11.08.2013 Views

Quantum Field Theory on NC Curved Spacetimes

Quantum Field Theory on NC Curved Spacetimes

Quantum Field Theory on NC Curved Spacetimes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Field</str<strong>on</strong>g> <str<strong>on</strong>g>Theory</str<strong>on</strong>g> <strong>on</strong> <strong>NC</strong> <strong>Curved</strong> <strong>Spacetimes</strong><br />

Alexander Schenkel<br />

(work in part with Thorsten Ohl)<br />

Institute for Theoretical Physics and Astrophysics, University of Würzburg<br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Field</str<strong>on</strong>g> <str<strong>on</strong>g>Theory</str<strong>on</strong>g>: Developments and Perspectives<br />

DESY <str<strong>on</strong>g>Theory</str<strong>on</strong>g> Workshop, Hamburg<br />

September 21-24, 2010<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 1 / 9


Why?<br />

Motivati<strong>on</strong><br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

◮ <strong>NC</strong> geometry from quantum gravity!?!?<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

◮ <strong>NC</strong> geometry from quantum gravity!?!?<br />

→ include some quantum gravity effects in QFT <strong>on</strong> CS<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

◮ <strong>NC</strong> geometry from quantum gravity!?!?<br />

→ include some quantum gravity effects in QFT <strong>on</strong> CS<br />

◮ <strong>NC</strong> in cosmology and black hole physics is of physical interest<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

◮ <strong>NC</strong> geometry from quantum gravity!?!?<br />

→ include some quantum gravity effects in QFT <strong>on</strong> CS<br />

◮ <strong>NC</strong> in cosmology and black hole physics is of physical interest<br />

→ provide formal background for phenomenology<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

◮ <strong>NC</strong> geometry from quantum gravity!?!?<br />

→ include some quantum gravity effects in QFT <strong>on</strong> CS<br />

◮ <strong>NC</strong> in cosmology and black hole physics is of physical interest<br />

→ provide formal background for phenomenology<br />

◮ ∃ <strong>NC</strong> gravity soluti<strong>on</strong>s [Schupp, Solodukhin; Ohl, AS; Aschieri, Castellani]<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Why? Motivati<strong>on</strong><br />

◮ QFT <strong>on</strong> curved spacetimes is important for physics<br />

→ cosmology (CMB fluctuati<strong>on</strong>s) and black holes (Hawking radiati<strong>on</strong>)<br />

◮ precise formulati<strong>on</strong> via algebraic approach [Wald, Hamburg AQFT group, . . . ]<br />

◮ But why should we make all of this n<strong>on</strong>commutative?<br />

◮ <strong>NC</strong> geometry from quantum gravity!?!?<br />

→ include some quantum gravity effects in QFT <strong>on</strong> CS<br />

◮ <strong>NC</strong> in cosmology and black hole physics is of physical interest<br />

→ provide formal background for phenomenology<br />

◮ ∃ <strong>NC</strong> gravity soluti<strong>on</strong>s [Schupp, Solodukhin; Ohl, AS; Aschieri, Castellani]<br />

→ test their physical implicati<strong>on</strong>s by using QFT <strong>on</strong> CS<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 2 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS<br />

Scalar field theory <strong>on</strong> <strong>NC</strong> curved spacetimes<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Kinematics<br />

◮ Simple example of a twist: (Moyal product/twist)<br />

⋆-product h ⋆ k = h e iλ ←−<br />

2 ∂µΘ µν−→ ∂ν k<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Kinematics<br />

◮ Simple example of a twist: (Moyal product/twist)<br />

⋆-product h ⋆ k = h e iλ ←−<br />

2 ∂µΘ µν−→ iλ<br />

∂ν −1 k twist F = e 2 Θµν∂µ⊗∂ν A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Kinematics<br />

◮ Simple example of a twist: (Moyal product/twist)<br />

⋆-product h ⋆ k = h e iλ ←−<br />

2 ∂µΘ µν−→ iλ<br />

∂ν −1 k twist F = e 2 Θµν∂µ⊗∂ν ◮ More general class of twists: (abelian twists)<br />

F −1 = ¯f α <br />

iλ<br />

⊗ ¯fα = exp<br />

2 Θab <br />

Xa ⊗ Xb with [Xa, Xb] = 0<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Kinematics<br />

