or degrees of freedom (DoF) for the<br />

retrieval [45]. They are smaller than the number of levels<br />

<strong>in</strong> the vertical grid and can vary with the atmospheric<br />

c<strong>on</strong>figurati<strong>on</strong>. For example, up to 14 and 10 DoFs <strong>in</strong> the<br />

temperature and water-vapour profiles retrieved from<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> for 2007 summer cases <strong>in</strong> L<strong>in</strong>denberg.<br />

Additi<strong>on</strong>ally, for n<strong>on</strong>-uniform and dynamic atmospheres,<br />

the reference data are a limited representati<strong>on</strong><br />

of the true state observed by the space-borne <strong>in</strong>strument<br />

because of unavoidable spatial and temporal n<strong>on</strong>-co<strong>in</strong>cidences<br />

between the correlative products. Pougatchev et<br />

al. [57] evaluated the errors <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 products<br />

versi<strong>on</strong> 4.3 with radio-s<strong>on</strong>des operated dur<strong>in</strong>g a dedicated<br />

validati<strong>on</strong> campaign at L<strong>in</strong>denberg, Germany.<br />

Between June and September 2007, Vaisala RS92-SGP<br />

radios<strong>on</strong>des were launched <strong>on</strong>e hour and <strong>five</strong> m<strong>in</strong>utes<br />

prior to <str<strong>on</strong>g>IASI</str<strong>on</strong>g> overpasses <strong>in</strong> order to sample the higher and<br />

lower troposphere simultaneously with <str<strong>on</strong>g>IASI</str<strong>on</strong>g> acquisiti<strong>on</strong>s<br />

(full documentati<strong>on</strong> <strong>on</strong> the campaign <strong>in</strong> the f<strong>in</strong>al report<br />

‘‘EUMETSAT Polar System Programme Atmospheric<br />

Sound<strong>in</strong>g Campaign’’). The study c<strong>on</strong>sidered <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 s<strong>in</strong>gle<br />

<strong>retrievals</strong> with<strong>in</strong> 100 km of L<strong>in</strong>denberg and evaluated the<br />

c<strong>on</strong>tributi<strong>on</strong> of the n<strong>on</strong>-co<strong>in</strong>cidences to the total error<br />

budget. In c<strong>on</strong>clusi<strong>on</strong>, the expected and the assessed<br />

errors <strong>in</strong> the operati<strong>on</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 are <strong>in</strong> good agreement<br />

between 800 (700) hPa and the tropopause for temperature<br />

(water vapour) <strong>retrievals</strong>, with typical error standard<br />

deviati<strong>on</strong> of 0.6 K between 800 and 300 hPa and <strong>in</strong>creas<strong>in</strong>g<br />

up to 2 K at the surface. The bias evaluated aga<strong>in</strong>st<br />

radios<strong>on</strong>des oscillates with<strong>in</strong> 70.5 K. For relative humidity<br />

(RH), the s<strong>in</strong>gle retrieval error is below 10% RH<br />

standard deviati<strong>on</strong> between 700 and 300 hPa and up to<br />

15% closer to the surface. The bias is with<strong>in</strong> 710% RH.<br />

Larger errors <strong>in</strong> the boundary layer were assumed <strong>in</strong> this<br />

Table 6<br />

Validati<strong>on</strong> classes def<strong>in</strong>iti<strong>on</strong>.<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1359<br />

study to be partly due to <strong>in</strong>correct surface parameters<br />

(e.g. emissivity) and undetected clouds or haze.<br />

2.6.2. Global assessment of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 profiles v4 vs v5<br />

Global error estimate are found by <strong>in</strong>ter-comparis<strong>on</strong>s<br />

to ECMWF analyses fields, which we summarise here. A<br />

detailed presentati<strong>on</strong> of the validati<strong>on</strong> strategy and the<br />

analyses can be c<strong>on</strong>sulted from EUMETSAT validati<strong>on</strong><br />

report ‘‘Vertical Temperature and Humidity Profiles<br />

with<strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF v5: N<strong>on</strong>-Regressi<strong>on</strong> Tests and Validati<strong>on</strong><br />

Results’’ (EUM/MET/TEN/09/0448), available <strong>on</strong>-l<strong>in</strong>e<br />

at: www.eumetsat.<strong>in</strong>t. In view of the <strong>in</strong>troducti<strong>on</strong> of the<br />

versi<strong>on</strong> 5, the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 temperature and humidity profiles<br />

of versi<strong>on</strong> 4 and versi<strong>on</strong> 5 have been compared to NWP<br />

analyses from ECMWF <strong>in</strong>tegrated forecast system (IFS) to<br />

characterise the improvements. The reference data used<br />

here are provided <strong>on</strong> a 0.51 0.51 geographical grid and<br />

are represented <strong>on</strong> a vary<strong>in</strong>g hybrid 91 pressure level<br />

vertical grid, def<strong>in</strong>ed for each po<strong>in</strong>t with the local surface<br />

pressure. They are available for the synoptic times 00, 06,<br />

12 and 18 UTC. The s<strong>in</strong>gle <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 <strong>retrievals</strong> were matched<br />

with the closest ECMWF latitude/l<strong>on</strong>gitude grid po<strong>in</strong>t and<br />

the corresp<strong>on</strong>d<strong>in</strong>g NWP profile was <strong>in</strong>terpolated <strong>on</strong>to the<br />

L2 product grid.<br />

The results obta<strong>in</strong>ed with two validati<strong>on</strong> datasets are<br />

reported here. The first <strong>on</strong>e is composed of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> products<br />

from 43 <strong>orbit</strong>s centred <strong>on</strong> the regular ECMWF analysis<br />

times. As a result, the associated reprocessed L2 v4 and v5<br />

<strong>retrievals</strong> are <strong>on</strong> average with<strong>in</strong> half-an-hour of the<br />

reference data. These 43 <strong>orbit</strong>s were randomly selected<br />

with weekly <strong>in</strong>tervals to span a n<strong>in</strong>e-m<strong>on</strong>th period runn<strong>in</strong>g<br />

from June 2007 to March 2008 and to equally<br />

represent the four analysis times aga<strong>in</strong>st which the<br />

validati<strong>on</strong> is performed. The sec<strong>on</strong>d data set addresses<br />

the full Earth coverage with c<strong>on</strong>secutive <strong>retrievals</strong> dur<strong>in</strong>g<br />

the period 19–24 March 2010. A time-<strong>in</strong>terpolati<strong>on</strong><br />

was applied to the vertically re-sampled analyses prior<br />

to comput<strong>in</strong>g the departures, <strong>in</strong> order to account for<br />

potential temporal n<strong>on</strong>-co<strong>in</strong>cidences. They both lead to<br />

c<strong>on</strong>sistent statistics and c<strong>on</strong>clusi<strong>on</strong>s. The statistics of <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2–ECMWF departures were analysed <strong>in</strong> n<strong>in</strong>e geographical<br />

and surface categories (descripti<strong>on</strong> <strong>in</strong> Table 6). They<br />

are reproduced here for the period 19–24 March 2010<br />

<strong>on</strong>ly, <strong>in</strong> Fig. 17 (temperature) and Fig. 18 (humidity).<br />

2.6.2.1. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 temperature vs. ECMWF analyses. The<br />

temperature enter<strong>in</strong>g the f<strong>in</strong>al L2 products is nom<strong>in</strong>ally<br />

Class Label Surface pressure (hPa) Surface type Latitude Time<br />

1 North Pole (NP) o1050 Land and sea 4601 Day and night<br />

2 North Sea 4900 Sea [301; 601] Day and night<br />

3 North land 4900 Land [301; 601] Day and night<br />

4 Elevated terra<strong>in</strong> o900 Land [ 601; 601] Day and night<br />

5 Intertropical Sea 4900 Sea [ 301; 301] Day and night<br />

6 Intertropical land 4900 Land [ 301; 301] Day and night<br />

7 South Pole o1050 Land and sea o 601 Day and night<br />

8 South Sea 4900 Sea [ 601; 301] Day and night<br />

9 South land 4900 Land [ 601; 301] Day and night


1360<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 17. Temperature vertical profile <strong>retrievals</strong>, departures from ECMWF analyses products (Retrieved—ECMWF). <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 <strong>retrievals</strong> shown <strong>in</strong> black and<br />

red corresp<strong>on</strong>d respectively to the PPFs v5.0.3 and v4.3.3. Dashed l<strong>in</strong>es denote the bias, while the standard deviati<strong>on</strong> and rms are plotted with th<strong>in</strong> and<br />

thick pla<strong>in</strong> l<strong>in</strong>es, respectively. The classes listed <strong>in</strong> Table 6 appear <strong>in</strong> order from left to right and top to bottom. (For <strong>in</strong>terpretati<strong>on</strong> of the references to<br />

colour <strong>in</strong> this figure legend, the reader is referred to the web versi<strong>on</strong> of this article.)<br />

selected from the OEM described <strong>in</strong> Secti<strong>on</strong> 2.4.2. The<br />

agreement between the temperature retrieval and the<br />

reference varies with the nature of the scene, the best<br />

matches occurr<strong>in</strong>g over ocean surfaces; outsides the<br />

Polar regi<strong>on</strong>s. The (<str<strong>on</strong>g>IASI</str<strong>on</strong>g>–ECMWF) departures <strong>in</strong>crease <strong>in</strong><br />

the boundary layer and are usually smaller for PPF v5<br />

than for PPF v4. The rms differences are typically 0.7–1 K<br />

(1–1.5 K) between 200 and 800 hPa, and <strong>in</strong>crease up to<br />

2 K (2.5 K) at lower atmospheric levels for PPF v5 (PPF<br />

v4). Over the c<strong>on</strong>t<strong>in</strong>ents, the PPF v5 still shows the<br />

same good statistics <strong>in</strong> the mid and upper troposphere<br />

while PPF v4 errors are larger by 1.5 K. Below<br />

800 hPa, however, both revisi<strong>on</strong>s exhibit similar errors,<br />

rang<strong>in</strong>g between 2.5 and 3.5 K <strong>on</strong> average. The same<br />

observati<strong>on</strong>s apply to the North Pole and the elevated<br />

surfaces. The highest disagreements are found over<br />

Antarctica, with rms differences exceed<strong>in</strong>g 4 K below<br />

600 hPa, where the models are also expected to have<br />

<strong>in</strong>tr<strong>in</strong>sically larger uncerta<strong>in</strong>ties.<br />

The bias oscillates vertically around 0 K for PPF v4,<br />

with an amplitude of approximately 1 K. This behaviour<br />

disappears with revisi<strong>on</strong> 5, whose products have a bias of<br />

about þ0.5 K rather c<strong>on</strong>stant with pressure level for n<strong>on</strong>polar<br />

land and ocean surfaces between pressure levels<br />

200 and 800 hPa. Closer to the surface however, the sign<br />

of the average departure changes and the bias can be as<br />

large as 3 K (for tropical land surfaces), sometimes even<br />

larger than the PPF v4 biases over land.


