14.08.2013 Views

Rational functions - Cs.ioc.ee

Rational functions - Cs.ioc.ee

Rational functions - Cs.ioc.ee

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rational</strong> Expansion Theorem Jaan Penjam<br />

and thus we get for ρ1 = 1,ρ2 = −2,ρ3 = 3:<br />

So,<br />

<br />

1 1<br />

P1 = P1 =<br />

ρ1 1<br />

1 − 3 + 28<br />

= 26<br />

1<br />

<br />

1 1<br />

P1 = P1 =<br />

ρ2 −2<br />

1 + 6 + 28 · 4<br />

=<br />

4<br />

119<br />

4<br />

<br />

1 1<br />

P1 = P1 =<br />

ρ3 3<br />

1 − 9 + 28 · 9<br />

=<br />

9<br />

244<br />

9<br />

On the another hand, Q(z) = (z − 1)(z + 2)(z − 3) = 6z3 − 5z2 − 2z + 1 gives Q ′ (z) = 18z2 − 10z − 2.<br />

Q<br />

that provides the following values<br />

<br />

1<br />

ρ<br />

= 18 10<br />

−<br />

ρ2 ρ<br />

18 − 10ρ − 2ρ2<br />

− 2 =<br />

ρ2 ,<br />

Q ′<br />

<br />

1<br />

= Q<br />

ρ1<br />

′<br />

<br />

1<br />

=<br />

1<br />

18 − 10 − 2<br />

= 6<br />

1<br />

Q ′<br />

<br />

1<br />

= Q<br />

ρ2<br />

′<br />

<br />

1<br />

=<br />

−2<br />

18 + 10 · 2 − 2 · 4<br />

=<br />

4<br />

15<br />

2<br />

Q ′<br />

<br />

1<br />

= Q<br />

ρ3<br />

′<br />

<br />

1<br />

=<br />

3<br />

18 − 10 · 3 − 2 · 9<br />

= −<br />

9<br />

10<br />

3<br />

Finally we can compute the coefficients defined in the Theorem 4.1:<br />

a1 = −ρ1P1(1/ρ1)<br />

Q ′ −1 · 26<br />

= = −13<br />

(1/ρ1) 6 3<br />

a2 = −ρ2P1(1/ρ2)<br />

Q ′ (1/ρ2)<br />

= 2 · 119 · 2<br />

4 · 15<br />

= 119<br />

15<br />

a3 = −ρ3P1(1/ρ3)<br />

Q ′ −3 · 244 · 3<br />

= = −122<br />

(1/ρ3) 9 · (−10) 5<br />

and write down the power series we are looking for: S(z) = ∑n0 snzn , where the coefficient<br />

sn = − 13 119<br />

+<br />

3 15 (−2)n + 122<br />

5 3n .<br />

5 General expansion theorem for rational generating <strong>functions</strong><br />

Theorem 5.1. (for possibly Multiple Roots) If R(z) = P(z)/Q(z) the generating function for the sequence<br />

〈rn〉, where Q(z) = (1 − ρ1z) d1 ···(1 − ρℓz) dℓ and the numbers (ρ1,...,ρℓ) are distinct,<br />

and if P(z) is a polynomial of degr<strong>ee</strong> less than d1 + ... + dℓ, then<br />

rn = f1(n)ρ n 1 + ··· + fℓ(n)ρ n ℓ , for all n 0,<br />

where each fk(n) is a polynomial of degr<strong>ee</strong> dk − 1 with a leading coefficient<br />

(−ρk) dkP(1/ρk)dk<br />

ak =<br />

Q (dk)<br />

P(1/ρk)<br />

=<br />

(1/ρk) (dk − 1)!∏j=k(1 − ρ j/ρk) d j<br />

This can be proved by induction on max(d1,...,dℓ), using the fact that<br />

R(z) − a1(d1 − 1)!<br />

(1 − ρ1z) d1 − ··· − aℓ(dℓ − 1)!<br />

(1 − ρℓz) dℓ<br />

5<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!