14.08.2013 Views

Rational functions - Cs.ioc.ee

Rational functions - Cs.ioc.ee

Rational functions - Cs.ioc.ee

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 Motivation<br />

ITT9130 Konkr<strong>ee</strong>tne Matemaatika<br />

A note on <strong>Rational</strong> Expansion Theorem<br />

Jaan Penjam<br />

A generating function is often in the form of a rational function<br />

R(z) = P(z)<br />

Q(z) ,<br />

where P and Q are polynomials. Therefore, we have a problem to develop an effective and systematic<br />

way to expand this into power series.<br />

In the rest of this note, we deal with the so called (strictly) proper rational <strong>functions</strong> where the<br />

degr<strong>ee</strong> of the polynomial P is (strictly) less than of Q (the notation degP(z) < degQ(z)), otherwise we<br />

can reduce the degr<strong>ee</strong> of P(z) by division and separating the quotient from the fraction.The reminder S(z)<br />

is then a proper rational function:<br />

P(z)<br />

Q(z)<br />

with degP1(z) < degQ(z). Here T (z) is a polynomial, i.e. it is already power series, and it remains only<br />

the power series of S(z) to be find.<br />

= R(z) = T (z) + S(z) = T (z) + P1(z)<br />

Q(z) ,<br />

Example 1.1. Let’s take P(z) = 6z 6 − 5z 5 − 20z 4 + 28z 3 − 3z 2 − 10z + 30 and Q(z) = 6z 3 − 5z 2 − 2z + 1<br />

with degP(z) = 6 and degQ(z) = 3. Divide P(z) by Q(z):<br />

<br />

6z6 − 5z5 − 20z4 + 28z3 − 3z2 − 10z + 30 : 6z3 − 5z2 − 2z + 1 = z3 − 3z + 2 + z2 − 3z + 28<br />

6z3 − 5z2 − 2z + 1<br />

− 6z6 + 5z5 + 2z4 − z3 − 18z 4 + 27z 3 − 3z 2 − 10z<br />

18z 4 − 15z 3 − 6z 2 + 3z<br />

12z 3 − 9z 2 − 7z + 30<br />

− 12z 3 + 10z 2 + 4z − 2<br />

z 2 − 3z + 28<br />

Hence, we have the quotient T (z) = 6z 3 −3z+2 and the reminder S(z) = P1(z)<br />

Q(z) , where P1(z) = z 2 −3z+28.<br />

When expanding the reminder into the power series, we can use the property that degP1(z) < degQ(z).<br />

✷<br />

Note that a good form for S(z) is a finite sum of <strong>functions</strong> like<br />

a1<br />

a2<br />

S(z) =<br />

+<br />

+ ··· +<br />

(1 − ρ1z) m1+1 (1 − ρ2z) m2+1<br />

We have proven the relation<br />

m1<br />

a<br />

(1 − ρz) m+1 = ∑ n0<br />

m2<br />

m + n<br />

m<br />

aℓ<br />

(1 − ρℓz) mℓ+1 = ∑ snz<br />

n0<br />

n<br />

<br />

aρ n z n<br />

Hence, the coefficient of zn <br />

in expansion<br />

<br />

of S(z) is<br />

m1 + n<br />

sn = a1 ρ n <br />

m2 + n<br />

1 + a2 ρ n <br />

mℓ + n<br />

2 + ···aℓ ρ n ℓ .<br />

1<br />

mℓ<br />

(1)


<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

In particular, when m1 = m2 = ... = mℓ = 0, the latter formula takes the form<br />

. (2)<br />

2 Reflected polynomials<br />

Let<br />

sn = a1ρ n 1 + a2ρ n 2 + ··· + aℓρ n ℓ<br />

Q(z) = aℓz ℓ + aℓ−1z ℓ−1 + ··· + a2z 2 + a1z + a0<br />

is a polynomial over the field of complex numbers C. Then the polynomial<br />

Q R (z) = a0z ℓ + a1z ℓ−1 + ··· + aℓ−2z 2 + aℓ−1z + aℓ<br />

is called its reflected polynomial.<br />

Property 2.1. If ρ1,...,ρℓ are roots of the polynomial Q R ( 1<br />

z ), then Q(z) = (1 − ρ1z)···(1 − ρℓz).<br />

Proof. Having ρ1,...,ρℓ as roots of the reflected polynomial means that QR ( 1 1<br />