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1361<br />

Fig. 18. Same as previous figure, for water-vapour profiles <strong>in</strong> volume mix<strong>in</strong>g ratio.<br />

These departures were stratified aga<strong>in</strong>st the view<strong>in</strong>g<br />

angle to assess potential angular variati<strong>on</strong>s of the retrieval<br />

quality. The rms differences show an <strong>in</strong>crease of 0.5 K from<br />

the Nadir to the swath edge <strong>in</strong> the mid-troposphere for v4<br />

products, <strong>in</strong> both the bias and the standard deviati<strong>on</strong>,<br />

which is no l<strong>on</strong>ger present <strong>in</strong> the v5. An angular effect<br />

however rema<strong>in</strong>s <strong>in</strong> the bias closer to the surface with v5,<br />

with amplitude of about 1 K at 940 hPa. As the ECMWF<br />

analyses are <strong>in</strong>dependent of the scan angle, this effect is<br />

attributed to the retrieval scheme. The reas<strong>on</strong>s still need to<br />

be <strong>in</strong>vestigated, they could be due for <strong>in</strong>stance to scan<br />

angle dependent performances <strong>in</strong> the cloud detecti<strong>on</strong>.<br />

2.6.2.2. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 humidity vs. ECMWF analyses. Tests showed<br />

that the water-vapour profiles retrieved <strong>in</strong> the low<br />

troposphere with the OEM are essentially dom<strong>in</strong>ated by<br />

the a priori (see discussi<strong>on</strong>s <strong>in</strong> Secti<strong>on</strong> 2.6.1), yield<strong>in</strong>g large<br />

systematic errors. The f<strong>in</strong>al choice of retrieval for the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 product is c<strong>on</strong>figurable and, <strong>in</strong> the case of the watervapour,<br />

it was therefore decided for versi<strong>on</strong> 5 to select the<br />

first guess profiles retrieved with the EOF regressi<strong>on</strong> [19]<br />

<strong>in</strong>troduced <strong>in</strong> Secti<strong>on</strong> 2.4.1. The water vapour <strong>retrievals</strong><br />

perform differently depend<strong>in</strong>g <strong>on</strong> the scene and the overall<br />

water vapour c<strong>on</strong>tent. As with the temperature profiles,<br />

the retrieved profiles (with v4 and v5) and the modelled<br />

profiles are <strong>in</strong> good agreement down to 700–800 hPa, with<br />

an rms of about 10% relative humidity (RH) and no bias.<br />

C<strong>on</strong>sistently with the c<strong>on</strong>clusi<strong>on</strong>s drawn from the<br />

validati<strong>on</strong> with s<strong>on</strong>des, the departures are larger <strong>in</strong> the<br />

boundary layer, with an rms of the order of 20% RH. The<br />

retrieved relative humidity profiles for both PPF v4 and v5<br />

lie <strong>in</strong> a different range than the ECMWF analyses, usually<br />

with a much smaller dynamic. This is typically the case <strong>in</strong><br />

the Northern Hemisphere over oceans where the modelled


1362<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 19. Time series of the temperature errors at 700 hPa (bias: pla<strong>in</strong> l<strong>in</strong>e, standard deviati<strong>on</strong>: dash-l<strong>in</strong>es) with different satellite products (blue: AIRS,<br />

purple: <str<strong>on</strong>g>IASI</str<strong>on</strong>g>/NOAA, gold: <str<strong>on</strong>g>IASI</str<strong>on</strong>g>/EUMETSAT, green: UCAR, red: GFS forecastts) as evaluated aga<strong>in</strong>st collocated <strong>in</strong>-situ s<strong>on</strong>de measurements. (http://www.<br />

star.nesdis.noaa.gov/smcd/opdb/poes/NPROVS.php). (For <strong>in</strong>terpretati<strong>on</strong> of the references to color <strong>in</strong> this figure legend, the reader is referred to the web<br />

versi<strong>on</strong> of this article.)<br />

humidity at 980 hPa varies from 20% to 90% RH while PPF<br />

v5 (v4) spans a shorter 55–80% RH (30–70% RH) range. The<br />

best agreement is obta<strong>in</strong>ed <strong>in</strong> the tropics [301S; 301N] over<br />

land with a correlati<strong>on</strong> coefficient of 0.76 for PPF v5 and<br />

0.58 for PPF v4. The overall performances of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

humidity products v5 are otherwise comparable to the v4.<br />

2.6.2.3. M<strong>on</strong>itor<strong>in</strong>g aga<strong>in</strong>st s<strong>on</strong>des. The operati<strong>on</strong>al EUMET-<br />

SAT <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 products have been m<strong>on</strong>itored at the U.S.<br />

Nati<strong>on</strong>al Oceanic and Atmospheric Adm<strong>in</strong>istrati<strong>on</strong> (NOAA)<br />

<strong>in</strong> the scope of the NOAA Products Validati<strong>on</strong> System<br />

(NPROVS) which compiles datasets of collocated radios<strong>on</strong>de,<br />

drops<strong>on</strong>de and appended numerical weather predicti<strong>on</strong><br />

(NWP) data for comparis<strong>on</strong>s to satellites products [58].<br />

Each day, the statistics (mean and standard deviati<strong>on</strong>) for<br />

temperature and water vapour at selected pressure levels are<br />

computed and stored <strong>in</strong> view of m<strong>on</strong>thly and l<strong>on</strong>g-term<br />

trend visualisati<strong>on</strong>s for, am<strong>on</strong>g other <strong>in</strong>struments, the<br />

<strong>in</strong>frared sounders <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AIRS L2 products. Fig. 19,<br />

generated by the NPROVS <strong>on</strong>-l<strong>in</strong>e tool (http://www.star.<br />

nesdis.noaa.gov/smcd/opdb/poes/NPROVS.php, last accessed<br />

23/01/2012), shows the error and l<strong>on</strong>g-term trend for<br />

temperatures retrieved at 700 hPa from different spaceborne<br />

<strong>in</strong>struments. The operati<strong>on</strong>al EUMETSAT <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

product is displayed <strong>in</strong> gold, the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 produced at NOAA<br />

<strong>in</strong> purple, the AIRS L2 temperatures <strong>in</strong> blue and the <strong>retrievals</strong><br />

from the COSMIC (C<strong>on</strong>stellati<strong>on</strong> Observ<strong>in</strong>g System for<br />

Meteorology, I<strong>on</strong>osphere & Climate) missi<strong>on</strong> <strong>in</strong> green. In<br />

additi<strong>on</strong>, numerical weather predicti<strong>on</strong>s are shown <strong>in</strong> red.<br />

The black arrows <strong>in</strong>dicate the <strong>in</strong>troducti<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF<br />

v5. The improvement with respect to the former versi<strong>on</strong> as<br />

compared to the s<strong>on</strong>de measurements appears clearly <strong>in</strong> the<br />

bias (pla<strong>in</strong> thick l<strong>in</strong>e), which drops from about 1 K to around<br />

0.25 K, as well as <strong>in</strong> the standard deviati<strong>on</strong>, which is reduced<br />

by approximately 1 K. The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 v5 products also perform<br />

very well <strong>in</strong> comparis<strong>on</strong> to the other satellite products. These<br />

c<strong>on</strong>clusi<strong>on</strong>s apply at 500 hPa. At 300 hPa and higher, versi<strong>on</strong><br />

5 does not br<strong>in</strong>g an improvement, with <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 products<br />

hav<strong>in</strong>g good quality <strong>in</strong> comparis<strong>on</strong> to the other satellite<br />

products: the bias towards the s<strong>on</strong>des ranges between 0<br />

and 0.5 K and the standard deviati<strong>on</strong>s is around 1.5 K. At<br />

850 hPa, the departures are larger: the standard deviati<strong>on</strong> is<br />

around 2.5 K for all satellite products and EUMETSAT <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

temperature shows larger biases larger than NOAA’s<br />

temperatures, by 1–1.5 K <strong>on</strong> average, at the level of the<br />

biases characterised for AIRS products. As for the watervapour,<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 v5 is comparable to v4, as c<strong>on</strong>cluded <strong>in</strong><br />

the previous secti<strong>on</strong>, with departures from <strong>in</strong>-situ<br />

measurements usually slightly larger than for the other<br />

satellite products analysed <strong>in</strong> NPROVS. The reas<strong>on</strong>s for<br />

these relative larger errors are still under <strong>in</strong>vestigati<strong>on</strong>s and<br />

current developments address a different c<strong>on</strong>figurati<strong>on</strong> (e.g.<br />

channel selecti<strong>on</strong>, land surface emissivity <strong>in</strong>puts) as well as<br />

the jo<strong>in</strong>t use of <strong>in</strong>dependent <strong>in</strong>formati<strong>on</strong> from the microwave<br />

measurements, less sensitive to cloud-c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>, to<br />

c<strong>on</strong>stra<strong>in</strong> the <strong>retrievals</strong> <strong>in</strong> the lower troposphere.<br />

2.7. The atmospheric compositi<strong>on</strong> products<br />

2.7.1. Oz<strong>on</strong>e products and reference datasets<br />

The <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 O 3 product c<strong>on</strong>sists of a total and three partial<br />

columns from ground to 478.54 hPa ( 6km), 222.94hPa


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1363<br />

( 12 km) and 132.49 hPa ( 16 km). The vertical profile<br />

result<strong>in</strong>g from the OEM (see Secti<strong>on</strong> 2.4.2) is<strong>in</strong>tegratedto<br />

form these columnar amounts and is <strong>in</strong>cluded <strong>in</strong> the f<strong>in</strong>al<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 product. Only the total column is currently distributed<br />

as an operati<strong>on</strong>al product. The partial columns are still<br />

subject to further validati<strong>on</strong> and development.<br />

The validati<strong>on</strong> of the total column (TC) retrieved from<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements <strong>in</strong>volved comparis<strong>on</strong>s to O3 <strong>retrievals</strong><br />

generated by the EUMETSAT SAF <strong>on</strong> oz<strong>on</strong>e and Atmospheric<br />

Chemistry M<strong>on</strong>itor<strong>in</strong>g (O3MSAF) from the Global<br />

Oz<strong>on</strong>e M<strong>on</strong>itor<strong>in</strong>g Experiment-2 (GOME-2) <strong>in</strong>strument, <strong>on</strong><br />

<strong>Metop</strong>-A. This was d<strong>on</strong>e as part of the EUMETSAT <strong>in</strong>ternal<br />

calibrati<strong>on</strong> and validati<strong>on</strong> activities <strong>on</strong> EPS and was completed<br />

by an external study performed by the ‘‘Laboratoire<br />

Atmospheres, Milieux, Observati<strong>on</strong>s Spatiales’’ (LATMOS),<br />

France. GOME-2 is a nadir view<strong>in</strong>g scann<strong>in</strong>g ultraviolet and<br />

visible spectrometer cover<strong>in</strong>g 240–790 nm with spectral<br />

resoluti<strong>on</strong> vary<strong>in</strong>g from 0.26 to 0.51 nm that allows the<br />

daytime retrieval of O 3 am<strong>on</strong>g other species, such as NO 2,<br />

SO2, BrO, OClO and CH2O. It has a ground pixel size of<br />

80 40 km 2 and a swath width of 1920 km comparable to<br />

that of <str<strong>on</strong>g>IASI</str<strong>on</strong>g>, which provides an almost daily global coverage.<br />

For more details, see Munro et al., 2006 (‘‘GOME-2 <strong>on</strong><br />

<strong>Metop</strong>: From <strong>in</strong>-<strong>orbit</strong> verificati<strong>on</strong> to rout<strong>in</strong>e operati<strong>on</strong>s’’,<br />

proceed<strong>in</strong>gs of EUMETSAT Meteorological Satellite C<strong>on</strong>ference,<br />

2006, Hels<strong>in</strong>ki). The accuracy of the GOME-2 O3 TC<br />

product had been assessed us<strong>in</strong>g ground-based <strong>retrievals</strong><br />

from Dobs<strong>on</strong> and Brewer measurements as references [59].<br />

It is shown to have little bias, vary<strong>in</strong>g with locati<strong>on</strong>, seas<strong>on</strong><br />

and view<strong>in</strong>g geometry (e.g. solar zenith and satellite<br />

scann<strong>in</strong>g angles) between 1% and 1% generally, with<br />

larger systematic errors <strong>in</strong> the tropics ( 2–3%). The<br />

standard deviati<strong>on</strong>s typically range from 4–5% with high<br />

correlati<strong>on</strong> score ( 0.94) between the satellite and the<br />

ground-based products.<br />

2.7.2. Intercomparis<strong>on</strong> results<br />

We extract here<strong>after</strong> a summary of the methodology<br />

and the outcome of the external validati<strong>on</strong> study performed<br />

by George and Clerbaux (LATMOS) <strong>in</strong> 2010. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> O 3<br />

TC from the m<strong>on</strong>th of August 2009, reprocessed with the<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF v5, were compared with available observati<strong>on</strong>s<br />

from the thermal <strong>in</strong>frared satellite missi<strong>on</strong>s Aqua/AIRS [7]<br />

and from GOME-2/<strong>Metop</strong>. The reader is referred to the<br />

f<strong>in</strong>al report (George and Clerbaux, July 2010, ‘‘Validati<strong>on</strong><br />

