11.08.2013 Views

Three-Phase Transformers One 3-phase or 3 single-phase?

Three-Phase Transformers One 3-phase or 3 single-phase?

Three-Phase Transformers One 3-phase or 3 single-phase?

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Unit 8<br />

3-<strong>Phase</strong> <strong>Transf<strong>or</strong>mers</strong><br />

Objectives<br />

• After studying this unit, you should be able to:<br />

– Discuss the operation of three-<strong>phase</strong> transf<strong>or</strong>mers<br />

– Connect three <strong>single</strong>-<strong>phase</strong> transf<strong>or</strong>mers to f<strong>or</strong>m a<br />

three-<strong>phase</strong> bank<br />

– Calculate voltage and current values f<strong>or</strong> a three<strong>phase</strong><br />

transf<strong>or</strong>mer connection<br />

<strong>Three</strong>-<strong>Phase</strong> <strong>Transf<strong>or</strong>mers</strong><br />

• Constructed by winding three <strong>single</strong>-<strong>phase</strong><br />

transf<strong>or</strong>mers on a <strong>single</strong> c<strong>or</strong>e<br />

– Mounted in an enclosure full of dielectric oil<br />

• Oil provides insulation and cooling and prevents<br />

f<strong>or</strong>mation of moisture<br />

Figure 8-1 Basic<br />

construction of a<br />

three-<strong>phase</strong><br />

transf<strong>or</strong>mer.<br />

Unit 8 Homew<strong>or</strong>k<br />

• Review Questions and Problems, Pages 189<br />

and 190.<br />

• We will Discuss the Open Delta with Unit 9, so<br />

questions 1 and 2 will be covered then.<br />

Objectives (cont'd.)<br />

– Connect two <strong>single</strong>-<strong>phase</strong> transf<strong>or</strong>mers to f<strong>or</strong>m a<br />

three-<strong>phase</strong> open-delta connection<br />

– Discuss the characteristics of an open-delta<br />

connection<br />

<strong>One</strong> 3-<strong>phase</strong> <strong>or</strong> 3 <strong>single</strong>-<strong>phase</strong>?<br />

• A <strong>single</strong> 3-<strong>Phase</strong> transf<strong>or</strong>mer is less expensive<br />

than 3-Single-<strong>Phase</strong> <strong>Transf<strong>or</strong>mers</strong>, but if on of<br />

the coils goes out you need to replace the<br />

while thing.<br />

2/22/2013<br />

1


Connecting Single-<strong>Phase</strong> <strong>Transf<strong>or</strong>mers</strong> in<br />

<strong>Three</strong>-<strong>Phase</strong> Bank<br />

• Using three <strong>single</strong>-<strong>phase</strong> transf<strong>or</strong>mers to make a<br />

three-<strong>phase</strong> bank:<br />

– Connect primary and secondary windings in wye <strong>or</strong><br />

delta<br />

– Label ends of each primary winding H 1 and H 2<br />

– Label ends of each secondary winding X 1 and X 2<br />

Figure 8-5 Identifying<br />

the windings.<br />

Figure 8-7 Connecting<br />

three <strong>single</strong>-<strong>phase</strong><br />

transf<strong>or</strong>mers to f<strong>or</strong>m a<br />

wye-delta three-<strong>phase</strong><br />

bank.<br />

<strong>Three</strong>-<strong>Phase</strong> Transf<strong>or</strong>mer Calculations<br />

• Follow f<strong>or</strong>mulas f<strong>or</strong> transf<strong>or</strong>mer and three<strong>phase</strong><br />

calculations when computing voltage and<br />

current f<strong>or</strong> three-<strong>phase</strong> transf<strong>or</strong>mers<br />

– Focus on the voltages and currents on the coils,<br />

which will be the “<strong>phase</strong> values,” then look at the<br />

voltages on the rest of the circuit.<br />

<strong>Three</strong>-<strong>Phase</strong> Transf<strong>or</strong>mer Connections<br />

• Wye-delta transf<strong>or</strong>mer has its primary winding<br />

connected in a wye and secondary connected in<br />

a delta<br />

• Delta-wye transf<strong>or</strong>mer has its primary winding<br />

connected in a delta and secondary connected<br />

in a wye<br />

<strong>One</strong>-line diagrams (Sh<strong>or</strong>thand)<br />

• <strong>One</strong>-line diagram: alternative method f<strong>or</strong><br />

illustrating three-<strong>phase</strong> transf<strong>or</strong>mer connections<br />