1<br />

z ) = a0( z −ρ1)···( z −ρℓ).<br />

On theother hand,<br />

Hence,<br />

Q(z) = aℓz ℓ + aℓ−1z ℓ−1 + ··· + a2z 2 + a1z + a0 =<br />

= z ℓ<br />

<br />

= z ℓ Q R<br />

aℓ + aℓ−1<br />

<br />

1<br />

z<br />

Q(z) = z ℓ Q R<br />

= z ℓ a0<br />

1 1<br />

+ ··· + a2<br />

z z<br />

ℓ−2 + a1<br />

1<br />

z<br />

ℓ−1 + a0<br />

<br />

1<br />

=<br />

z<br />

<br />

1 1<br />

− ρ1 ··· − ρℓ =<br />

z z<br />

= z ℓ 1 − zρ1 1 − zρℓ<br />

a0 ··· =<br />

z z<br />

= a0(1 − zρ1)···(1 − zρℓ)<br />

1<br />

zℓ <br />

=<br />

Example 2.1. The polynomial Q(z) = 6z 3 − 5z 2 − 2z + 1 from Example 1.1 has the following reflected<br />

polynomial<br />

Q R (z) = z 3 − 2z 2 − 5z + 6 =<br />

= z 3 − (z 2 + z 2 ) + (z − 6z) + 6 =<br />

= z 2 (z − 1) − z(z + 1) − 6(z − 1) =<br />

= (z − 1)(z 2 − z − 6) =<br />

= (z − 1)(z 2 + 2z − 3z − 6) =<br />

= (z − 1)(z(z + 2) − 3(z + 2)) =<br />

= (z − 1)(z + 2)(z − 3)<br />

2


<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

This says us that Q R (z) has the roots 1, −2 and 3 and due to Proposition 1.1 the following factorization<br />

of Q(z) is valid:<br />

Q(z) = (1 − z)(1 + 2z)(1 − 3z).<br />

Let’s check this result, that is compute the last formula by opening the parenthesis.<br />

(1 − z)(1 + 2z)(1 − 3z) = (1 + z − 2z 2 )(1 − 3z) =<br />

3 Decomposition into partial fractions<br />

= 1 + z − 2z 2 − 3z − 3z 2 + 6z 3 =<br />

= 6z 3 − 5z 2 − 2z + 1 = Q(z)<br />

If all roots of the QR (z) are distinct and the denominator of the fraction P(z)<br />

Q(z) is factorizable as Q(z) =<br />

a0(1 − zρ1)···(1 − zρℓ), we may expect that the fraction can be written as<br />

P(z) A1 A2<br />

Aℓ<br />

= + + ··· + . (3)<br />

Q(z)<br />

1 − ρ1z<br />

1 − ρ1z<br />

1 − ρℓz<br />

If degP(z) < degQ(z) = ℓ, then the equation (3) determines the system of linear equations for finding<br />