Study for <str<strong>on</strong>g>IASI</str<strong>on</strong>g> Trace Gas Retrievals’’) for full details. The<br />

comparis<strong>on</strong> was performed for cloud-free <strong>retrievals</strong> (as per<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 flags) <strong>on</strong> m<strong>on</strong>thly averages over a 11 11 latitude/<br />

l<strong>on</strong>gitude grid. The correlati<strong>on</strong> between the O3 TC from<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> and with the two reference products is about 0.9. The<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> products are <strong>on</strong> average 1.5% higher than the operati<strong>on</strong>al<br />

product from GOME-2 (day) and approximately also<br />

1.5% lower than the AIRS (day and night) <strong>retrievals</strong>. The<br />

best agreement is found <strong>in</strong> the Southern Hemisphere<br />

(latitude <strong>in</strong> [451S; 151S]), where EUMETSAT <str<strong>on</strong>g>IASI</str<strong>on</strong>g> products<br />

show a slight positive bias of 0.35% aga<strong>in</strong>st GOME-2 O 3 TC<br />

and 0.43% (0.37% night) aga<strong>in</strong>st AIRS products. The correlati<strong>on</strong>s<br />

are of 0.97 and 0.95 (0.96 at night) with GOME-2 and<br />

AIRS products, respectively.<br />

In the background regi<strong>on</strong>s with low c<strong>on</strong>centrati<strong>on</strong>s,<br />

the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> O3 is larger than <strong>in</strong> the GOME-2 and AIRS<br />

products. In the <strong>in</strong>ter-tropical band (latitudes between<br />

[151S; 151N]), the bias <strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> products is of 2.1% and the<br />

departures are with<strong>in</strong> 0% and 5%. The correlati<strong>on</strong> is of<br />

0.93. In c<strong>on</strong>trast, the range of differences with AIRS is<br />

much broader, spann<strong>in</strong>g a 10–15% <strong>in</strong>terval. The correlati<strong>on</strong><br />

coefficient between these <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AIRS data samples<br />

is of 0.69 <strong>on</strong>ly. These m<strong>on</strong>thly average results are c<strong>on</strong>sistent<br />

with a pixel-to-pixel <strong>in</strong>ter-comparis<strong>on</strong> study performed<br />

at EUMETSAT for the period 19–24 March 2010 at<br />

latitudes below 701. Fig. 20 shows the maps (GOME-2–<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) bias and standard deviati<strong>on</strong>. Quantitatively, <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

products have an overall positive bias of approximately<br />

2.6%, with standard deviati<strong>on</strong>s below 3%. Larger discrepancies<br />

are observed over the Sahara, with s gett<strong>in</strong>g as<br />

high as 6–9%, which are assumed to result from <strong>in</strong>accurate<br />

surface parameter sett<strong>in</strong>gs and possible dust c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>;<br />

<strong>in</strong>vestigati<strong>on</strong>s are still <strong>on</strong>go<strong>in</strong>g <strong>in</strong> this area. As<br />

reported <strong>in</strong> the validati<strong>on</strong> of GOME-2 products with<br />

ground-based data, the average relative difference<br />

(GOME-2 <str<strong>on</strong>g>IASI</str<strong>on</strong>g>) varies with latitude from about 4% (<str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

higher) around the Equator and <strong>in</strong> Southern tropical<br />

latitudes to little or no bias (o1%) at Northern midlatitudes.<br />

Not presented here, the departures assessed as a<br />

functi<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> scan positi<strong>on</strong> and showed disc<strong>on</strong>t<strong>in</strong>uities<br />

of the order of 1% which are attributed to scan<br />

angle dependencies, known and corrected for <strong>in</strong> the<br />

reference product [59].<br />

In a sec<strong>on</strong>d step, the operati<strong>on</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g> O3 TC was<br />

compared to the research products generated at the ‘‘Université<br />

Libre de Bruxelles’’ (ULB) <strong>in</strong> collaborati<strong>on</strong> with the<br />

LATMOS [25,60]. They are based <strong>on</strong> the retrieval software<br />

Fast Optimal Retrievals <strong>on</strong> Layers for <str<strong>on</strong>g>IASI</str<strong>on</strong>g> (FORLI) [61],<br />

implement<strong>in</strong>g an OEM <strong>after</strong> Rodgers [45], and the radiative<br />

transfer model Atmosphit. Independent validati<strong>on</strong> of this<br />

product were carried out with ground-based <strong>retrievals</strong> by<br />

Ant<strong>on</strong> et al. [62] over the Iberian Pen<strong>in</strong>sula as well as with<br />

<strong>in</strong>-situ s<strong>on</strong>de measurements (G. Dufour, 2011, <strong>in</strong> discussi<strong>on</strong>:<br />

‘‘Validati<strong>on</strong> of three different scientific oz<strong>on</strong>e products<br />

retrieved from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectra us<strong>in</strong>g oz<strong>on</strong>es<strong>on</strong>des’’, Atmos.<br />

Meas. Tech. Discuss., 4, 5425–5479, 2011, doi:10.5194/<br />

amtd-4-5425-2011). In [62] FORLI-O3 <strong>retrievals</strong> are shown<br />

to overestimate the O 3 TC by 4.4%, with standard deviati<strong>on</strong>s<br />

of error of 3– 5%. Dufour, 2011, evaluated the global error<br />

budget to approximately 5%. The correlati<strong>on</strong> with reference<br />

O3 TC is high <strong>in</strong> both studies, usually above 0.9.<br />

EUMETSAT reprocessed v5 and FORLI O 3 TC were<br />

directly <strong>in</strong>ter-compared for the whole m<strong>on</strong>th of August<br />

2009, <strong>on</strong> a pixel-to-pixel basis. The two products correlate<br />

well, with a global correlati<strong>on</strong> coefficient larger than 0.9.<br />

The overall (EUMETSAT–FORLI) biases (and associated<br />

standard deviati<strong>on</strong>) are 1.7% (3.6%) for day time and<br />

2.1% (3.6%) for night time. EUMETSAT O 3 values are<br />

generally smaller than FORLI and, <strong>in</strong> the light of FORLI<br />

validati<strong>on</strong> results referred to previously, have less bias<br />

with respect to the true O3 c<strong>on</strong>centrati<strong>on</strong>s. The best<br />

correlati<strong>on</strong>s are observed <strong>in</strong> the Southern Hemisphere<br />

(latitudes [ 451; 151]) where high O3 c<strong>on</strong>centrati<strong>on</strong>s<br />

are measured, with correlati<strong>on</strong> coefficients of 0.96 (for<br />

day and night time). In this regi<strong>on</strong>, the mean biases (and<br />

associated standard deviati<strong>on</strong>) are 2.2% (2.7%) for day<br />

time and 2.5% (2.6%) for night time. Specific topical case


1364<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 20. Maps of the (GOME-2–<str<strong>on</strong>g>IASI</str<strong>on</strong>g> v5) O 3 relative bias (top) and standard deviati<strong>on</strong> (bottom) for the period 19–24 March 2010.<br />

studies were performed <strong>in</strong> 51 51 latitude/l<strong>on</strong>gitude<br />

boxes, address<strong>in</strong>g regi<strong>on</strong>s of high O 3 c<strong>on</strong>centrati<strong>on</strong>s<br />

(e.g. al<strong>on</strong>g Polar vortex) and background O3 regi<strong>on</strong>s (such<br />

as the mid-Atlantic, Tropical forests and Africa), as well as<br />

over polluted (Ch<strong>in</strong>a) and urban (Teheran and San Francisco)<br />

areas. They c<strong>on</strong>firmed the global figures, but with<br />

larger amplitude with high O3 load (bias 3.5%) as<br />

compared to O 3 background locati<strong>on</strong>s (bias 1.8%).<br />

As part of the C<strong>on</strong>t<strong>in</strong>uous Development and Operati<strong>on</strong>s<br />

Phase (CDOP-2) of the O3M-SAF (o3msaf.fmi.fi), the<br />

FORLI-O3 algorithm will be <strong>in</strong>tegrated to the operati<strong>on</strong>al<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 process<strong>in</strong>g cha<strong>in</strong>. Additi<strong>on</strong>al validati<strong>on</strong> work is<br />

foreseen, <strong>in</strong>clud<strong>in</strong>g comparis<strong>on</strong> to oz<strong>on</strong>e s<strong>on</strong>des and<br />

additi<strong>on</strong>al satellite products.<br />

2.7.3. Carb<strong>on</strong> m<strong>on</strong>oxide 1<br />

The operati<strong>on</strong>al CO product <strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 v5 is the total<br />

column amount retrieved with the artificial neural<br />

1 The studies <strong>in</strong>volv<strong>in</strong>g real <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements were performed<br />

with the pixels 3 and 4 <strong>on</strong>ly. Because of an <strong>in</strong>ter-pixel difference <strong>in</strong> the<br />

L1C radiances (which is not discussed <strong>in</strong> this paper), mostly affect<strong>in</strong>g the<br />

CO and N 2O regi<strong>on</strong> and to which the CO retrieval was sensitive, the<br />

network <strong>in</strong>troduced <strong>in</strong> Secti<strong>on</strong> 2.4.1. As such, it does not<br />

<strong>in</strong>clude vertical sensitivity and error estimates, as can be<br />

obta<strong>in</strong>ed with the OEM for other parameters. Similar to O3<br />

<strong>in</strong> Secti<strong>on</strong> 2.7.1, its performance was first assessed <strong>in</strong>ternally<br />

at EUMETSAT and the validati<strong>on</strong> was completed by an<br />

external study performed by LATMOS. We present here a<br />

summary of the rati<strong>on</strong>ale and outcome of the performance<br />

assessments characteris<strong>in</strong>g the updated CO product which<br />

became operati<strong>on</strong>al <strong>on</strong> 14/09/2010, with the release of the<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 v5. This addresses the theoretical accuracy as well<br />

as <strong>in</strong>ter-comparis<strong>on</strong> with other satellite products.<br />

2.7.3.1. Theoretical performances. The theoretical performances<br />

can be assessed with the database used to teach<br />

the artificial neural network. An overview of its compositi<strong>on</strong><br />

and associated results is given here, a more detailed<br />

(footnote c<strong>on</strong>t<strong>in</strong>ued)<br />

operati<strong>on</strong>al producti<strong>on</strong> of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 CO (and N 2O) TC <strong>on</strong> pixels 1 and 2 was<br />

<strong>in</strong>terrupted with the release of the PPF v5. The radiance <strong>in</strong>ter-pixel<br />

difference was reduced with an update of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1c process<strong>in</strong>g cha<strong>in</strong><br />

<strong>on</strong> 07/02/2011 and the producti<strong>on</strong> of L2 <strong>retrievals</strong> for the four IFOVs<br />

resumed <strong>on</strong> 14/03/2011.


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1365<br />

Fig. 21. CO absolute (left) and relative (right) tra<strong>in</strong><strong>in</strong>g errors. The overall statistics are displayed <strong>in</strong> black while the fitt<strong>in</strong>g Gaussian and associated<br />

numbers are shown <strong>in</strong> red. (For <strong>in</strong>terpretati<strong>on</strong> of the references to color <strong>in</strong> this figure legend, the reader is referred to the web versi<strong>on</strong> of this article.)<br />

presentati<strong>on</strong> and discussi<strong>on</strong> <strong>on</strong> the performance is available<br />

<strong>on</strong>-l<strong>in</strong>e <strong>in</strong> EUMETSAT Technical Note EUM/MET/TEN/09/<br />

0232 cited <strong>in</strong> Secti<strong>on</strong> 2.4.1. The tra<strong>in</strong><strong>in</strong>g base approximately<br />

c<strong>on</strong>ta<strong>in</strong>s 200,000 patterns made up of atmospheric<br />

state vectors and their associated synthetic <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectra<br />

computed with RT<str<strong>on</strong>g>IASI</str<strong>on</strong>g>-5.3. The atmospheric temperature,<br />

humidity surface pressure and w<strong>in</strong>d comp<strong>on</strong>ents are based<br />

<strong>on</strong> the climatological database from Chevallier, 2001, cited<br />

<strong>in</strong> Secti<strong>on</strong> 2.4.2.3. As trace gas profiles are not part of this<br />

dataset, they were generated to cover the whole range<br />

of expected situati<strong>on</strong>s with random variati<strong>on</strong>s around<br />

standard profiles. In the case of CO, the vertical distributi<strong>on</strong>s<br />

are based <strong>on</strong> 43 orig<strong>in</strong>al profiles sampled by D.<br />

Cunnold, 2001 (pers<strong>on</strong>al communicati<strong>on</strong>) from the<br />