– Used to show main power distribution system of a<br />

large industrial plant<br />

Figure 8-8 <strong>One</strong>-line diagram symbol used to represent a deltawye<br />

three-<strong>phase</strong> transf<strong>or</strong>mer connection.<br />

Simple 3- <strong>Phase</strong> Connections<br />

Δ→Y (Delta Primary, Wye Secondary)<br />

2/22/2013<br />

2


Δ→Y Phas<strong>or</strong> Diagram Y→Y Connection<br />

Y→Y Phas<strong>or</strong> Diagram Special Note on Y-Y connections<br />

Stable Y→Y<br />

Y→Y stabilized by tying neutral together to the source-neutral<br />

• This is not a popular connection because if the<br />

currents in a Y-Y system are not balanced the<br />

<strong>phase</strong> voltages will not be stable. (We will see<br />

this in lab).<br />

• The only way to totally fix this is to tie the<br />

center of the Primary to the source Neutral<br />

and tie the secondary Neutral to the same<br />

point. This eliminates “Isolation.”<br />

Y→Δ Connections<br />

2/22/2013<br />

3


Y→Δ Phas<strong>or</strong> Diagram Special note about Power <strong>Transf<strong>or</strong>mers</strong><br />

• Power <strong>Transf<strong>or</strong>mers</strong> frequently have dualsecondaries.<br />

– This allows m<strong>or</strong>e options when connecting them.<br />

EET150 Chapter 4- Transf<strong>or</strong>mer Connection 20<br />

Pop Example: Connect a Δ→Y Δ →Δ Connection<br />

Δ →Δ <strong>Phase</strong> Diagrams Winding Markings<br />

After Manufacturing, the High Voltage Leads are<br />

labeled with “H” and the low Voltage with “X”<br />

2/22/2013<br />

4


Delta Connection, maintaining<br />

polarity<br />

Closing a Delta<br />

• Always check f<strong>or</strong> proper polarity bef<strong>or</strong>e making<br />

final connection and applying power<br />

– Test f<strong>or</strong> proper phasing with a voltmeter<br />

• If one <strong>phase</strong> winding is reversed, voltmeter will read<br />

double the applied voltage rather than 0 volts when<br />

applying power bef<strong>or</strong>e connection is closed<br />

• Test does not reveal whether reversed winding is in<br />

primary <strong>or</strong> secondary<br />

• Voltmeter may indicate voltage even if connection is<br />

c<strong>or</strong>rect (usually close to n<strong>or</strong>mal output voltage)<br />

T-Connected <strong>Transf<strong>or</strong>mers</strong><br />

• T-connection uses two transf<strong>or</strong>mers: main and<br />

teaser<br />

– Main transf<strong>or</strong>mer contains center <strong>or</strong> 50% tap f<strong>or</strong><br />

both primary and secondary windings<br />

– Teaser contains 86.6% voltage tap (preferred) f<strong>or</strong><br />

both primary and secondary<br />

• Connection can also be made with teaser with same<br />

voltage rating as main transf<strong>or</strong>mer, but teaser operates at<br />

reduced flux<br />

Delta Polarity notes<br />

• If you accidentally reverse the polarity of one<br />

of the windings in a Delta configuration you<br />

will severely unbalance the Secondary<br />

Voltages so always check the polarity bef<strong>or</strong>e<br />

closing the delta.<br />

(Always Check the fine print bef<strong>or</strong>e you seal the<br />

deal!)<br />

Closing the Delta<br />

When Closing the Delta a Δ primary to Δ secondary<br />

will usually give you 0 Volts out. A Y to Δ will read<br />

close to the output voltage, but if a coil is reversed it<br />

will read double the input voltage.<br />

T-Connected <strong>Transf<strong>or</strong>mers</strong> (cont'd.)<br />

– Main transf<strong>or</strong>mer connects directly across power<br />

line<br />

• <strong>One</strong> primary lead of teaser connects to center tap of<br />

main, 86.6% tap connects to power line, and same basic<br />

connection f<strong>or</strong> secondary leads<br />

– Advantage: T-connection maintains better <strong>phase</strong><br />

balance than open-delta<br />

– Disadvantage: one transf<strong>or</strong>mer must have a centertap<br />

on both the primary and secondary windings<br />

2/22/2013<br />

5


T Connection<br />

Figure 8-16 T-connected transf<strong>or</strong>mers.<br />

Scott Connection<br />

• Scott connection<br />

– Converts three-<strong>phase</strong> power into two-<strong>phase</strong> using<br />

two <strong>single</strong>-<strong>phase</strong> transf<strong>or</strong>mers<br />