constants A1,A2,...,Aℓ. We demonstrate this in the following example.<br />

Example 3.1. Let’s factorize the fraction S(z) = P1(z)<br />

Q(z) from Example 1.1. We have P1(z) = z 2 − 3z + 28<br />

and Q(z) = (z − 1)(z + 2)(z − 3). Hence,<br />

P1(z)<br />

Q(z)<br />

A B C<br />

= + +<br />

1 − z 1 + 2z 1 − 3z =<br />

= A(1 + 2z)(1 − 3z) + B(1 − z)(1 − 3z) +C(1 − z)(1 + 2z)<br />

Q(z)<br />

= A(1 − z − 6z2 ) + B(1 − 4z + 3z 2 ) +C(1 + z − 2z 2 )<br />

Q(z)<br />

= (−6A + 3B − 2C)z2 + (−A − 4B +C)z + (A + B +C)<br />

Q(z)<br />

Comparing the numerator of this fraction<br />

⎧<br />

with the polynomial P1(z) leads to the system of equations:<br />

⎨−6A<br />

+ 3B − 2C = 1<br />

−A − 4B +C<br />

⎩<br />

A + B +C<br />

= −3<br />

= 28<br />

We start solving of this system by computing<br />

<br />

the determinant<br />

<br />

<br />

−6<br />

3 −2<br />

<br />

D = <br />

−1<br />

−4 1 <br />

= 30.<br />

1 1 1 <br />

Then we can find the solution<br />

<br />

1 3 −2<br />

<br />

<br />

−3<br />

−4 1 <br />

<br />

28 1 1 <br />

A =<br />

= −<br />

D<br />

13<br />

3<br />

<br />

<br />

−6<br />

<br />

−1<br />

1<br />

B =<br />

1<br />

−3<br />

28<br />

D<br />

<br />

−2<br />

<br />

1 <br />

<br />

1 <br />

= 119<br />

15<br />

<br />

<br />

−6<br />

<br />

−1<br />

1<br />

C =<br />

3<br />

−4<br />

1<br />

D<br />

<br />

1 <br />

<br />

−3<br />

<br />

28 <br />

= 122<br />

5 .<br />

3<br />

=<br />

=<br />


<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

So, we have<br />

S(z) = −13<br />

3(1 − z) +<br />

119 122<br />

+<br />

15(1 + 2z) 5(1 − 3z) .<br />

All roots of Q(z) are distinct, so the equation (2) is applicable and the power series S(z) = ∑n0 snzn ,<br />

where the coefficient<br />

sn = − 13 119<br />

+<br />

3 15 (−2)n + 122<br />

5 3n .<br />

✷<br />

4 <strong>Rational</strong> Expansion Theorem<br />

The method of partial fractions may produce huge systems of equations to be solved. The following<br />

theorem gives an alternative technique to mess around the problem.<br />

Theorem 4.1. (for Distinct Roots) If R(z) = P(z)/Q(z) the generating function for the sequence 〈rn〉,<br />

where Q(z) = (1 − ρ1z)(1 − ρ2z)···(1 − ρℓz) and the numbers (ρ1,...,ρℓ) are distinct,<br />

and if P(z) is a polynomial of degr<strong>ee</strong> less than ℓ, then<br />

rn = a1ρ n 1 + a2ρ n 2 + ··· + aℓρ n ℓ , where ak = −ρkP(1/ρk)<br />

Q ′ .<br />

(1/ρk)<br />

Proof. Construct the sum<br />

S(z) = a1<br />

aℓ<br />

+ ··· +<br />

1 − ρ1z 1 − ρℓz ,<br />

where the constants ak are as defined in the theorem. We show that T(z)=R(z)-S(z)=0. For that reason, it<br />

is sufficient (cf. properties of rational <strong>functions</strong>, for example in http://en.wikipedia.org/wiki/<strong>Rational</strong>_function)<br />

to confirm that limz→∞ T (z) = 0 and that T (z) is never infinite.<br />

Satisfiability of the first condition follows from the observation that both limz→∞ R(z) = 0 and limz→∞ S(z) =<br />

0, because of degr<strong>ee</strong>s of numerators is less than degr<strong>ee</strong> of corresponding denominators.<br />