MOZART 3D chemical transport model calculati<strong>on</strong>s [63].<br />

To generate a realistic and c<strong>on</strong>t<strong>in</strong>uous set of scenarios for<br />

CO, the selected profile was subsequently randomly either<br />

left unchanged or varied by add<strong>in</strong>g up to half of the<br />

variability (max m<strong>in</strong>) of the mix<strong>in</strong>g ratio <strong>in</strong> the basic 43level<br />

modelled vertical distributi<strong>on</strong>s. By c<strong>on</strong>structi<strong>on</strong>, the<br />

tra<strong>in</strong><strong>in</strong>g set, which can be seen as the background <strong>in</strong> the<br />

OEM, is characterised by a high vertical correlati<strong>on</strong>. As for<br />

surface parameters, elevated areas are by essence <strong>in</strong>cluded<br />

<strong>in</strong> the tra<strong>in</strong><strong>in</strong>g set which also comprises a wide range of<br />

surface types. Over water, the surface emissivity was<br />

computed analytically [15,16]. Ground emissivities were<br />

derived from the MODIS UCSB emissivity library as<br />

follows: based <strong>on</strong> the spectra of pure surfaces, composite<br />

surfaces have been generated with random c<strong>on</strong>tributi<strong>on</strong>s<br />

from up to three different types, exclud<strong>in</strong>g however<br />

comb<strong>in</strong>ati<strong>on</strong>s like snow/ice at tropical temperatures.<br />

Random noise as per the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>strument noise<br />

characteristics was added to the <strong>in</strong>put radiances <strong>in</strong> order<br />

to regularise the tra<strong>in</strong><strong>in</strong>g [64]. Neither clouds nor aerosols<br />

were <strong>in</strong>cluded to compute the synthetic radiances such that<br />

the networks learnt pure clear cases <strong>on</strong>ly, which are also<br />

subsequently their nom<strong>in</strong>al doma<strong>in</strong> of validity.<br />

The teach<strong>in</strong>g database was split <strong>in</strong>to a tra<strong>in</strong><strong>in</strong>g and a<br />

c<strong>on</strong>trol set. To avoid overtra<strong>in</strong><strong>in</strong>g, i.e. the net becom<strong>in</strong>g too<br />

specific to the tra<strong>in</strong><strong>in</strong>g patterns and los<strong>in</strong>g its generalisati<strong>on</strong><br />

ability, <strong>on</strong>e m<strong>on</strong>itors the retrieval error of the c<strong>on</strong>trol set and<br />

stops the learn<strong>in</strong>g before it starts diverg<strong>in</strong>g from the tra<strong>in</strong><strong>in</strong>g<br />

error. The correlati<strong>on</strong> between retrieved and target columns<br />

is 0.99 and the l<strong>in</strong>ear relati<strong>on</strong> is very close to unity (slope<br />

0.97). Due to the n<strong>on</strong>-l<strong>in</strong>ear nature of the MLP, the errors<br />

are not statistically Gaussian-like, as can be seen <strong>in</strong> Fig. 21.<br />

The absolute rms error typically lies between 0.2 and<br />

0.24 10 18 molecule/cm 2 (Fig. 21, left) and is <strong>in</strong>dependent<br />

of the column density itself (not shown here). As a result, the<br />

relative errors are higher for the th<strong>in</strong>nest columns. For total<br />

columns higher than 0.7 10 18 molecule/cm 2 , the relative<br />

error ranges from 7% to 11% standard deviati<strong>on</strong> with small<br />

bias below 1%. These figures are c<strong>on</strong>sistent with an error of<br />

11% as characterised <strong>in</strong> a <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 CO product assimilati<strong>on</strong><br />

experiment <strong>in</strong> the chemistry and transport model MOCAGE<br />

[65] (El Amraoui 2011, pers<strong>on</strong>al communicati<strong>on</strong>).<br />

2.7.3.2. Intercomparis<strong>on</strong>s with other satellite products.<br />

Follow<strong>in</strong>g the approach of George et al. [66], the<br />

characteristics of the operati<strong>on</strong>al CO product were<br />

evaluated aga<strong>in</strong>st other space-borne CO products, with<br />

l<strong>on</strong>ger operati<strong>on</strong>al and validati<strong>on</strong> heritage. Namely, they<br />

are <strong>retrievals</strong> from the Measurement Of Polluti<strong>on</strong> In The<br />

Troposphere (MOPITT) <strong>in</strong>strument, from Aqua/AIRS and<br />

from the Tropospheric Emissi<strong>on</strong> Spectrometer (TES)<br />

<strong>on</strong>board Terra. We summarise here<strong>after</strong> the results of the<br />

comparis<strong>on</strong>s aga<strong>in</strong>st MOPITT CO as obta<strong>in</strong>ed at EUMETSAT<br />

and <strong>in</strong> the frame of the external study performed by<br />

George and Clerbaux (LATMOS). The full details can be<br />

c<strong>on</strong>sulted <strong>on</strong>-l<strong>in</strong>e (www.eumetsat.<strong>in</strong>t) <strong>in</strong> the EUMETSAT<br />

technical Note EUM/MET/TEN/09/0232, and <strong>in</strong> the<br />

validati<strong>on</strong> report (George, July 2010) cited <strong>in</strong> Secti<strong>on</strong> 2.7.2.<br />

MOPITT is part of the polar <strong>orbit</strong><strong>in</strong>g Terra satellite<br />

payload and was launched <strong>in</strong> December 1999. The ground<br />

pixel size is larger than for <str<strong>on</strong>g>IASI</str<strong>on</strong>g>, 22 22 km 2 at Nadir, and<br />

has a swath width approximately half the size of <str<strong>on</strong>g>IASI</str<strong>on</strong>g>’s,<br />

allow<strong>in</strong>g a global coverage <strong>in</strong> 3 days. Terra and <strong>Metop</strong> are<br />

<strong>on</strong> sun-synchr<strong>on</strong>eous Polar <strong>orbit</strong>s, with slightly different<br />

parameters and a descend<strong>in</strong>g node at 10.30 and 09.30,<br />

respectively, such that correlative <str<strong>on</strong>g>IASI</str<strong>on</strong>g> and MOPITT


1366<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 22. CO total column retrieved from MOPITT (top) and <str<strong>on</strong>g>IASI</str<strong>on</strong>g> (bottom) dur<strong>in</strong>g 25–31 August 2008.<br />

sens<strong>in</strong>g were distant by <strong>on</strong>e hour <strong>on</strong> average <strong>in</strong> this study.<br />

The MOPITT CO versi<strong>on</strong> 3 products were used <strong>in</strong> this<br />

work. They are based <strong>on</strong> the observati<strong>on</strong>s <strong>in</strong> the 4.7 mm<br />

CO fundamental band <strong>on</strong>ly and exploit the same spectral<br />

regi<strong>on</strong> as the <strong>retrievals</strong> from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements. The<br />

profiles are retrieved <strong>on</strong> 7 vertical levels us<strong>in</strong>g a n<strong>on</strong>l<strong>in</strong>ear<br />

optimal estimati<strong>on</strong> method <strong>in</strong>clud<strong>in</strong>g a unique and<br />

global a priori [67]. They are distributed with the <strong>in</strong>tegrated<br />

total column, an estimate of vertical sensitivity<br />

(c<strong>on</strong>tributi<strong>on</strong> of background a priori vs. retrieved <strong>in</strong>formati<strong>on</strong>)<br />

and a cloud mask (no <strong>retrievals</strong> <strong>in</strong> cloudy pixels).<br />

The degrees of freedom for signal, i.e. the number of<br />

<strong>in</strong>dependent pieces of <strong>in</strong>formati<strong>on</strong> <strong>in</strong> the retrieved profiles,<br />

are usually maximal <strong>in</strong> the tropics, where they do<br />

not exceed 2, and drop down to 1 or even below 1 at mid<br />

and Polar latitudes [68].<br />

In the assessment performed at EUMETSAT, we compared<br />

s<strong>in</strong>gle <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>retrievals</strong> to L3 Daily MOPITT CO total<br />

column, gridded <strong>in</strong> 11 11 l<strong>on</strong>gitude/latitude b<strong>in</strong>s for<br />

daytime and night time sens<strong>in</strong>g separately. Departures<br />

were computed for the whole m<strong>on</strong>ths of August and<br />

November 2008 between each cloud-free <str<strong>on</strong>g>IASI</str<strong>on</strong>g> IFOV (as<br />

per <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 flags) and the average retrieval <strong>in</strong> the corresp<strong>on</strong>d<strong>in</strong>g<br />

day/night nearest MOPITT product grid po<strong>in</strong>t.<br />

The MOPITT CO profiles with average c<strong>on</strong>tributi<strong>on</strong>s from<br />

the background a priori larger than 50% were discarded<br />

from the <strong>in</strong>ter-comparis<strong>on</strong>. This mostly occurs at higher<br />

latitudes or at night, when the surface cools down and has<br />

no thermal c<strong>on</strong>trast with the boundary layer [25]. Asan<br />

example, we present qualitative comparis<strong>on</strong> MOPITT vs.<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO for the last week <strong>in</strong> August 2008 <strong>in</strong> Fig. 22. The<br />

ma<strong>in</strong> CO patterns are observed <strong>in</strong> both products: biomass<br />

burn<strong>in</strong>g <strong>in</strong> Africa and South-America, as well as polluti<strong>on</strong><br />

<strong>in</strong> Eastern Asia, transported out over the Pacific and<br />

between North America and Europe [69]. Differences<br />

between the two products are visible <strong>in</strong> the Sahara, off<br />

the coast of California and west coast of South America.<br />

The latter discrepancy is likely caused by undetected<br />

clouds <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 process<strong>in</strong>g as there is no or little<br />

counterpart <strong>in</strong> the MOPITT products, which are generated<br />

for clear-sky <strong>on</strong>ly. Quantitatively, the global correlati<strong>on</strong> is<br />

of 0.82 and 0.79 for August and November, respectively.<br />

The statistics were broken down <strong>in</strong> latitude bands and<br />

day/night c<strong>on</strong>diti<strong>on</strong>s. The results for August 2008 are<br />

repeated <strong>in</strong> Table 7, the c<strong>on</strong>clusi<strong>on</strong>s are similar for<br />

November 2008. The best agreement is found between<br />

301S and 601N; especially <strong>in</strong> the tropical regi<strong>on</strong>s with a<br />

correlati<strong>on</strong> as high as 0.86 and a small relative bias below<br />

3%. Overall, the standard deviati<strong>on</strong> (MOPITT–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) CO TC<br />

range is 0.17–0.25 10 18 molecules/cm 2 , or 8–15% <strong>in</strong><br />

relative terms. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO TC underestimates MOPITT <strong>retrievals</strong>:<br />

the bias varies with the latitude and larger systematic<br />

differences from 10% to 20% are observed <strong>in</strong> the North<br />

Pole and at higher Southern latitudes, exceed<strong>in</strong>g even 30%<br />

over Antarctica. They corresp<strong>on</strong>d to areas with colder<br />

surface temperature and lower thermal c<strong>on</strong>trast, where<br />

the respective <strong>retrievals</strong> are expected to be more <strong>in</strong>fluenced<br />

by the background a priori. The comparis<strong>on</strong> was<br />

extended by George (2010) to February 2009 and performed<br />

<strong>on</strong> m<strong>on</strong>thly averages. The results c<strong>on</strong>firmed the<br />

characterisati<strong>on</strong> of an average bias of about 10% as<br />

compared to MOPITT CO (<str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO lower) and high correlati<strong>on</strong><br />

coefficients around 0.9 <strong>in</strong> the tropics for all three<br />

m<strong>on</strong>ths.