◮ Simple example of a twist: (Moyal product/twist)<br />

⋆-product h ⋆ k = h e iλ ←−<br />

2 ∂µΘ µν−→ iλ<br />

∂ν −1 k twist F = e 2 Θµν∂µ⊗∂ν ◮ More general class of twists: (abelian twists)<br />

F −1 = ¯f α <br />

iλ<br />

⊗ ¯fα = exp<br />

2 Θab <br />

Xa ⊗ Xb with [Xa, Xb] = 0<br />

◮ <strong>NC</strong> geometry via twist deformati<strong>on</strong> quantizati<strong>on</strong>: [Wess group]<br />

◮ algebra of functi<strong>on</strong>s (C ∞ (M)[[λ]], ⋆), where h ⋆ k := ¯f α (h) · ¯fα(k)<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Kinematics<br />

◮ Simple example of a twist: (Moyal product/twist)<br />

⋆-product h ⋆ k = h e iλ ←−<br />

2 ∂µΘ µν−→ iλ<br />

∂ν −1 k twist F = e 2 Θµν∂µ⊗∂ν ◮ More general class of twists: (abelian twists)<br />

F −1 = ¯f α <br />

iλ<br />

⊗ ¯fα = exp<br />

2 Θab <br />

Xa ⊗ Xb with [Xa, Xb] = 0<br />

◮ <strong>NC</strong> geometry via twist deformati<strong>on</strong> quantizati<strong>on</strong>: [Wess group]<br />

◮ algebra of functi<strong>on</strong>s (C ∞ (M)[[λ]], ⋆), where h ⋆ k := ¯f α (h) · ¯fα(k)<br />

◮ exterior algebra (Ω • [[λ]], ∧⋆, d), where ω ∧⋆ ω ′ := ¯f α (ω) ∧ ¯fα(ω ′ )<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Kinematics<br />

◮ Simple example of a twist: (Moyal product/twist)<br />

⋆-product h ⋆ k = h e iλ ←−<br />

2 ∂µΘ µν−→ iλ<br />

∂ν −1 k twist F = e 2 Θµν∂µ⊗∂ν ◮ More general class of twists: (abelian twists)<br />

F −1 = ¯f α <br />

iλ<br />

⊗ ¯fα = exp<br />

2 Θab <br />

Xa ⊗ Xb with [Xa, Xb] = 0<br />

◮ <strong>NC</strong> geometry via twist deformati<strong>on</strong> quantizati<strong>on</strong>: [Wess group]<br />

◮ algebra of functi<strong>on</strong>s (C ∞ (M)[[λ]], ⋆), where h ⋆ k := ¯f α (h) · ¯fα(k)<br />

◮ exterior algebra (Ω • [[λ]], ∧⋆, d), where ω ∧⋆ ω ′ := ¯f α (ω) ∧ ¯fα(ω ′ )<br />

◮ pairing 〈v, ω〉⋆ := 〈 ¯f α (v), ¯fα(ω)〉 am<strong>on</strong>g vector fields and 1-forms<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 3 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed dynamics<br />

◮ deformed acti<strong>on</strong> functi<strong>on</strong>al:<br />

SΦ = − 1<br />

<br />

〈〈dΦ,<br />

−1<br />

g⋆ 〉⋆, dΦ〉⋆ + M<br />

2<br />

2 Φ ⋆ Φ ⋆ vol⋆<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 4 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed dynamics<br />

◮ deformed acti<strong>on</strong> functi<strong>on</strong>al:<br />

SΦ = − 1<br />

<br />

〈〈dΦ,<br />

−1<br />

g⋆ 〉⋆, dΦ〉⋆ + M<br />

2<br />

2 Φ ⋆ Φ ⋆ vol⋆<br />

◮ deformed equati<strong>on</strong> of moti<strong>on</strong> (top-form valued):<br />

0 = 1<br />

<br />

⋆[Φ] ⋆ vol⋆ + vol⋆ ⋆<br />

2<br />

⋆[Φ ∗ ] ∗ 2<br />

− M Φ ⋆ vol⋆ − M 2 <br />

vol⋆ ⋆ Φ<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 4 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed dynamics<br />

◮ deformed acti<strong>on</strong> functi<strong>on</strong>al:<br />

SΦ = − 1<br />

<br />

〈〈dΦ,<br />

−1<br />

g⋆ 〉⋆, dΦ〉⋆ + M<br />

2<br />

2 Φ ⋆ Φ ⋆ vol⋆<br />

◮ deformed equati<strong>on</strong> of moti<strong>on</strong> (top-form valued):<br />