Only the points where T (z) may approach to infinity are 1/ρk. Hence, to show that limz→αk T (z) = ∞,<br />

were αk = 1/ρk, it suffers to prove that<br />

lim (z − αk)R(z) = lim (z − αk)S(z).<br />

z→αk<br />

z→αk<br />

Due to<br />

ak(z − αk)<br />

1 − ρ jz = ak(z − 1<br />

ρk )<br />

1 − ρ jz = −ak(1 − ρkz)<br />

→ 0, if k = j and z → αk.<br />

ρk(1 − ρ jz)<br />

The right-hand side of this assertion is<br />

lim<br />

z→αk<br />

(z − αk)S(z) = lim (z − αk)<br />

z→αk<br />

ak(z − αk)<br />

1 − ρkz<br />

= −ak<br />

ρk<br />

= P(1/ρk)<br />

Q ′ (1/ρk)<br />

The left-hand limit can be transformed due to L’Hospital’s Rule (s<strong>ee</strong> in more details on<br />

http://mathworld.wolfram.com/LHospitalsRule.html) as follows<br />

lim (z − αk)R(z) = lim (z − αk)<br />

z→αk<br />

z→αk<br />

P(z)<br />

Q(z) = P(αk)<br />

z − αk<br />

lim<br />

z→αk Q(z)<br />

P(αk)<br />

=<br />

Q ′ P(1/ρk)<br />

=<br />

(αk) Q ′ (1/ρk)<br />

Example 4.1. Consider the fraction S(z) = P1(z)<br />

Q(z) from Example 1.1 once more. To use theorem 4.1, we<br />

shall compute values P1( 1/ρ) and Q( 1/ρ) for ρ = ρ1,ρ2,ρ3 first.<br />

We have P1(z) = z2 − 3z + 28. Hence,<br />

<br />

1<br />

P1 =<br />

ρ<br />

1 3 1 − 3ρ + 28ρ2<br />

− + 28 =<br />

ρ2 ρ ρ2 4


<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

and thus we get for ρ1 = 1,ρ2 = −2,ρ3 = 3:<br />

So,<br />

<br />

1 1<br />

P1 = P1 =<br />

ρ1 1<br />

1 − 3 + 28<br />

= 26<br />

1<br />

<br />

1 1<br />

P1 = P1 =<br />

ρ2 −2<br />

1 + 6 + 28 · 4<br />

=<br />

4<br />

119<br />

4<br />

<br />

1 1<br />

P1 = P1 =<br />

ρ3 3<br />

1 − 9 + 28 · 9<br />

=<br />

9<br />

244<br />

9<br />

On the another hand, Q(z) = (z − 1)(z + 2)(z − 3) = 6z3 − 5z2 − 2z + 1 gives Q ′ (z) = 18z2 − 10z − 2.<br />

Q<br />

that provides the following values<br />

<br />

1<br />

ρ<br />

= 18 10<br />

−<br />

ρ2 ρ<br />

18 − 10ρ − 2ρ2<br />

− 2 =<br />

ρ2 ,<br />

Q ′<br />

<br />

1<br />

= Q<br />

ρ1<br />

′<br />

<br />

1<br />

=<br />

1<br />

18 − 10 − 2<br />

= 6<br />

1<br />

Q ′<br />

<br />

1<br />

= Q<br />

ρ2<br />

′<br />

<br />

1<br />

=<br />

−2<br />

18 + 10 · 2 − 2 · 4<br />

=<br />

4<br />

15<br />

2<br />

Q ′<br />

<br />

1<br />

= Q<br />

ρ3<br />

′<br />

<br />

1<br />

=<br />

3<br />

18 − 10 · 3 − 2 · 9<br />

= −<br />

9<br />

10<br />

3<br />

Finally we can compute the coefficients defined in the Theorem 4.1:<br />

a1 = −ρ1P1(1/ρ1)<br />

Q ′ −1 · 26<br />

= = −13<br />

(1/ρ1) 6 3<br />

a2 = −ρ2P1(1/ρ2)<br />

Q ′ (1/ρ2)<br />

= 2 · 119 · 2<br />

4 · 15<br />

= 119<br />

15<br />

a3 = −ρ3P1(1/ρ3)<br />

Q ′ −3 · 244 · 3<br />

= = −122<br />

(1/ρ3) 9 · (−10) 5<br />

and write down the power series we are looking for: S(z) = ∑n0 snzn , where the coefficient<br />

sn = − 13 119<br />

+<br />

3 15 (−2)n + 122<br />

5 3n .<br />

5 General expansion theorem for rational generating <strong>functions</strong><br />

Theorem 5.1. (for possibly Multiple Roots) If R(z) = P(z)/Q(z) the generating function for the sequence<br />