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1367<br />

Table 7<br />

Statistics of departures (MOPITT–<str<strong>on</strong>g>IASI</str<strong>on</strong>g>) CO total column <strong>in</strong> 10 18 molecules/cm 2 for different latitudes <strong>in</strong> August 2008 (bias, standard deviati<strong>on</strong>, correlati<strong>on</strong><br />

coefficient and sample size are stored <strong>in</strong> columns).<br />

August 2008<br />

Day Night<br />

Bias s r # Bias s r #<br />

[601N; 901N] 0.14 0.21 0.66 86106 0.22 0.17 0.69 4713<br />

[301N; 601N] 0.06 0.23 0.72 127351 0.01 0.25 0.72 104175<br />

[301S; 301N] 0.07 0.21 0.84 250628 0.04 0.22 0.86 237613<br />

[601S; 301S] 0.33 0.20 0.68 39146 0.29 0.21 0.63 37801<br />

[901S; 601S] 0.63 0.12 0.38 431 0.54 0.18 0.32 1795<br />

2.7.3.3. Intercomparis<strong>on</strong>s with FORLI-CO. The operati<strong>on</strong>al<br />

total column was also evaluated aga<strong>in</strong>st the research<br />

product retrieved from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements with FORLI-<br />

CO at ULB/LATMOS [25]. FORLI-CO is a dedicated versi<strong>on</strong><br />

of the OEM research algorithm <strong>in</strong>troduced <strong>in</strong> Secti<strong>on</strong> 2.7.1<br />

[61], allow<strong>in</strong>g the retrieval of CO profiles under clear-sky<br />

assumpti<strong>on</strong>s. The FORLI-CO products were validated<br />

aga<strong>in</strong>st <strong>in</strong>-situ airborne measurements <strong>in</strong> the specific<br />

Polar c<strong>on</strong>text [70], where correlati<strong>on</strong> from 0.15 to 0.84<br />

and biases between 5% and 12% with respect to the<br />

reference data are reported. The best match is achieved<br />

<strong>in</strong> situati<strong>on</strong>s with favourable thermal c<strong>on</strong>trasts. George<br />

et al. [66] assessed their accuracy aga<strong>in</strong>st <strong>retrievals</strong> from<br />

other space-borne sensors (MOPITT, AIRS and TES) [66]<br />

and characterised a high correlati<strong>on</strong> coefficient, between<br />

0.83 and 0.94 between FORLI-CO and the respective<br />

correlative satellite products. Typically 2.5 DoFs were<br />

found <strong>in</strong> the tropics, decreas<strong>in</strong>g to 1.5 <strong>on</strong> average at<br />

mid-latitudes and down to 0.8 at higher latitudes,<br />

towards the Poles. The study c<strong>on</strong>firmed that Polar<br />

<strong>retrievals</strong>, especially over Antarctica, were essentially<br />

c<strong>on</strong>stituted by the background a priori. The ma<strong>in</strong><br />

difference between the FORLI-CO and the EUMETSAT<br />

operati<strong>on</strong>al CO TC is <strong>in</strong> the numerical method employed<br />

(OEM vs. ANN, respectively), which allows the <strong>retrievals</strong><br />

of profiles with error and vertical sensitivity estimates <strong>on</strong><br />

<strong>on</strong>e hand (FORLI) and is limited to the total column <strong>on</strong> the<br />

other hand (EUMETSAT). Another important difference is<br />

the process<strong>in</strong>g of cloud-c<strong>on</strong>tam<strong>in</strong>ated pixels with FORLI<br />

while the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PPF strictly limits the CO <strong>retrievals</strong> to<br />

cloud-free IFOVs. Indeed, FORLI implements a cloud test<br />

similar to the NWP test described <strong>in</strong> Secti<strong>on</strong> 2.2.1 with a<br />

less c<strong>on</strong>servative threshold and tolerates cloud<br />

c<strong>on</strong>tam<strong>in</strong>ated pixels with potential cloud fracti<strong>on</strong>s of up<br />

to 25% ([25] Secti<strong>on</strong> 3.2.1). As a result, the retrieved CO TC<br />

yield and therefore its coverage are much higher with<br />

FORLI-CO.<br />

In an external study performed at LATMOS <strong>in</strong> 2010,<br />

George and Clerbaux compared the two <str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO products<br />

<strong>on</strong> a direct pixel-to-pixel basis, for the m<strong>on</strong>ths of August<br />

2008, November 2008 and February 2009. Only cloud-free<br />

pixels, as per <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 flags, were reta<strong>in</strong>ed for the <strong>in</strong>tercomparis<strong>on</strong>.<br />

A summary of the results is reported here,<br />

the details can be c<strong>on</strong>sulted <strong>in</strong> the validati<strong>on</strong> study f<strong>in</strong>al<br />

report. For the three m<strong>on</strong>ths <strong>in</strong>vestigated, EUMETSAT CO<br />

distributi<strong>on</strong>s match the FORLI distributi<strong>on</strong>s well. For data<br />

over all latitudes, the (EUMETSAT–FORLI) biases (and<br />

associated standard deviati<strong>on</strong>s) are of 2.1% (10.6%), 3.1%<br />

(11.5%) and 1.4% (15.2%), respectively, for August 2008,<br />

November 2008 and February 2009. We observe the best<br />

correlati<strong>on</strong>s <strong>in</strong> the equatorial regi<strong>on</strong> (latitudes between<br />

151S and 151N) with respective correlati<strong>on</strong> coefficients of<br />

0.93, 0.92 and 0.94. In this regi<strong>on</strong> the agreement is<br />

excellent with the slopes of the regressi<strong>on</strong> l<strong>in</strong>es close to<br />

1 and the biases (standard deviati<strong>on</strong>) are 1.4% (7.9%), 4.7%<br />

(8.2%) and 1.2% (7.3%), respectively, for August 2008,<br />

November 2008 and February 2009. The correlati<strong>on</strong> drops<br />

to 0.52 at boreal latitudes but rema<strong>in</strong>s around 0.8 at midlatitudes.<br />

In regi<strong>on</strong>s of low background CO c<strong>on</strong>centrati<strong>on</strong>s<br />

(Atlantic, Pacific) as well as over forests, EUMETSAT CO TC<br />

is c<strong>on</strong>sistently higher than FORLI-CO, with biases of 5–7%<br />

and departures standard deviati<strong>on</strong>s of 6.5–9%. In biomass<br />

burn<strong>in</strong>g regi<strong>on</strong>s, the bias between EUMETSAT and FORLI<br />

products is small; 1% (EUMETSAT lower) with 9%<br />

relative standard deviati<strong>on</strong>. In the c<strong>on</strong>text of high polluti<strong>on</strong><br />

(Ch<strong>in</strong>a), however, EUMETSAT CO TC is noticeably<br />

smaller than FORLI by 6.7% <strong>on</strong> average, with a standard<br />

deviati<strong>on</strong> of 11.6%. Some retrieval artefacts over the<br />

deserts observed <strong>in</strong> FORLI-CO maps, <strong>in</strong>duced by <strong>in</strong>accurate<br />

surface emissivity [70], are not seen <strong>in</strong> EUMETSAT<br />

products, which show a higher spatial coherence <strong>in</strong> these<br />

regi<strong>on</strong>s. C<strong>on</strong>versely, a few dubious high CO c<strong>on</strong>centrati<strong>on</strong>s<br />

were observed <strong>in</strong> EUMETSAT products off the<br />

Namibian and Californian coasts. The current assumpti<strong>on</strong><br />

attributes this feature to undetected low level clouds, to<br />

which FORLI-CO seems less sensitive.<br />

This good agreement between both <str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO products<br />

was c<strong>on</strong>firmed <strong>in</strong> a recent case study evaluat<strong>in</strong>g the<br />

ability of space-borne <strong>in</strong>frared sounders to quantify the<br />

Russian fire CO emissi<strong>on</strong>s with validati<strong>on</strong> aga<strong>in</strong>st groundbased<br />

measurements and <strong>retrievals</strong> [71]. The FORLI-CO<br />

profiles have been m<strong>on</strong>itored and assimilated <strong>in</strong> the<br />

numerical model run <strong>in</strong> the scope of the M<strong>on</strong>itor<strong>in</strong>g<br />

Atmospheric Compositi<strong>on</strong> and Climate (MACC) project<br />

s<strong>in</strong>ce February 2009. MACC is the current pre-operati<strong>on</strong>al<br />

atmospheric service of the European GMES programme<br />

(www.gmes-atmosphere.eu, last accessed 23/01/2012). It<br />

provides data records <strong>on</strong> atmospheric compositi<strong>on</strong> for<br />

recent <strong>years</strong>, data for m<strong>on</strong>itor<strong>in</strong>g present c<strong>on</strong>diti<strong>on</strong>s and<br />

forecasts of the distributi<strong>on</strong> of key c<strong>on</strong>stituents for a few<br />

days ahead (Inness et al., 2009,‘‘GEMS data assimilati<strong>on</strong><br />

system for chemically reactive gases’’, ECMWF Technical<br />

Memorandum 587) [72]. With the <strong>in</strong>troducti<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 PPF v5, the CO TC generated at EUMETSAT was


1368<br />

m<strong>on</strong>itored <strong>in</strong> this c<strong>on</strong>text dur<strong>in</strong>g the whole m<strong>on</strong>th of<br />

September 2010. Fig. 23 (Inness, 2010, pers<strong>on</strong>al communicati<strong>on</strong>)<br />

illustrates the noticeable improvement of<br />

EUMETSAT CO product with the <strong>in</strong>troducti<strong>on</strong> of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

v5 <strong>on</strong> 14/09/2010 as compared aga<strong>in</strong>st the MACC model<br />

first guess (blue) and analyses (red), as well as its overall<br />

good quality as compared to FORLI-CO total column.<br />

Future developments <strong>in</strong> this area will address the<br />

operati<strong>on</strong>al producti<strong>on</strong> of CO profiles with error estimate<br />

to allow the assimilati<strong>on</strong> <strong>in</strong>to numerical models. In that<br />

perspective, as part of the C<strong>on</strong>t<strong>in</strong>uous Development and<br />

Operati<strong>on</strong>s Phase (CDOP-2) of the O3M-SAF, the FORLI-CO<br />

retrieval will ultimately become part of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

processors operated at EUMETSAT central applicati<strong>on</strong><br />

facility (CAF).<br />

2.7.4. N2O, CH4 and CO2<br />

The N2O, CH4 and CO2 products planned <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2<br />

trace gases suite are not operati<strong>on</strong>al. These <strong>retrievals</strong> are<br />

still subject to research and development. The total<br />

columns are currently retrieved with <strong>in</strong>dividual artificial<br />

neural networks similar <strong>in</strong> c<strong>on</strong>cept to the network used<br />

for CO. They benefited from the same algorithm improvements<br />

<strong>in</strong>troduced <strong>in</strong> <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 PFF v5 and are currently<br />

produced <strong>in</strong> an experimental mode. Ricaud et al. [73]<br />

studied the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 v4 N 2O dur<strong>in</strong>g the m<strong>on</strong>ths of March–<br />

April–May 2008 and found a reas<strong>on</strong>able agreement<br />

between retrieved N 2O total column and transported<br />

patterns modelled with MOCAGE [73]. In order to extend<br />

these assessment studies, the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 trace gas products<br />

were recently reprocessed with the PPF v5 for the whole<br />

year of 2008 and the m<strong>on</strong>ths of February, May, August<br />

and November <strong>in</strong> the <strong>years</strong> 2009–2011.<br />

The synergistic use of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> with microwave measurements<br />

from <strong>Metop</strong>/AMSU is anticipated to improve the<br />

separati<strong>on</strong> of temperature and the trace gas (CH 4,CO 2)<br />

<strong>in</strong>formati<strong>on</strong> present <strong>in</strong> the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> spectra [74,75].<br />

3. C<strong>on</strong>clusi<strong>on</strong>s and outlook<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

Fig. 23. Departures m<strong>on</strong>itor<strong>in</strong>g of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> CO observati<strong>on</strong>s—MACC model (first guess <strong>in</strong> blue, analyses <strong>in</strong> red) <strong>in</strong> September 2010. Credits: A. Inness<br />

(ECMWF). (For <strong>in</strong>terpretati<strong>on</strong> of the references to color <strong>in</strong> this figure legend, the reader is referred to the web versi<strong>on</strong> of this article.)<br />

We have presented the structure of the operati<strong>on</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 process<strong>in</strong>g cha<strong>in</strong> versi<strong>on</strong> 5, which became operati<strong>on</strong>al<br />

<strong>on</strong> 14/09/2010; the <strong>in</strong>dividual retrieval modules and their<br />

algorithms and c<strong>on</strong>figurati<strong>on</strong>, a summary of the performance<br />

assessment through various <strong>in</strong>ternal and external<br />

validati<strong>on</strong> studies, and the current and future development<br />

activities <strong>after</strong> 5 <strong>years</strong> of operati<strong>on</strong>s at EUMETSAT. The<br />

validati<strong>on</strong> of the various retrieved geophysical parameters<br />

has been c<strong>on</strong>ducted with a wide range of satellite products<br />

