14.08.2013 Views

On the Functional Equation of the Artin L-functions Robert P ...

On the Functional Equation of the Artin L-functions Robert P ...

On the Functional Equation of the Artin L-functions Robert P ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>On</strong> <strong>the</strong> <strong>Functional</strong> <strong>Equation</strong><br />

<strong>of</strong> <strong>the</strong> <strong>Artin</strong> L-<strong>functions</strong><br />

<strong>Robert</strong> P. Langlands


Introduction 2<br />

0. Introduction<br />

1. WeilGroups<br />

2. TheMainTheorem<br />

3. TheLemmas<strong>of</strong>Induction<br />

4. TheLemma<strong>of</strong>Uniqueness<br />

5. AProperty<strong>of</strong> λ­Functions<br />

6. AFiltration<strong>of</strong><strong>the</strong>WeilGroup<br />

TABLE OF CONTENTS<br />

7. Consequences<strong>of</strong>Stickelberger’sResult<br />

8. ALemma<strong>of</strong>Lamprecht<br />

9. ALemma<strong>of</strong>Hasse<br />

10. TheFirstMainLemma<br />

11. <strong>Artin</strong>–Schreier<strong>Equation</strong>s<br />

12. TheSecondMainLemma<br />

13. TheThirdMainLemma<br />

14. TheFourthMainLemma<br />

15. Ano<strong>the</strong>rLemma<br />

16. Definition<strong>of</strong><strong>the</strong> λ­Functions<br />

17. ASimplification<br />

18. NilpotentGroups<br />

19. Pro<strong>of</strong><strong>of</strong><strong>the</strong>MainTheorem<br />

20. <strong>Artin</strong> L­Functions<br />

21. Pro<strong>of</strong><strong>of</strong><strong>the</strong><strong>Functional</strong><strong>Equation</strong><br />

22. Appendix<br />

23. References


Introduction 3<br />

O. Introduction<br />

InthispaperIwanttoconsidernotjust<strong>the</strong> L­<strong>functions</strong>introducedby<strong>Artin</strong>[1]but<strong>the</strong><br />

moregeneral<strong>functions</strong>introducedbyWeil[15].Todefine<strong>the</strong>seoneneeds<strong>the</strong>notion<strong>of</strong>aWeil<br />

groupasdescribedin[3]. Thisnotionwillbeexplainedin<strong>the</strong>firstparagraph. Fornowa<br />

roughideawillsuffice.If Eisaglobalfield,thatisanalgebraicnumberfield<strong>of</strong>finitedegree<br />

over<strong>the</strong>rationalsorafunctionfieldoverafinitefield, CEwillbe<strong>the</strong>idéleclassgroup<strong>of</strong> E.<br />

If Eisalocalfield,thatis<strong>the</strong>completion<strong>of</strong>aglobalfieldatsomeplace[16],archimedeanor<br />

nonarchimedean, CEwillbe<strong>the</strong>multiplicativegroup<strong>of</strong> E.If K/EisafiniteGaloisextension<br />

<strong>the</strong>Weilgroup W K/Eisanextension<strong>of</strong> G(K/E),<strong>the</strong>Galoisgroup<strong>of</strong> K/E,by CK. Itisa<br />

locallycompacttopologicalgroup.<br />

If E ⊆ E ′ ⊆ Kand K/EisfiniteandGalois W K/E ′mayberegardedasasubgroup<strong>of</strong><br />

W K/E.Itisclosedand<strong>of</strong>finiteindex.If E ⊆ K ⊆ L<strong>the</strong>reisacontinuousmap<strong>of</strong> W L/Eonto<br />

W K/E. Thusanyrepresentation<strong>of</strong> W K/Emayberegardedasarepresentation<strong>of</strong> W L/E. In<br />

particular<strong>the</strong>representations ρ1<strong>of</strong> W K1/Eand ρ2<strong>of</strong> W K2/Ewillbecalledequivalentif<strong>the</strong>reis<br />

aGaloisextension L/Econtaining K1/Eand K2/Esuchthat ρ1and ρ2determineequivalent<br />

representations<strong>of</strong> W L/E. Thisallowsustorefertoequivalenceclasses<strong>of</strong>representations<strong>of</strong><br />

<strong>the</strong>Weilgroup<strong>of</strong> Ewithoutmentioninganyparticularextensionfield K.<br />