0 = 1<br />

<br />

⋆[Φ] ⋆ vol⋆ + vol⋆ ⋆<br />

2<br />

⋆[Φ ∗ ] ∗ 2<br />

− M Φ ⋆ vol⋆ − M 2 <br />

vol⋆ ⋆ Φ<br />

=: P⋆[Φ] ⋆ vol⋆<br />

NB: P⋆ : C ∞ (M)[[λ]] → C ∞ (M)[[λ]] scalar valued<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 4 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed Green’s operators<br />

◮ (M, g⋆, ⋆) λ=0 time-oriented, c<strong>on</strong>nected, globally hyperbolic<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 5 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed Green’s operators<br />

◮ (M, g⋆, ⋆) λ=0 time-oriented, c<strong>on</strong>nected, globally hyperbolic<br />

◮ deformed Klein-Gord<strong>on</strong> operator P⋆ = ∞<br />

λ<br />

n=0<br />

nP (n)<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 5 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed Green’s operators<br />

◮ (M, g⋆, ⋆) λ=0 time-oriented, c<strong>on</strong>nected, globally hyperbolic<br />

◮ deformed Klein-Gord<strong>on</strong> operator P⋆ = ∞<br />

◮ technical assumpti<strong>on</strong>: P (n) : C ∞ (M) → C ∞ 0<br />

λ<br />

n=0<br />

nP (n)<br />

(M) for all n > 0<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 5 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed Green’s operators<br />

◮ (M, g⋆, ⋆) λ=0 time-oriented, c<strong>on</strong>nected, globally hyperbolic<br />

◮ deformed Klein-Gord<strong>on</strong> operator P⋆ = ∞<br />

λ<br />

n=0<br />

nP (n)<br />

◮ technical assumpti<strong>on</strong>: P (n) : C∞ (M) → C∞ 0<br />

◮ fulfilled for all twists of compact support<br />

(M) for all n > 0<br />

◮ or g⋆ asymptotically (outside compact regi<strong>on</strong>) symmetric under F<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 5 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed Green’s operators<br />

◮ (M, g⋆, ⋆) λ=0 time-oriented, c<strong>on</strong>nected, globally hyperbolic<br />

◮ deformed Klein-Gord<strong>on</strong> operator P⋆ = ∞<br />

λ<br />

n=0<br />

nP (n)<br />

◮ technical assumpti<strong>on</strong>: P (n) : C∞ (M) → C∞ 0<br />

◮ fulfilled for all twists of compact support<br />

(M) for all n > 0<br />

◮ or g⋆ asymptotically (outside compact regi<strong>on</strong>) symmetric under F<br />

◮ based <strong>on</strong> str<strong>on</strong>g results for the commutative case we find:<br />

there exist unique deformed Green’s operators ∆⋆± := ∞<br />

λ<br />

n=0<br />

n∆ (n)±<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 5 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed Green’s operators<br />

◮ (M, g⋆, ⋆) λ=0 time-oriented, c<strong>on</strong>nected, globally hyperbolic<br />

◮ deformed Klein-Gord<strong>on</strong> operator P⋆ = ∞<br />

λ<br />

n=0<br />

nP (n)<br />

◮ technical assumpti<strong>on</strong>: P (n) : C∞ (M) → C∞ 0<br />

◮ fulfilled for all twists of compact support<br />

(M) for all n > 0<br />

◮ or g⋆ asymptotically (outside compact regi<strong>on</strong>) symmetric under F<br />

◮ based <strong>on</strong> str<strong>on</strong>g results for the commutative case we find:<br />

there exist unique deformed Green’s operators ∆⋆± := ∞<br />

λ<br />

n=0<br />

n∆ (n)±<br />

∆⋆± = ∆± − λ ∆± ◦ P(1) ◦ ∆±<br />

− λ 2 <br />

3<br />

∆± ◦ P(2) ◦ ∆± − ∆± ◦ P(1) ◦ ∆± ◦ P(1) ◦ ∆± + O(λ )<br />

= − λ 1 − λ 2<br />

[higher orders in λ follow the same structure]<br />

<br />

2 − 1 1<br />

<br />

+ O(λ 3 )<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 5 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed symplectic vector space<br />