(CALIOP, AATSR, MODIS, GOME-2, AVHRR, MOPITT, SEVIRI,<br />

etc.), with numerical weather predicti<strong>on</strong> and chemistry<br />

models (ECMWF, MOCAGE, MACC) and with <strong>in</strong>-situ measurements<br />

(radio-s<strong>on</strong>des, buoys etc.). Due to the evolv<strong>in</strong>g<br />

nature of the PPF, updates s<strong>in</strong>ce <strong>Metop</strong> launch and also<br />

upcom<strong>in</strong>g upgrades, systematic reprocess<strong>in</strong>g will take<br />

place at EUMETSAT to generate c<strong>on</strong>t<strong>in</strong>uous and c<strong>on</strong>sistent<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> L2 products records over the overall operati<strong>on</strong>al period<br />

of <str<strong>on</strong>g>IASI</str<strong>on</strong>g>. They will start with the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> L1C <strong>in</strong> 2013 <strong>after</strong> the<br />

commissi<strong>on</strong><strong>in</strong>g of <strong>Metop</strong>-B, and will be followed by the L2<br />

products.<br />

Significant improvements were obta<strong>in</strong>ed with versi<strong>on</strong> 5:<br />

<strong>in</strong> characterisati<strong>on</strong> of cloud products. The cloud top<br />

pressure is usually retrieved with<strong>in</strong> 50 hPa rmse as<br />

compared to ground-based radars. The correlati<strong>on</strong> is<br />

high (0.9) with the cloud Lidar CALIOP for Polar clouds.<br />

<strong>in</strong> cloud detecti<strong>on</strong>, with a positive impact <strong>on</strong> the SST.<br />

<strong>in</strong> characterisati<strong>on</strong> of the SST. A dem<strong>on</strong>strati<strong>on</strong>al L2P<br />

product has been created and distributed <strong>in</strong> the scope<br />

of the GHRSST. The SST is typically characterised by a<br />

cold bias of about 0.3 K and error standard deviati<strong>on</strong> of<br />

approximately 0.3 K.<br />

<strong>in</strong> LST. The <strong>retrievals</strong> show a correlati<strong>on</strong> of 0.9 with the<br />

SEVIRI LST derived at the LSA-SAF and the errors<br />

estimated are below 2.5 K rmse.<br />

<strong>in</strong> temperature profile <strong>retrievals</strong>, especially <strong>in</strong> the mid and<br />

upper troposphere where rms of departures computed<br />

aga<strong>in</strong>st ECMWF analyses are as low as 0.7 K over oceans;<br />

<strong>in</strong> oz<strong>on</strong>e total column. The operati<strong>on</strong>al O3 TC shows<br />

high correlati<strong>on</strong> with other calibrated satellite products<br />

from GOME-2 and low relative departures rang<strong>in</strong>g<br />

from 3% to 5%.<br />

<strong>in</strong> trace gas retrieval. Comparis<strong>on</strong> of the operati<strong>on</strong>al<br />

CO aga<strong>in</strong>st models and satellite products (MOPITT and<br />

FORLI-CO) c<strong>on</strong>firmed the improvement expected with<br />

synthetic data. The typical errors vary between 8% and<br />

15% (standard deviati<strong>on</strong>) with latitude dependent<br />

smaller biases.<br />

Day-2 developments are <strong>on</strong>go<strong>in</strong>g to further improve<br />

the products, with a particular focus <strong>on</strong> the retrieval of<br />

temperature and humidity <strong>in</strong> the boundary layer, where


the errors are larger. This is addressed with a different<br />

c<strong>on</strong>figurati<strong>on</strong> of the background <strong>in</strong>formati<strong>on</strong> <strong>in</strong> the OEM,<br />

<strong>in</strong> order to take advantage of the natural cross-correlati<strong>on</strong><br />

between temperature and humidity [76,77]. On the measurement<br />

side, recent work from Masiello et al. [78]<br />

<strong>in</strong>dicates that the <strong>in</strong>formati<strong>on</strong> c<strong>on</strong>tent of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> is not<br />

sufficiently well exploited with the current channel sampl<strong>in</strong>g<br />

and that a different channel selecti<strong>on</strong> or the use<br />

of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> pr<strong>in</strong>cipal comp<strong>on</strong>ents is needed to sound the<br />

temperature and especially humidity <strong>in</strong> the boundary<br />

layer [78]. Work has also started to optimise the characterisati<strong>on</strong><br />

of the measurement error described <strong>in</strong><br />

Secti<strong>on</strong> 2.4.2.2, <strong>in</strong> order to give a more adequate weight<br />

to the measurements. Synergistic process<strong>in</strong>g of microwave<br />

measurements (from AMSU and MHS/<strong>Metop</strong>)<br />

together with <str<strong>on</strong>g>IASI</str<strong>on</strong>g> radiances is <strong>in</strong>vestigated as a means<br />

to provide additi<strong>on</strong>al <strong>in</strong>dependent temperature/humidity<br />

<strong>in</strong>formati<strong>on</strong> and to support the explicit exploitati<strong>on</strong> of<br />

cloud c<strong>on</strong>tam<strong>in</strong>ated radiances, which RTTOV-10 now<br />

allows. The absolute validati<strong>on</strong> of water-vapour profiles<br />

still requires dedicated studies to create a more exhaustive<br />

accurate reference data set and to take account of the<br />

spatial and temporal n<strong>on</strong>-co<strong>in</strong>cidences which limit the<br />

validati<strong>on</strong> with <strong>in</strong>-situ radio-s<strong>on</strong>des measurements as<br />

discussed by Pougatchev et al. [57] dur<strong>in</strong>g the validati<strong>on</strong><br />

campaign at L<strong>in</strong>denberg. The absolute accuracy of the<br />

operati<strong>on</strong>al radios<strong>on</strong>de water-vapour measurements was<br />

discussed by Vömel et al. [79] and exhibit significant<br />

biases of the order of 6–8%, depend<strong>in</strong>g <strong>on</strong> the type of<br />

sensor used. More recently, Calbet et al. [80] showed the<br />

importance of us<strong>in</strong>g high-quality synthetic data, computed<br />

from temperature and humidity profiles measured<br />

with cryogenic frost-po<strong>in</strong>t hygrometers flown <strong>on</strong> s<strong>on</strong>des,<br />

for fitt<strong>in</strong>g the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements with simulated spectra.<br />

In the area of atmospheric compositi<strong>on</strong>, the FORLI-CO and<br />

O3 algorithms [25,61], allow<strong>in</strong>g profiles <strong>retrievals</strong> and<br />

error estimates, will be <strong>in</strong>tegrated to the operati<strong>on</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

L2 processor <strong>in</strong> the scope of the O3M-SAF CDOP-2 phase.<br />

Acknowledgements<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1369<br />

The authors wish to acknowledge the c<strong>on</strong>tributi<strong>on</strong>s<br />

and the support of a large number of partners and<br />

cooperat<strong>in</strong>g <strong>in</strong>stituti<strong>on</strong>s. Without them this work would<br />

not have been possible. To menti<strong>on</strong> all <strong>in</strong>dividuals would<br />

be bey<strong>on</strong>d the scope of this paper, however we would like<br />

to acknowledge and appreciate the role of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

Sound<strong>in</strong>g Science Work<strong>in</strong>g Group, established jo<strong>in</strong>tly by<br />

CNES and EUMETSAT, which played a central role for this<br />

development. Claude Camy-Peyret is <strong>on</strong>e of its co-chairs<br />

from the very beg<strong>in</strong>n<strong>in</strong>g and his help and guidance is very<br />

much appreciated.<br />

The authors wish to thank CNES for the <strong>in</strong>vestigati<strong>on</strong>s<br />

and the reducti<strong>on</strong> of the <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>terpixel differences.<br />

The authors acknowledge the work d<strong>on</strong>e by Maya<br />

George and Cathy Clerbaux (LATMOS) <strong>in</strong> the external<br />

validati<strong>on</strong> study of the CO and O 3 products.<br />

The satellite products from US missi<strong>on</strong>s were downloaded<br />

from the NASA EO portail, former Warehouse<br />

Inventory Search Tool, replaced as of January 2012 by<br />

Reverb/ECHO (http://reverb.echo.nasa.gov). MOPITT CO<br />

and CALIOP cloud products were obta<strong>in</strong>ed from the NASA<br />

Langley Research Center Atmospheric Science Data Center.<br />

The authors acknowledge ESA and IFREMER for the<br />

availability of the AATSR L2P products (ftp://ftp.ifremer.fr/<br />

ifremer/medspirati<strong>on</strong>/data/l2p/ats_nr_2p/esa/).<br />

References<br />

[1] Klaes KD, Cohen M, Buhler Y, Schlüssel P, Munro R, v<strong>on</strong> Engeln A,<br />

et al. An <strong>in</strong>troducti<strong>on</strong> to the EUMETSAT polar system. Bull Am<br />

Meteorol Soc 2007;88:1085–96, doi:10.1175/BAMS-88-7-1085.<br />

[2] Cayla F-R. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>frared <strong>in</strong>terferometer for operati<strong>on</strong>s and research.<br />

In: Ched<strong>in</strong> A, Chah<strong>in</strong>e MT, Scott NA, editors. High spectral resoluti<strong>on</strong><br />

<strong>in</strong>frared remote sens<strong>in</strong>g for Earth’s weather and climate<br />

studies, NATO ASI series, vol. I 9. Berl<strong>in</strong>: Spr<strong>in</strong>ger Verlag; 1993.<br />

[3] Blumste<strong>in</strong> D, Chal<strong>on</strong> G, Carlier T, Buil C, Hebert P, Maciaszek T, et al.<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>in</strong>strument: technical overview and measured performances.<br />

Proc SPIE 2004;5543:196, doi:10.1117/12.560907.<br />

[4] Hilt<strong>on</strong> F, et al. Hyperspectral earth observati<strong>on</strong> from <str<strong>on</strong>g>IASI</str<strong>on</strong>g>: <strong>five</strong><br />

<strong>years</strong> of accomplishments. Bull Am Meteorol Soc 2010;93:<br />

347–70, doi:10.1175/BAMS-D-11-00027.1.<br />

[5] Schlüssel P, Hultberg TH, Phillips PL, August T, Calbet X. The<br />

operati<strong>on</strong>al <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>Level</strong> 2 Processor. Adv Space Res 2005;36:<br />

982–8, doi:10.1016/j.asr.2005.03.008.<br />

[6] Camy-Peyret C, Eyre J. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> science plan. ISSWG technical document;<br />

1998.<br />

[7] Chah<strong>in</strong>e M, et al. AIRS: improv<strong>in</strong>g weather forecast<strong>in</strong>g and<br />

provid<strong>in</strong>g new data <strong>on</strong> greenhouse gases. Bull Am Meteorol Soc<br />

2006;87:911–26, doi:10.1175/BAMS-87-7-911.<br />

[8] Loveland TR, et al. Development of a global land cover characteristics<br />

database and IGBP DISCover from 1 km AVHRR data. Int<br />

J Remote Sens<strong>in</strong>g 2000;21(6–7):1303–30.<br />

[9] Zhou DK, Larar AM, Liu X, Smith WL, Strow LL, Yang P, et al. Global<br />

land surface emissivity retrieval from satellite ultraspectral IR<br />

measurements. IEEE Trans Geosci Remote Sens<strong>in</strong>g 2011;49:<br />

1277–90, doi:10.1109/TGRS.20102051036.<br />

[10] U.S. Geological Survey’s EROS Data Center. Sioux Falls, South<br />

Dakota, /http://eros.usgs.gov/#/F<strong>in</strong>d_Data/Products_and_Data_A<br />

vailable/GTOPO30S.<br />

[11] Atk<strong>in</strong>s<strong>on</strong> NN, Hilt<strong>on</strong> FI, Ill<strong>in</strong>gworth SM, Eyre JR, Hultberg T.<br />