• Main has 50% tap and teaser has 86.6% tap on primary,<br />

like T-connection, but secondary of each transf<strong>or</strong>mer<br />

provide <strong>phase</strong>s of two-<strong>phase</strong> system<br />

Scott Connection Application of Scott Connection<br />

Figure 8-19 Scott connection.<br />

M<strong>or</strong>al of the St<strong>or</strong>y:<br />

• You can use a Scott T to power larger 2-<strong>Phase</strong><br />

Loads without pulling your 3-<strong>Phase</strong> out of<br />

Balance<br />

Single-<strong>Phase</strong> Zone<br />

Heating/Blower<br />

units in a 3Φ<br />

system can be<br />

supplied using a<br />

Scott T.<br />

If the 2 units were<br />

run on 2 of the 3<br />

<strong>phase</strong>s, the 3Φ<br />

system would be<br />

unbalanced.<br />

Zig-Zag Connection<br />

• Zig-zag <strong>or</strong> interconnected-wye connection:<br />

– <strong>Three</strong>-<strong>phase</strong> autotransf<strong>or</strong>mer with windings<br />

divided into six equal parts<br />

2/22/2013<br />

6


Figure 8-21<br />

Schematic diagram of<br />

a zig-zag connection.<br />

Figure 8-20 Zig-zag<br />

connection.<br />

<strong>Three</strong>-<strong>Phase</strong> to Six-<strong>Phase</strong> Connections<br />

• Power system with m<strong>or</strong>e than three <strong>phase</strong>s:<br />

desirable f<strong>or</strong> converting AC to DC with minimal<br />

ripple.<br />

– Common example: diametrical connection<br />

• Requires only one low-voltage winding on each<br />

transf<strong>or</strong>mer<br />

• If center tapped, a neutral conduct<strong>or</strong> f<strong>or</strong> the six-<strong>phase</strong><br />

output permits half-wave rectification<br />

• High-voltage windings can be connected in wye <strong>or</strong> delta<br />

(preferred)<br />

Double-Delta Connection and Double-<br />

Wye Connection<br />

• Double-delta connection:<br />

– <strong>Transf<strong>or</strong>mers</strong> have two secondary windings that<br />

provide equal voltage, f<strong>or</strong>m two delta connections<br />

• Delta windings are reverse connected 180° out of<br />

<strong>phase</strong>; primary may be wye <strong>or</strong> delta<br />

Using a Zig-Zag Connection to get 3Φ<br />

with Neutral From a Grounded-Delta<br />

In this case I have a 480V<br />

Grounded-Delta system<br />

(one <strong>phase</strong> is grounded) and<br />

I want 277/480 f<strong>or</strong> lighting<br />

with a separate Neutral that<br />

is grounded. A 480/277V<br />

transf<strong>or</strong>mer could be used,<br />

but that would be a special<br />

size. This solution uses a<br />

common 480/240V<br />

Transf<strong>or</strong>mer connected Z-Z.<br />

A Zig-Zag Configuration can<br />

do that, while adding in<br />

Harmonic Suppression as a<br />

bonus.<br />

Figure 8-24 <strong>Three</strong> <strong>single</strong>-<strong>phase</strong><br />