◮ define: ∆⋆ := ∆⋆+ − ∆⋆−<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 6 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed symplectic vector space<br />

◮ define: ∆⋆ := ∆⋆+ − ∆⋆−<br />

◮ space of “physical sources”:<br />

H := ϕ ∈ C ∞ 0 (M)[[λ]] : ∆⋆±(ϕ) ∗ = ∆⋆±(ϕ) <br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 6 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed symplectic vector space<br />

◮ define: ∆⋆ := ∆⋆+ − ∆⋆−<br />

◮ space of “physical sources”:<br />

H := ϕ ∈ C ∞ 0 (M)[[λ]] : ∆⋆±(ϕ) ∗ = ∆⋆±(ϕ) <br />

◮ we obtain: ∆⋆[H] = Sol R P⋆ , i.e. H/Ker(∆⋆) Sol R P⋆<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 6 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed symplectic vector space<br />

◮ define: ∆⋆ := ∆⋆+ − ∆⋆−<br />

◮ space of “physical sources”:<br />

H := ϕ ∈ C ∞ 0 (M)[[λ]] : ∆⋆±(ϕ) ∗ = ∆⋆±(ϕ) <br />

◮ we obtain: ∆⋆[H] = Sol R P⋆ , i.e. H/Ker(∆⋆) Sol R P⋆<br />

Propositi<strong>on</strong> (T. Ohl, AS)<br />

(V⋆, ω⋆) with V⋆ := H/Ker(∆⋆) and<br />

<br />

ω⋆([ϕ], [ψ]) := ϕ ∗ ⋆ ∆⋆(ψ) ⋆ vol⋆<br />

is a symplectic vector space over R[[λ]].<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 6 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed symplectic vector space<br />

◮ define: ∆⋆ := ∆⋆+ − ∆⋆−<br />

◮ space of “physical sources”:<br />

H := ϕ ∈ C ∞ 0 (M)[[λ]] : ∆⋆±(ϕ) ∗ = ∆⋆±(ϕ) <br />

◮ we obtain: ∆⋆[H] = Sol R P⋆ , i.e. H/Ker(∆⋆) Sol R P⋆<br />

Propositi<strong>on</strong> (T. Ohl, AS)<br />

(V⋆, ω⋆) with V⋆ := H/Ker(∆⋆) and<br />

<br />

ω⋆([ϕ], [ψ]) := ϕ ∗ ⋆ ∆⋆(ψ) ⋆ vol⋆<br />

is a symplectic vector space over R[[λ]].<br />

Propositi<strong>on</strong><br />

There is a symplectic isomorphism S : (V⋆, ω⋆) → (V[[λ]], ω) between the <strong>NC</strong><br />

and com. field theory[[λ]], i.e. ω(S[ϕ], S[ψ]) = ω⋆([ϕ], [ψ]),.<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 6 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS Deformed symplectic vector space<br />

◮ define: ∆⋆ := ∆⋆+ − ∆⋆−<br />

◮ space of “physical sources”:<br />

H := ϕ ∈ C ∞ 0 (M)[[λ]] : ∆⋆±(ϕ) ∗ = ∆⋆±(ϕ) <br />

◮ we obtain: ∆⋆[H] = Sol R P⋆ , i.e. H/Ker(∆⋆) Sol R P⋆<br />

Propositi<strong>on</strong> (T. Ohl, AS)<br />

(V⋆, ω⋆) with V⋆ := H/Ker(∆⋆) and<br />

<br />

ω⋆([ϕ], [ψ]) := ϕ ∗ ⋆ ∆⋆(ψ) ⋆ vol⋆<br />

is a symplectic vector space over R[[λ]].<br />

Propositi<strong>on</strong><br />

There is a symplectic isomorphism S : (V⋆, ω⋆) → (V[[λ]], ω) between the <strong>NC</strong><br />

and com. field theory[[λ]], i.e. ω(S[ϕ], S[ψ]) = ω⋆([ϕ], [ψ]),.<br />

Proof by c<strong>on</strong>structing S order-by-order in λ.<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 6 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS ∗-algebras of field polynomials<br />

◮ C<strong>on</strong>sider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 7 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS ∗-algebras of field polynomials<br />

◮ C<strong>on</strong>sider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]<br />

Def: Let (V, ρ) be a symplectic vector space over R[[λ]]. Then A (V,ρ) is<br />

∗-algebra of field polynomials if it is generated by Φ(ϕ), ϕ ∈ V, such that<br />