Potential for the use of rec<strong>on</strong>structed <str<strong>on</strong>g>IASI</str<strong>on</strong>g> radiances <strong>in</strong> the detecti<strong>on</strong><br />

of atmospheric trace gases. Atmos Meas Tech 2010;3:<br />

991–1003, doi:10.5194/amt-3-991-2010.<br />

[12] Karagulian F, Clarisse L, Clerbaux C, Prata AJ, Hurtmans D,<br />

Coheur PF. Detecti<strong>on</strong> of volcanic SO 2, ash, and H 2SO 4 us<strong>in</strong>g the<br />

Infrared Atmospheric Sound<strong>in</strong>g Interferometer (<str<strong>on</strong>g>IASI</str<strong>on</strong>g>). J Geophys<br />

Res 2010;115:d00l02, doi:10.1029/2009JD012786.<br />

[13] Clarisse L, Coheur PF, Chefdeville S, Lacour JL, Hurtmans D,<br />

Clerbaux C. Infrared satellite observati<strong>on</strong>s of hydrogen sulfide <strong>in</strong><br />

the volcanic plume of the August 2008 Kasatochi erupti<strong>on</strong>. Geophys<br />

Res Lett 2011;38:L10804, doi:10.1029/2011GL047402.<br />

[14] K<strong>on</strong>ovalov IB, Beekmann M, Kuznetsova IN, Yurova A, Zvyag<strong>in</strong>tsev AM.<br />

Atmospheric impacts of the 2010 Russian wildfires: <strong>in</strong>tegrat<strong>in</strong>g<br />

modell<strong>in</strong>g and measurements of an extreme air polluti<strong>on</strong> episode<br />

<strong>in</strong> the Moscow regi<strong>on</strong>. Atmos Chem Phys 2011;11:10031–56, doi:<br />

10.5194/acp-11-10031-2011.<br />

[15] Masuda K, Takashima T, Takayama Y. Emissivity of pure water and<br />

sea waters for the sea surface <strong>in</strong> the <strong>in</strong>frared w<strong>in</strong>dow regi<strong>on</strong>s.<br />

Remote Sens<strong>in</strong>g Envir<strong>on</strong> 1988;24:313–29.<br />

[16] Watts PD, Allen MR, Night<strong>in</strong>gale TJ. W<strong>in</strong>d speed effects <strong>on</strong> sea<br />

surface emissi<strong>on</strong> and reflecti<strong>on</strong> for the Al<strong>on</strong>g Track Scann<strong>in</strong>g<br />

Radiometer. J Atmos Oceanic Technol 1996;13:126–41.<br />

[17] Saunders RW, Matricardi M, Brunel P. An improved fast radiative<br />

transfer model for assimilati<strong>on</strong> of satellite radiance observati<strong>on</strong>s. Q<br />

J R Meteorol Soc 1999;125:1407–25.<br />

[18] Matricardi M, Saunders R. Fast radiative transfer model for simulati<strong>on</strong><br />

of <strong>in</strong>frared atmospheric sound<strong>in</strong>g <strong>in</strong>terferometer radiances.<br />

Appl Opt 1999;38:5679–91.<br />

[19] Zhou D, et al. Thermodynamic and cloud parameter retrieval us<strong>in</strong>g<br />

<strong>in</strong>frared spectral data. Geophys Res Lett 2005;32:L15805, doi:<br />

10.1029/2005GL023211.<br />

[20] Ackerman SA. Global satellite observati<strong>on</strong>s of negative brightness<br />

temperature difference between 11 and 6.7 mm. J Atmos Sci 1996;<br />

53:2803–12.


1370<br />

T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371<br />

[21] Ackerman SA. Remote sens<strong>in</strong>g aerosols from satellite <strong>in</strong>frared<br />

observati<strong>on</strong>s. J Geophys Res 1997;102:17069–79.<br />

[22] Stowe LL, Davis PA, McCla<strong>in</strong> EP. Scientific basis and <strong>in</strong>itial evaluati<strong>on</strong><br />

of the CLAVR-1 global clear/cloud classificati<strong>on</strong> algorithm for<br />

the Advanced Very High Resoluti<strong>on</strong> Radiometer. J Atmos Oceanic<br />

Technol 1999;16:656–77.<br />

[23] Le Cun Y, Bottou L, Orr GB, Müller K-R. Efficient backprop. Neural<br />

networks: tricks of the trade, lecture notes <strong>in</strong> computer science,<br />

vol. 1524. Spr<strong>in</strong>ger; 1998 [p. 546. DOI:10.1007/3-540-49430-8_2].<br />

[24] Wan Z, Ng D, Dozier J. Spectral emissivity measurements of landsurface<br />

materials and related radiative transfer simulati<strong>on</strong>s. Adv<br />

Space Res 1994;14(3):91–4.<br />

[25] Clerbaux C, Boynard A, Clarisse L, George M, Hadji-Lazaro J, Herb<strong>in</strong> H,<br />

et al. M<strong>on</strong>itor<strong>in</strong>g of atmospheric compositi<strong>on</strong> us<strong>in</strong>g the thermal<br />

<strong>in</strong>frared <str<strong>on</strong>g>IASI</str<strong>on</strong>g>/MetOp sounder. Atmos Chem Phys 2009;9:6041–54, doi:<br />

10.5194/acp-9-6041-2009.<br />

[26] Corlett GK, Bart<strong>on</strong> IJ, D<strong>on</strong>l<strong>on</strong> CJ, Edwards MC, Good SA, Horrocks LA,<br />

et al. The accuracy of SST <strong>retrievals</strong> from AATSR: an <strong>in</strong>itial<br />

assessment through geophysical validati<strong>on</strong> aga<strong>in</strong>st <strong>in</strong> situ radiometers,<br />

buoys and other SST data sets. Adv Space Res 2006;37(4):<br />

764–9.<br />

[27] Ichoku C, Kaufman YJ, Remer LA, Levy R. Global aerosol remote<br />

sens<strong>in</strong>g from MODIS. Adv Space Res 2004;34:820–7.<br />

[28] Strabala KI, Ackerman SA, Menzel WP. Cloud properties <strong>in</strong>ferred<br />

from 8–12 mm data. J Appl Meteorol 1994;33:212–29.<br />

[29] Wei H, Yang P, Li J, Baum BA, Huang H-L, Platnick S, et al. Retrieval<br />

of semitransparent ice cloud optical thickness from atmospheric<br />

<strong>in</strong>frared sounder (AIRS) measurements. IEEE Trans Geosci Remote<br />

Sens<strong>in</strong>g 2004;42:2254–67.<br />

[30] Menzel WP, Smith WL, Stewart TR. Improved cloud moti<strong>on</strong> w<strong>in</strong>d<br />

vector and altitude assignment us<strong>in</strong>g VAS. J Clim Appl Meteorol<br />

1983;22:377–84.<br />

[31] Smith WL, Frey R. On cloud altitude determ<strong>in</strong>ati<strong>on</strong> from high<br />

resoluti<strong>on</strong> <strong>in</strong>terferometer sounder (HIS) observati<strong>on</strong>s. J Appl<br />

Meteorol 1990;29:658–62.<br />

[32] Kreuter A, Zangerl M, Schwarzmann M, Blumthaler M. All-sky<br />

imag<strong>in</strong>g: a simple, versatile system for atmospheric research. Appl<br />

Opt 2009;48(6):1091–7, doi:10.1364/AO.48.001091.<br />

[33] Feister U, Shields J. Cloud and radiance measurements with the VIS/<br />

NIR Daylight Whole Sky Imager at L<strong>in</strong>denberg (Germany). Meteorol<br />

Z 2005;14(5):627–39, doi:10.1127/0941-2948/2005/0066.<br />

[34] Hennemuth B, Weiss A, Bösenberg J, Jacob D, L<strong>in</strong>né H, Peters G,<br />

et al. Quality assessment of water cycle parameters <strong>in</strong> REMO by<br />

radar–lidar synergy. Atmos Chem Phys 2008;8:287–308, doi:<br />

10.5194/acp-8-287-2008.<br />

[35] W<strong>in</strong>ker DM, et al. The CALIPSO Missi<strong>on</strong>: a global 3D view of<br />

aerosols and clouds. Bull Am Meteorol Soc 2010;91:1211–29, doi:<br />

10.1175/2010BAMS3009.1.<br />

[36] W<strong>in</strong>ker DM, Hunt WH, McGill MJ. Initial performance assessment<br />

of CALIOP. Geophys Res Lett 2007;34:L19803, doi:10.1029/<br />

2007GL030135.<br />

[37] W<strong>in</strong>ker D, et al. Overview of the CALIPSO Missi<strong>on</strong> and CALIOP Data<br />

Process<strong>in</strong>g Algorithms. J Atmos Oceanic Technol 2009;26:<br />

2310–23, doi:10.1175/2009JTECHA1281.1.<br />

[38] Kim S-W, Chung E-S, Yo<strong>on</strong> S-C, Sohn B-J, Nobuo S. Intercomparis<strong>on</strong>s<br />

of cloud-top and cloud-base heights from ground-based Lidar,<br />

CloudSat and CALIPSO measurements. Int J Remote Sens<strong>in</strong>g 2011;<br />

32(4):1179–97, doi:10.1080/01431160903527439.<br />

[39] Menzel P, et al. MODIS global cloud-top pressure and amount<br />

estimati<strong>on</strong>: algorithm descripti<strong>on</strong> and results. J Appl Meteorol<br />

Climatol 2008;47:1175–98, doi:10.1175/2007JAMC1705.1.<br />

[40] Stubenrauch CJ, Chéd<strong>in</strong> A, Armante R, Scott A. Clouds as seen by<br />

satellite Sounders (3I) and Imagers (UISCCP). Part II: a new<br />

approach for cloud parameter determ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> the 3I algorithms.<br />

J Clim 1999;12:2214–23.<br />

[41] Eyre J, Menzel WP. Retrieval of cloud parameters from satellite<br />

sounder data: a simulati<strong>on</strong> study. J Appl Meteorol 1989;28:267–75.<br />

[42] Schlüssel P, Goldberg M. Retrieval of atmospheric temperature and<br />

water vapour from <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements <strong>in</strong> partly cloudy situati<strong>on</strong>s.<br />

Adv Space Res 2002;29(11):1703–6.<br />

[43] Hadji-Lazaro J, Clerbaux C, Thiria S. An <strong>in</strong>versi<strong>on</strong> algorithm us<strong>in</strong>g<br />

neural networks to retrieve atmospheric CO total columns from<br />

high resoluti<strong>on</strong> Nadir radiances. J Geophys Res 1999;104:<br />

23841–54.<br />

[44] Turquety S, Hadji-Lazaro J, Clerbaux C, Hauglusta<strong>in</strong>e DA, Clough SA,<br />

Cassé V, et al. Operati<strong>on</strong>al trace gas retrieval algorithm for the<br />

Infrared Atmospheric Sound<strong>in</strong>g Interferometer. J Geophys Res<br />

2004;109:D21301, doi:10.1029/2004JD004821.<br />

[45] Rodgers C. Inverse methods for atmospheric sound<strong>in</strong>g. World<br />

Scientific; 981-02-2740-X [p. 238].<br />

[46] Collard AD. Selecti<strong>on</strong> of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> channels for use <strong>in</strong> numerical weather<br />

predicti<strong>on</strong>. Q J R Meteorol Soc 2007;133:19771991b.<br />

[47] Aires F, Prigent C, Rossow WB. Temporal <strong>in</strong>terpolati<strong>on</strong> of global<br />

surface sk<strong>in</strong> temperature diurnal cycle over land under clear and<br />

cloudy c<strong>on</strong>diti<strong>on</strong>s. J Geophys Res 2004;109:D04313, doi:10.1029/<br />

2003JD003527.<br />

[48] Trigo IF, M<strong>on</strong>teiro IT, Olesen F, Kabsch E. An assessment of remotely<br />

sensed land surface temperature. J Geophys Res 2008;113:<br />

D17108, doi:10.1029/2008JD010035.<br />

[49] Seemann SW, Borbas EE, Knutes<strong>on</strong> RO, Stephens<strong>on</strong> GR, Huang HL.<br />

Development of a global <strong>in</strong>frared land surface emissivity database<br />

for applicati<strong>on</strong> to clear sky sound<strong>in</strong>g <strong>retrievals</strong> from multi-spectral<br />

satellite radiance measurements. J Appl Meteorol Climatol 2007;<br />

47:108–23.<br />

[50] D<strong>on</strong>l<strong>on</strong> C, et al. The global ocean data assimilati<strong>on</strong> experiment<br />

high-resoluti<strong>on</strong> sea surface temperature pilot project. Bull Am<br />