〈rn〉, where Q(z) = (1 − ρ1z) d1 ···(1 − ρℓz) dℓ and the numbers (ρ1,...,ρℓ) are distinct,<br />

and if P(z) is a polynomial of degr<strong>ee</strong> less than d1 + ... + dℓ, then<br />

rn = f1(n)ρ n 1 + ··· + fℓ(n)ρ n ℓ , for all n 0,<br />

where each fk(n) is a polynomial of degr<strong>ee</strong> dk − 1 with a leading coefficient<br />

(−ρk) dkP(1/ρk)dk<br />

ak =<br />

Q (dk)<br />

P(1/ρk)<br />

=<br />

(1/ρk) (dk − 1)!∏j=k(1 − ρ j/ρk) d j<br />

This can be proved by induction on max(d1,...,dℓ), using the fact that<br />

R(z) − a1(d1 − 1)!<br />

(1 − ρ1z) d1 − ··· − aℓ(dℓ − 1)!<br />

(1 − ρℓz) dℓ<br />

5<br />


<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

is a rational function whose denominator polynomial is not divisible by (1 − ρkz) dk for any k.<br />

6 Decomposition into of partial fractions for multiple roots<br />

Let R(z) = P(z)/Q(z) to be a strict proper rational function. If Q R (z) has a multiple root ρ, say, having<br />

multiplicity k, then the formula of partial fractions of R(z) contains the following terms related to ρ:<br />

Ai1<br />

1 − ρz +<br />

Ai2<br />

+ ··· +<br />

(1 − ρz) 2 Aik<br />

,<br />

(1 − ρz) k<br />

where Ai1 ,Ai2 ,...,Aik are constants. The power series of these terms is defined by the equation (1).<br />

Example 6.1. Let<br />

Then<br />

and<br />

The partial fraction expansion can be written as<br />

R(z) = A<br />

1 − 2z +<br />

R(z) = P(z)<br />

Q(z) =<br />

z − 1<br />

−40z4 + 52z3 − 18z2 − z + 1 .<br />

Q R (z) = z 4 − z 3 − 18z 2 + 52z − 40 = (z − 2) 3 (z + 5)<br />

B<br />

+<br />

(1 − 2z) 2<br />

Q(z) = (1 − 2z) 3 (1 + 5z).<br />

C D<br />

+<br />

(1 − 2z) 3 1 + 5z =<br />

= A(1 − 2z)2 (1 + 5z) + B(1 − 2z)(1 + 5z) +C(1 + 5z) + D(1 − 2z) 3<br />

(1 − 2z) 3 (1 + 5z)<br />

= A(5z3 − 16z 2 + z + 1) + B(−10z 2 + 5z + 1) +C(1 + 5z) + D(−8z 3 + 12z 2 − 6z + 1)<br />

Q(z)<br />

= (5A − 8D)z3 + (−16A − 10B + 12D)z2 + (A + 5B + 5C − 6D)z + (A + B +C + D)<br />

Q(z)<br />

Due to P(z), the constants A,B,C and D satisfy the equations:<br />

⎧<br />

⎪⎨<br />

5A − 8D = 0<br />

−16A − 10B + 12D = 0<br />

⎪⎩<br />

A + 5B + 5C − 6D<br />

A + B +C + D<br />

= 1<br />

= −1<br />

This system of equations has the solution: A = −16/29,B = 68/145,C = −83/145,D = −10/29. Using equality 1 we obtain<br />