Φ(α ϕ + β ψ) = α Φ(ϕ) + β Φ(ψ) ,<br />

Φ(ϕ) ∗ = Φ(ϕ) ,<br />

Φ(ϕ), Φ(ψ) = i ρ(ϕ, ψ) 1 .<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 7 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS ∗-algebras of field polynomials<br />

◮ C<strong>on</strong>sider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]<br />

Def: Let (V, ρ) be a symplectic vector space over R[[λ]]. Then A (V,ρ) is<br />

∗-algebra of field polynomials if it is generated by Φ(ϕ), ϕ ∈ V, such that<br />

Φ(α ϕ + β ψ) = α Φ(ϕ) + β Φ(ψ) ,<br />

Φ(ϕ) ∗ = Φ(ϕ) ,<br />

Φ(ϕ), Φ(ψ) = i ρ(ϕ, ψ) 1 .<br />

◮ A (V⋆,ω⋆) ˆ= <strong>NC</strong> QFT , A (V[[λ]],ω) ˆ= com. QFT[[λ]]<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 7 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS ∗-algebras of field polynomials<br />

◮ C<strong>on</strong>sider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]<br />

Def: Let (V, ρ) be a symplectic vector space over R[[λ]]. Then A (V,ρ) is<br />

∗-algebra of field polynomials if it is generated by Φ(ϕ), ϕ ∈ V, such that<br />

Φ(α ϕ + β ψ) = α Φ(ϕ) + β Φ(ψ) ,<br />

Φ(ϕ) ∗ = Φ(ϕ) ,<br />

Φ(ϕ), Φ(ψ) = i ρ(ϕ, ψ) 1 .<br />

◮ A (V⋆,ω⋆) ˆ= <strong>NC</strong> QFT , A (V[[λ]],ω) ˆ= com. QFT[[λ]]<br />

Corollary<br />

The symplectic isomorphism S : (V⋆, ω⋆) → (V[[λ]], ω) induces a ∗-algebra<br />

isomorphism S : A (V⋆,ω⋆) → A (V[[λ]],ω) between <strong>NC</strong> and com. QFT[[λ]],<br />

via S Φ⋆(ϕ) := Φ(Sϕ).<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 7 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS ∗-algebras of field polynomials<br />

◮ C<strong>on</strong>sider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]<br />

Def: Let (V, ρ) be a symplectic vector space over R[[λ]]. Then A (V,ρ) is<br />

∗-algebra of field polynomials if it is generated by Φ(ϕ), ϕ ∈ V, such that<br />

Φ(α ϕ + β ψ) = α Φ(ϕ) + β Φ(ψ) ,<br />

Φ(ϕ) ∗ = Φ(ϕ) ,<br />

Φ(ϕ), Φ(ψ) = i ρ(ϕ, ψ) 1 .<br />

◮ A (V⋆,ω⋆) ˆ= <strong>NC</strong> QFT , A (V[[λ]],ω) ˆ= com. QFT[[λ]]<br />

Corollary<br />

The symplectic isomorphism S : (V⋆, ω⋆) → (V[[λ]], ω) induces a ∗-algebra<br />

isomorphism S : A (V⋆,ω⋆) → A (V[[λ]],ω) between <strong>NC</strong> and com. QFT[[λ]],<br />

via S Φ⋆(ϕ) := Φ(Sϕ).<br />

◮ C<strong>on</strong>sequences:<br />

◮ Inducti<strong>on</strong> of states Ω⋆ := Ω ◦ S : A(V⋆,ω⋆) → C[[λ]]<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 7 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS ∗-algebras of field polynomials<br />

◮ C<strong>on</strong>sider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]<br />

Def: Let (V, ρ) be a symplectic vector space over R[[λ]]. Then A (V,ρ) is<br />

∗-algebra of field polynomials if it is generated by Φ(ϕ), ϕ ∈ V, such that<br />