Meteorol Soc 2007;88:1197–213.<br />

[51] Smith DL, Delderfield J, Drumm<strong>on</strong>d D, Edwards T, Mutlow CT, Read<br />

PD, et al. Calibrati<strong>on</strong> of the AATSR <strong>in</strong>strument. Adv Space Res<br />

2001;28:31–9 [8105].<br />

[52] Ill<strong>in</strong>gworth SM, Remedios JJ, Parker RJ. Intercomparis<strong>on</strong> of <strong>in</strong>tegrated<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> and AATSR calibrated radiances at 11 and 12 mm. Atmos<br />

Chem Phys 2009;9:6677–83, doi:10.5194/acp-9-6677-2009.<br />

[53] Noyes EJ, M<strong>in</strong>nett PJ, Remedios JJ, Corlett GK, Good SA, Llewellyn-<br />

J<strong>on</strong>es DT. The accuracy of the AATSR sea surface temperatures <strong>in</strong><br />

the Caribbean. Remote Sens<strong>in</strong>g Envir<strong>on</strong> 2006;101(1):38–51.<br />

[54] D<strong>on</strong>l<strong>on</strong> CJ, M<strong>in</strong>nett PJ, Gentemann C. Toward improved validati<strong>on</strong><br />

of satellite sea surface sk<strong>in</strong> temperature measurements for climate<br />

research. J Clim 2002;15(4):353–69.<br />

[55] M<strong>in</strong>nett P. A numerical study of the effects of anomalous North<br />

Atlantic atmospheric c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the <strong>in</strong>frared measurement of<br />

sea surface temperature from space. J Geophys Res 1986;91:C7.<br />

[56] O’carroll AG, Eyre JR, Saunders RW. Three-way error analysis<br />

between AATSR, AMSR-E, and <strong>in</strong> situ sea surface temperature<br />

observati<strong>on</strong>s. J Atmos Oceanic Technol 2008;25:1197–207.<br />

[57] Pougatchev N, August T, Calbet X, Hultberg T, Oduleye O, Schlüssel<br />

P, et al. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> temperature and water vapor <strong>retrievals</strong> —error<br />

assessment and validati<strong>on</strong>. Atmos Chem Phys 2009;9:6453–8.<br />

[58] Reale T. ATOVS derived sound<strong>in</strong>gs us<strong>in</strong>g Noaa PROduct Validati<strong>on</strong><br />

System (NPROVS) datasets for comput<strong>in</strong>g first guess and sensor<br />

bias adjustments <strong>in</strong>dependent of NWP. In: Proceed<strong>in</strong>gs of the 16th<br />

c<strong>on</strong>ference <strong>on</strong> satellite meteorology and oceanography. AMS; 2009.<br />

[59] Loyola DG, Koukouli ME, Valks P, Balis DS, Hao N, Van Roozendael<br />

M, et al. The GOME-2 total column oz<strong>on</strong>e product: retrieval<br />

algorithm and ground-based validati<strong>on</strong>. J Geophys Res 2011;116:<br />

D07302, doi:10.1029/2010JD014675 [11 p.].<br />

[60] Boynard A, Clerbaux C, Coheur P-F, Hurtmans D, Turquety S, George<br />

M, et al. Measurements of total and tropospheric oz<strong>on</strong>e from <str<strong>on</strong>g>IASI</str<strong>on</strong>g>:<br />

comparis<strong>on</strong> with correlative satellite, ground-based and oz<strong>on</strong>e s<strong>on</strong>de<br />

observati<strong>on</strong>s. Atmos Chem Phys 2009;9:6255–71, doi:10.5194/<br />

acp-9-6255-2009.<br />

[61] Hurtmans D, et al. FORLI radiative transfer and retrieval codes<br />

for <str<strong>on</strong>g>IASI</str<strong>on</strong>g>. J Quant Spectrosc Radiat Transfer, doi:10.1016/j.jqsrt.2012.<br />

02.036, this issue.<br />

[62] Ant<strong>on</strong> M, Loyola D, Clerbaux C, Lopez M, Vilaplana JM, Ban<strong>on</strong> M,<br />

et al. Validati<strong>on</strong> of the <strong>Metop</strong>-A total oz<strong>on</strong>e data from GOME-2 and<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> us<strong>in</strong>g reference ground-based measurements at the Iberian<br />

Pen<strong>in</strong>sula. Remote Sens<strong>in</strong>g Envir<strong>on</strong> 2011;115:1380–6.<br />

[63] Brasseur GP, Hauglusta<strong>in</strong>e DA, Walters S, Rasch PJ, Müller J-F,<br />

Granier C, Tie XX. MOZART: A global chemical transport model for<br />

oz<strong>on</strong>e and related chemical tracers, part 1. Model descripti<strong>on</strong>. J<br />

Geophys Res 1998;103:28265–89.<br />

[64] Bishop CM. Tra<strong>in</strong><strong>in</strong>g with noise is equivalent to tikh<strong>on</strong>ov regularizati<strong>on</strong>.<br />

Neural Comput 1994;7(1):108–16, doi:10.1162/neco.1995.7.1.108.<br />

[65] Bousserez N, Attié JL, Peuch VH, et al. Evaluati<strong>on</strong> of the MOCAGE<br />

chemistry transport model dur<strong>in</strong>g the ICARTT/ITOP experiment. J<br />

Geophys Res 2007;112:D10S42, doi:10.1029/2006JD007595.<br />

[66] George M, Clerbaux C, Hurtmans D, Turquety S, Coheur P-F, Pommier<br />

M, et al. Carb<strong>on</strong> m<strong>on</strong>oxide distributi<strong>on</strong>s from the <str<strong>on</strong>g>IASI</str<strong>on</strong>g>/METOP<br />

missi<strong>on</strong>: evaluati<strong>on</strong> with other space-borne remote sensors. Atmos<br />

Chem Phys 2009;9:8317–30, doi:10.5194/acp-9-8317-2009.<br />

[67] Deeter MN, Emm<strong>on</strong>s LK, Francis GL, Edwards DP, Gille JC, Warner<br />

JX, et al. Operati<strong>on</strong>al carb<strong>on</strong> m<strong>on</strong>oxide retrieval algorithm and<br />

selected results for the MOPITT <strong>in</strong>strument. J Geophys Res<br />

2003;108(D14):4399, doi:10.1029/2002JD003186.


T. August et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1340–1371 1371<br />

[68] Deeter MN, Emm<strong>on</strong>s LK, Edwards DP, Gille JC, Drumm<strong>on</strong>d JR. Vertical<br />

resoluti<strong>on</strong> and <strong>in</strong>formati<strong>on</strong> c<strong>on</strong>tent of CO profiles retrieved by MOPITT.<br />

Geophys Res Lett 2004;31:L15112, doi:10.1029/2004GL020235.<br />

[69] Turquety S, Clerbaux C, Law K, Coheur P-F, Cozic A, Szopa S, et al.<br />

CO emissi<strong>on</strong> and export from Asia: an analysis comb<strong>in</strong><strong>in</strong>g complementary<br />

satellite measurements (MOPITT, SCIAMACHY and<br />

ACE-FTS) with global modell<strong>in</strong>g. Atmos Chem Phys 2008;8:<br />

5187–204, doi:10.5194/acp-8-5187-2008.<br />

[70] Pommier M, Law KS, Clerbaux C, Turquety S, Hurtmans D, Hadji-<br />

Lazaro J, et al. <str<strong>on</strong>g>IASI</str<strong>on</strong>g> carb<strong>on</strong> m<strong>on</strong>oxide validati<strong>on</strong> over the Arctic<br />

dur<strong>in</strong>g POLARCAT spr<strong>in</strong>g and summer campaigns. Atmos Chem<br />

Phys 2010;10:10655–78, doi:10.5194/acp-10-10655-2010.<br />

[71] Yurganov LN, Rakit<strong>in</strong> V, Dzhola A, August T, Fokeeva E, George M,<br />

et al. Satellite- and ground-based CO total column observati<strong>on</strong>s<br />

over 2010 Russian fires: accuracy of top–down estimates based <strong>on</strong><br />

thermal IR satellite data. Atmos Chem Phys 2011;11:7925–42, doi:<br />

10.5194/acp-11-7925-2011.<br />

[72] Elgu<strong>in</strong>di N, Clark H, Ordóñez C, Thouret V, Flemm<strong>in</strong>g J, Ste<strong>in</strong> O, et al.<br />

Current status of the ability of the GEMS/MACC models to reproduce<br />

the tropospheric CO vertical distributi<strong>on</strong> as measured by MOZAIC.<br />

Geosci Model Dev 2010;3:501–18, doi:10.5194/gmd-3-501-2010.<br />

[73] Ricaud P, Attié J-L, Teyssedre H, El Amraoui L, Peuch V-H, Matricardi<br />

M, et al. Equatorial total column of nitrous oxide as measured<br />

by <str<strong>on</strong>g>IASI</str<strong>on</strong>g> <strong>on</strong> MetOp-A: implicati<strong>on</strong>s for transport processes. Atmos<br />

Chem Phys 2009;9:3947–56, doi:10.5194/acp-9-3947-2009.<br />

[74] Crevoisier C, Nobileau D, Fiore AM, Armante R, Chéd<strong>in</strong> A, Scott NA.<br />

Tropospheric methane <strong>in</strong> the tropics—first year from <str<strong>on</strong>g>IASI</str<strong>on</strong>g><br />

hyperspectral <strong>in</strong>frared observati<strong>on</strong>s. Atmos Chem Phys 2009;9:<br />

6337–50, doi:10.5194/acp-9-6337-2009.<br />

[75] Crevoisier C, Chéd<strong>in</strong> A, Matsueda H, Machida T, Armante R, Scott<br />

NA. First year of upper tropospheric <strong>in</strong>tegrated c<strong>on</strong>tent of CO 2 from<br />

<str<strong>on</strong>g>IASI</str<strong>on</strong>g> hyperspectral <strong>in</strong>frared observati<strong>on</strong>s. Atmos Chem Phys<br />

2009;9:4797–810, doi:10.5194/acp-9-4797-2009.<br />

[76] Gambacorta A. An assessment of the tropical humidity-temperature<br />

covariance us<strong>in</strong>g AIRS. Geophys Res Lett 2008;35:<br />

L10814, doi:10.1029/2008GL033805 [5 p.].<br />

[77] Ross RJ, et al. Lower-tropospheric humidity–temperature relati<strong>on</strong>ships<br />

<strong>in</strong> radios<strong>on</strong>de observati<strong>on</strong>s and atmospheric general circulati<strong>on</strong><br />

models. J Hydrometeorol 2001;3:26–38.<br />

[78] Masiello G, Serio C, Ant<strong>on</strong>elli P. Inversi<strong>on</strong> for atmospheric thermodynamical<br />

parameters of <str<strong>on</strong>g>IASI</str<strong>on</strong>g> data <strong>in</strong> the pr<strong>in</strong>cipal comp<strong>on</strong>ents<br />

space. Q J R Meteorol Soc 2011. doi:10.1002/qj.909.<br />

[79] Vömel H, Whiteman DN, Lesht BM, Schmidl<strong>in</strong> FJ, Russo F. Absolute<br />

accuracy of water vapor measurements from six operati<strong>on</strong>al<br />

radios<strong>on</strong>de types launched dur<strong>in</strong>g AWEX-G and implicati<strong>on</strong>s for<br />

AIRS validati<strong>on</strong>. J Geophys Res 2006;111:D09S10, doi:10.1029/<br />

2005JD006083.<br />

[80] Calbet X, Kivi R, Tjemkes S, M<strong>on</strong>tagner F, Stuhlmann R. Match<strong>in</strong>g<br />

radiative transfer models and radios<strong>on</strong>de data from the EPS/<strong>Metop</strong><br />

Sodankylä campaign to <str<strong>on</strong>g>IASI</str<strong>on</strong>g> measurements. Atmos Meas Tech<br />

2011;4:1177–89, doi:10.5194/amt-4-1177-2011.<br />

[81] Menzel P, Strabala K. Cloud top troperties and cloud phase:<br />

algorithm theoretical basis document. ATBD-MOD-04, NASA Goddard<br />

Space Flight Center; 1997. 55 pp.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!