16<br />

R(z) = −<br />

29(1 − 2z) +<br />

68<br />

83 10<br />

−<br />

−<br />

145(1 − 2z) 2 145(1 − 2z) 3 29(1 + 5z) =<br />

<br />

0 + n 16<br />

0<br />

<br />

1 + n 68<br />

1<br />

<br />

2 − n 83<br />

2<br />

<br />

0 + n 10<br />

0 29 3nz n =<br />

= − ∑ n0<br />

29 2n z n + ∑ n0<br />

= − 1<br />

145 ∑ <br />

80 − 68(n + 1) −<br />

n0<br />

145 2n z n − ∑ n0<br />

<br />

83(n + 1)(n + 2)<br />

2<br />

2<br />

n + 50 · 3 n<br />

<br />

z n =<br />

= − 1<br />

145 ∑ 2 n−1 n<br />

83n − 113n + 190 2 + 50 · 3<br />

n0<br />

z n<br />

6<br />

=<br />

145 2n z n + ∑ n0<br />

=<br />


<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

7 Complex numbers vs real numbers<br />

Everything above is valid for the polynomials over complex fields, i.e. all variables and coefficients are<br />

complex numbers. The methods described work also for real numbers, but only if the polynomial Q(z)<br />

has ℓ real roots, where degQ(z) = ℓ. The assumption that a polynomial has as many roots as its degr<strong>ee</strong> is<br />

guarant<strong>ee</strong>d for complex numbers by the Fundamental Theorem of Algebra. This is the reason why you<br />

are strongly suggested to apply complex analysis in this context.<br />

However, it is possible to k<strong>ee</strong>p yourself to real numbers as well, but you n<strong>ee</strong>d to consider possibly<br />

much more complex calculations. For example, to decompose a rational function into partial fractions<br />

within real numbers, you have to consider, that a real polynomial Q(x) can have two types of irreducible<br />

factors:<br />

• x − ρ, where ρ is a real root of Q(x);<br />

• x 2 + px + q, where p and q are real numbers such that p 2 < 4q.<br />

Factors of both types can appear multiple times in the polynomial. Recall the techniques of such decomposition<br />

in notes of your undergraduate course of mathematical analysis, for example pages 111–118 in<br />

http://staff.ttu.<strong>ee</strong>/~janno/ma1chem.pdf.<br />

To use method of Decomposition into Partial Fractions parts of the rational function R(x) = P(x)/Q(x)<br />

are of the form<br />

•<br />

A1 A2<br />

x−ρ + (x−ρ) 2 + ··· + Ak<br />

(x−ρ) k , for a root ρ ∈ R with multiplicity k;<br />

• B1+C1x<br />

x2 B2+C2x<br />

+ +px+q (x2 +px+q) 2 + ··· + Bk+Ckx<br />

(x2 +px+q) k for a factor x2 + px + q with multiplicity k.<br />

All constants Ai,Bi,Ci should be found by solving the system of linear equations similarly to case of<br />

complex numbers (s<strong>ee</strong> Example 6.1).<br />

After decomposition, parts of the form A1<br />

x−ρ can be transformed into the poewer series similarly to<br />

the formula 2:<br />

<br />

1<br />

n + k − 1 xk =<br />

(x − ρ) k k − 1 ρk 1<br />

(−ρ) k (1 − 1<br />

ρ x)k = (−1)k · 1<br />

ρ k ∑ n0<br />

Unfortunately, in general, the parts of the form B+Cx<br />

x 2 +px+q<br />

does not have a simple transformation into<br />

power series. For particular numbers p and q the assistance of an one-line Taylor Series Calculator<br />

may be helpful. S<strong>ee</strong> for example, the Wolfram|Alpha Widgets on http://www.wolframalpha.com/<br />

widgets/view.jsp?id=f9476968629e1163bd4a3ba839d60925. Some first terms of decomposition<br />

of the fraction 1/(x 2 + px + q) looks like:<br />

1<br />

x2 1 px<br />

= −<br />

+ px + q q q2 + (p2 − q)x2 q3 − (p3 − 2pq)x3 q4 mmmmmmmmmmmmmmmmmmmjj − (p5 − 4p 3 q + 3pq 2 )x 5<br />

7<br />

q 6<br />

+ (p4 − 3p2q + q2 )x4 q5 −<br />

+ (p6 − 5p 4 q + 6p 2 q 2 − q 3 )x 6<br />

q 7<br />

− ···

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!