Φ(α ϕ + β ψ) = α Φ(ϕ) + β Φ(ψ) ,<br />

Φ(ϕ) ∗ = Φ(ϕ) ,<br />

Φ(ϕ), Φ(ψ) = i ρ(ϕ, ψ) 1 .<br />

◮ A (V⋆,ω⋆) ˆ= <strong>NC</strong> QFT , A (V[[λ]],ω) ˆ= com. QFT[[λ]]<br />

Corollary<br />

The symplectic isomorphism S : (V⋆, ω⋆) → (V[[λ]], ω) induces a ∗-algebra<br />

isomorphism S : A (V⋆,ω⋆) → A (V[[λ]],ω) between <strong>NC</strong> and com. QFT[[λ]],<br />

via S Φ⋆(ϕ) := Φ(Sϕ).<br />

◮ C<strong>on</strong>sequences:<br />

◮ Inducti<strong>on</strong> of states Ω⋆ := Ω ◦ S : A(V⋆,ω⋆) → C[[λ]]<br />

◮ <strong>NC</strong> correlati<strong>on</strong> functi<strong>on</strong>s from commutative correlati<strong>on</strong> functi<strong>on</strong>s<br />

〈0|Φ⋆(ϕ1) · · · Φ⋆(ϕn)|0〉 = 〈0|Φ(Sϕ1) · · · Φ(Sϕn)|0〉<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 7 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS<br />

An example of a c<strong>on</strong>vergent deformati<strong>on</strong><br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

◮ in Fourier space (φ → k ∈ Z) we have<br />

P⋆ = cosh(3λk) ◦ , ∆±⋆ = ∆± ◦ cosh(3λk) −1<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

◮ in Fourier space (φ → k ∈ Z) we have<br />

P⋆ = cosh(3λk) ◦ , ∆±⋆ = ∆± ◦ cosh(3λk) −1<br />

◮ symplectic VS (V⋆, ω⋆) = (V, ω⋆) with<br />

∞ ∞<br />

ω⋆(ϕ, ψ) = − dt t dτ τ 1<br />

∞<br />

2π<br />

0<br />

0<br />

k=−∞<br />

ϕ(t, −k)<br />

∆(t, τ, k)<br />

cosh(3λk) ψ(τ, k)<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

◮ in Fourier space (φ → k ∈ Z) we have<br />

P⋆ = cosh(3λk) ◦ , ∆±⋆ = ∆± ◦ cosh(3λk) −1<br />

◮ symplectic VS (V⋆, ω⋆) = (V, ω⋆) with<br />

∞ ∞<br />

ω⋆(ϕ, ψ) = − dt t dτ τ 1<br />

∞<br />

2π<br />

0<br />

0<br />

k=−∞<br />

ϕ(t, −k)<br />

◮ symplectic map S : (V⋆, ω⋆) → (V, ω) in Fourier space<br />

S ϕ (t, k) =<br />

∆(t, τ, k)<br />

cosh(3λk) ψ(τ, k)<br />

ϕ(t, k)<br />

cosh(3λk) ⇒ ω(Sϕ, Sψ) = ω⋆(ϕ, ψ)<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

◮ in Fourier space (φ → k ∈ Z) we have<br />

P⋆ = cosh(3λk) ◦ , ∆±⋆ = ∆± ◦ cosh(3λk) −1<br />

◮ symplectic VS (V⋆, ω⋆) = (V, ω⋆) with<br />

∞ ∞<br />

ω⋆(ϕ, ψ) = − dt t dτ τ 1<br />

∞<br />

2π<br />

0<br />

0<br />

k=−∞<br />

ϕ(t, −k)<br />

◮ symplectic map S : (V⋆, ω⋆) → (V, ω) in Fourier space<br />

S ϕ (t, k) =<br />

∆(t, τ, k)<br />

cosh(3λk) ψ(τ, k)<br />

ϕ(t, k)<br />

cosh(3λk) ⇒ ω(Sϕ, Sψ) = ω⋆(ϕ, ψ)<br />

◮ S is injective but not surjective (all S ϕ fall of faster than e −3λ|k|/2 for |k| ≫ 1)<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

◮ in Fourier space (φ → k ∈ Z) we have<br />

P⋆ = cosh(3λk) ◦ , ∆±⋆ = ∆± ◦ cosh(3λk) −1<br />

◮ symplectic VS (V⋆, ω⋆) = (V, ω⋆) with<br />

∞ ∞<br />

ω⋆(ϕ, ψ) = − dt t dτ τ 1<br />

∞<br />

2π<br />

0<br />

0<br />

k=−∞<br />

ϕ(t, −k)<br />

◮ symplectic map S : (V⋆, ω⋆) → (V, ω) in Fourier space<br />

S ϕ (t, k) =<br />

∆(t, τ, k)<br />

cosh(3λk) ψ(τ, k)<br />

ϕ(t, k)<br />

cosh(3λk) ⇒ ω(Sϕ, Sψ) = ω⋆(ϕ, ψ)<br />

◮ S is injective but not surjective (all S ϕ fall of faster than e −3λ|k|/2 for |k| ≫ 1)<br />