center-tapped transf<strong>or</strong>mers are<br />

used to convert three-<strong>phase</strong> into<br />

six-<strong>phase</strong>.<br />

Figure 8-22<br />

Diametrical<br />

connection.<br />

Double-Delta Connection and Double-<br />

Wye Connection<br />

• Double-wye connection:<br />

– Like double-delta but secondary windings f<strong>or</strong>m<br />

two wyes<br />

• Windings are reverse connected 180°<br />

• Resembles diametrical connection with no center tap<br />

2/22/2013<br />

7


Figure 8-26 Schematic diagram<br />

of a double-delta connection with<br />

a wye-connected primary.<br />

Figure 8-25<br />

Double-delta<br />

connection.<br />

Problems 1 and 2<br />

Calculate the Primary Current (and a bunch of other<br />

stuff along the way)<br />

Solution sequence<br />

1) Use the Turns Ratio to figure out the secondary<br />

voltage (VP →N → VS)<br />

2) Use the Secondary Voltage to figure out the load<br />

current (VS →Z →ILoad)<br />

3) Use the Load Current to figure out the Secondary<br />

Current (ILoad →Configuration →ISecondary)<br />

4) Use the Secondary Current to figure out the Primary<br />

Current (ISecondary →N →IPrimary)<br />

Figure 8-28 Schematic<br />

diagram of a double-wye<br />

connection.<br />

Figure 8-27 Doublewye<br />

connection.<br />

Primary Current<br />

Bear in mind that with a transf<strong>or</strong>mer, the primary<br />

current is determined by the current drawn by the load.<br />

Example<br />

Let’s say that the Primary Voltage is 1380 V and the<br />

transf<strong>or</strong>mer N=6.63:1. What is the Primary Current and<br />

Transf<strong>or</strong>mer Power rating?<br />

2/22/2013<br />

8


V<br />

I<br />

I<br />

<strong>Phase</strong><br />

<strong>Phase</strong><br />

Example Detail 1<br />

First Detail: If the Transf<strong>or</strong>mer Primary winding is rated<br />

f<strong>or</strong> 1380V, and is connected in a Wye configuration,<br />

what are the <strong>Phase</strong> and Line Voltages?<br />

•Recall that the <strong>Phase</strong> voltage is the voltage across an element (like a<br />

Primary Coil) and the Line Voltage is the Voltage from “Line to Line.”<br />

E<br />

E<br />

E<br />

<strong>Phase</strong><br />

Line<br />

Line<br />

1380 V<br />

E<br />

<strong>Phase</strong><br />

2390 V<br />

3<br />

1380 V<br />

Example Solution Step 2<br />

Determine Load Current<br />

<strong>Phase</strong><br />

I<br />

I<br />

V<br />

208V<br />

3 3<br />

V<strong>Phase</strong><br />

120V<br />

Z 2.<br />

77<br />

I 43.<br />

3A<br />

Line<br />

Line<br />

120V<br />

43.<br />

3A<br />

Example Solution Step 4<br />

Determine Primary Currents<br />

Pr i <strong>Phase</strong><br />

Line<br />

I<br />

<strong>Phase</strong><br />

I<br />

Sec <strong>Phase</strong><br />

N<br />

3.<br />

77 A<br />

25A<br />

6.<br />

63<br />

3.<br />

77 A<br />

3<br />

2390 V<br />

Example Solution Step 1<br />

Determine Secondary Voltage<br />

V<br />

In a<br />

V<br />

Sec<br />

<strong>Phase</strong><br />

VPr<br />

i<br />

N<br />

1380V<br />

6.<br />

63<br />

208V<br />

configuration,<br />

V<br />

V<br />

Line<br />

208V<br />

<strong>Phase</strong><br />

V<br />

Line<br />

Example Solution Step 3<br />

Determine Secondary Current<br />

I<br />

<strong>Phase</strong><br />

I<br />

Line<br />

3<br />

43.<br />

3A<br />

3<br />

25AV<br />

Example Solution Step 5<br />

Determine Transf<strong>or</strong>mer Power<br />

Power ( VA)<br />

V<strong>Phase</strong>I<strong>Phase</strong><br />

1380<br />

V 3.<br />

77 A 5.<br />

2kVA<br />

Each<br />

2/22/2013<br />

9


Example Problem Summary<br />

• Given this circuit, the loads will receive 120V<br />

each IF EACH OF the transf<strong>or</strong>mers have a<br />

power rating of AT LEAST 5.2 kVA each.<br />

Summary (cont'd.)<br />

• Use <strong>phase</strong> values f<strong>or</strong> voltage and current<br />

when computing transf<strong>or</strong>mer values<br />

• Open-delta connects only two transf<strong>or</strong>mers<br />

• Two T-connected transf<strong>or</strong>mers can supply<br />

three-<strong>phase</strong> power<br />

• T-connection: main contains center tap,<br />

teaser ideally contains 86.6% voltage tap<br />

Summary<br />

• <strong>Three</strong>-<strong>phase</strong> transf<strong>or</strong>mers are constructed<br />

by winding three separate transf<strong>or</strong>mers on<br />

same c<strong>or</strong>e material<br />

• Single-<strong>phase</strong> transf<strong>or</strong>mers can be used as<br />

three-<strong>phase</strong> bank by connecting primary and<br />

secondary windings wye <strong>or</strong> delta<br />

• Follow three-<strong>phase</strong> circuit/transf<strong>or</strong>mer rules<br />

to compute three-<strong>phase</strong> transf<strong>or</strong>mer values<br />

Summary (cont'd.)<br />

• Scott connection converts three- to two<strong>phase</strong><br />

power<br />

• <strong>Three</strong>-<strong>phase</strong> transf<strong>or</strong>mers can connect to<br />

produce six-<strong>phase</strong> power<br />

• Double-delta and -wye require two<br />

secondary windings on each transf<strong>or</strong>mer<br />

without a center-tapped winding<br />

2/22/2013<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!