◮ Interpretati<strong>on</strong>:<br />

QFT <strong>on</strong> <strong>NC</strong> CS is ∗-isomorphic to a reduced QFT <strong>on</strong> CS,<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Scalar field <strong>on</strong> <strong>NC</strong> CS 2-dimensi<strong>on</strong>al FRW universe<br />

◮ spacetime: M = (0, ∞) × S1 with g = −dt ⊗ dt + t 2 dφ ⊗ dφ<br />

◮ deformati<strong>on</strong>: F −1 = e iλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ⋆ e iφ = e −2λ e iφ ⋆ t<br />

◮ in Fourier space (φ → k ∈ Z) we have<br />

P⋆ = cosh(3λk) ◦ , ∆±⋆ = ∆± ◦ cosh(3λk) −1<br />

◮ symplectic VS (V⋆, ω⋆) = (V, ω⋆) with<br />

∞ ∞<br />

ω⋆(ϕ, ψ) = − dt t dτ τ 1<br />

∞<br />

2π<br />

0<br />

0<br />

k=−∞<br />

ϕ(t, −k)<br />

◮ symplectic map S : (V⋆, ω⋆) → (V, ω) in Fourier space<br />

S ϕ (t, k) =<br />

∆(t, τ, k)<br />

cosh(3λk) ψ(τ, k)<br />

ϕ(t, k)<br />

cosh(3λk) ⇒ ω(Sϕ, Sψ) = ω⋆(ϕ, ψ)<br />

◮ S is injective but not surjective (all S ϕ fall of faster than e −3λ|k|/2 for |k| ≫ 1)<br />

◮ Interpretati<strong>on</strong>:<br />

QFT <strong>on</strong> <strong>NC</strong> CS is ∗-isomorphic to a reduced QFT <strong>on</strong> CS, where str<strong>on</strong>gly<br />

localized observables are excluded.<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 8 / 9


Summary and references<br />

◮ QFT <strong>on</strong> <strong>NC</strong> curved spacetimes [arXiv:0912.2252]:<br />

◮ formally self adjoint EOM operators P⋆<br />

◮ existence, uniqueness and c<strong>on</strong>structi<strong>on</strong> of the deformed Green’s operators<br />

◮ symplectic structure <strong>on</strong> the space of real soluti<strong>on</strong>s of P⋆<br />

◮ quantizati<strong>on</strong> via ∗-algebras of field polynomials<br />

◮ QFT <strong>on</strong> <strong>NC</strong> CS<br />

∗-algebra isomorphism<br />

←−−−−−−−−−−−−−−−→ QFT <strong>on</strong> CS[[λ]]<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 9 / 9


Summary and references<br />

◮ QFT <strong>on</strong> <strong>NC</strong> curved spacetimes [arXiv:0912.2252]:<br />

◮ formally self adjoint EOM operators P⋆<br />

◮ existence, uniqueness and c<strong>on</strong>structi<strong>on</strong> of the deformed Green’s operators<br />

◮ symplectic structure <strong>on</strong> the space of real soluti<strong>on</strong>s of P⋆<br />

◮ quantizati<strong>on</strong> via ∗-algebras of field polynomials<br />

◮ QFT <strong>on</strong> <strong>NC</strong> CS<br />

∗-algebra isomorphism<br />

←−−−−−−−−−−−−−−−→ QFT <strong>on</strong> CS[[λ]]<br />

◮ Examples of c<strong>on</strong>vergent deformati<strong>on</strong>s [arXiv:1009.1090]:<br />

◮ c<strong>on</strong>structi<strong>on</strong> of the deformed symplectic vector space<br />

◮ quantizati<strong>on</strong> in terms of Weyl algebras<br />

◮ QFT <strong>on</strong> <strong>NC</strong> CS<br />

injective ∗-morphism<br />

−−−−−−−−−−−−−−−−−→ QFT <strong>on</strong> CS<br />

A. Schenkel (Würzburg) QFT <strong>on</strong> <strong>NC</strong> CS DESY 2010 9 / 9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!