Inthispaperarepresentation<strong>of</strong> W K/Eisunderstoodtobeacontinuousrepresentation<br />

ρin<strong>the</strong>group<strong>of</strong>invertiblelineartransformations<strong>of</strong>afinite­dimensionalcomplexvector<br />

spacewhichissuchthat ρ(w)isdiagonalizable,thatissemisimple,forall win W K/E. Any<br />

one­dimensionalrepresentation<strong>of</strong>W K/Ecanbeobtainedbyinflatingaone­dimensionalrepresentation<strong>of</strong><br />

W E/E = CE.Thusequivalenceclasses<strong>of</strong>one­dimensionalrepresentations<strong>of</strong><strong>the</strong><br />

Weilgroup<strong>of</strong> Ecorrespondtoquasi­characters<strong>of</strong> CE,thatis,tocontinuoushomomorphisms<br />

<strong>of</strong> CEinto C × .<br />

Suppose Eisalocalfield.Thereisastandardway<strong>of</strong>associatingtoeachequivalenceclass<br />

ω<strong>of</strong>one­dimensionalrepresentationsameromorphicfunctionL(s, ω).Supposeωcorresponds<br />

to<strong>the</strong>quasi­character χE. If Eisnonarchimedeanand ̟Eisagenerator<strong>of</strong><strong>the</strong>primeideal<br />

PE<strong>of</strong> OE,<strong>the</strong>ring<strong>of</strong>integersin E,weset<br />

L(s, ω) =<br />

1<br />

1 − χE(̟E) |̟E| s<br />

if χEisunramified.O<strong>the</strong>rwiseweset L(s, ω) = 1.If E = Rand<br />

χE(x) = (sgn x) m |x| r


Introduction 4<br />

with mequalto0or1weset<br />

L(s, ω) = π −1<br />

2 (s+r+m) Γ<br />

s + r + m<br />

If E = Cand z ∈ E<strong>the</strong>n,forus, |z|willbe<strong>the</strong>square<strong>of</strong><strong>the</strong>ordinaryabsolutevalue.If<br />

χE(z) = |z| r z m ¯z n<br />

where mand nareintegerssuchthat m + n ≥ 0, mn = 0,<strong>the</strong>n<br />

2<br />

<br />

.<br />

L(s, ω) = 2 (2π) −(s+r+m+n) Γ(s + r + m + n)<br />

Itisnotdifficulttoverify,andweshalldosolater,thatitispossible,injustoneway,<br />

todefine L(s, ω)forallequivalenceclassessothatithas<strong>the</strong>givenformwhen ωisonedimensional,sothat<br />

L(s, ω1 ⊕ ω2) = L(s, ω1) L(s, ω2)<br />

sothatif E ′ isaseparableextension<strong>of</strong> Eand ωis<strong>the</strong>equivalenceclass<strong>of</strong><strong>the</strong>representation<br />

<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong> Einducedfromarepresentation<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong> E ′ in<strong>the</strong>class Θ<br />

<strong>the</strong>n L(s, ω) = L(s, Θ).<br />

Nowtake Etobeaglobalfieldand ωanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weil<br />

group<strong>of</strong> E.Itwillbeseenlaterhow,foreachplace v, ωdeterminesanequivalenceclass ωv<strong>of</strong><br />

representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong><strong>the</strong>correspondinglocalfield Ev.Theproduct<br />

<br />

v<br />

L(s, ωv)<br />

whichistakenoverallplaces,including<strong>the</strong>archimedeanones,willconvergeif<strong>the</strong>realpart<strong>of</strong>s<br />

issufficientlylarge.ThefunctionitdefinescanbecontinuedtoafunctionL(s, ω)meromorphic<br />

in<strong>the</strong>wholecomplexplane.Thisis<strong>the</strong><strong>Artin</strong> L­functionassociatedtoω.Itisfairlywell­known<br />

thatif ωis<strong>the</strong>classcontragredientto ω<strong>the</strong>reisafunctionalequationconnecting L(s, ω)and<br />

L(1 − s, ω).<br />

Thefactorappearingin<strong>the</strong>functionalequationcanbedescribedinterms<strong>of</strong><strong>the</strong>localdata.<br />

Toseehowthisisdoneweconsiderseparableextensions E<strong>of</strong><strong>the</strong>fixedlocalfield F.If ΨFisa<br />

non­trivialadditivecharacter<strong>of</strong> Flet ψ E/Fbe<strong>the</strong>non­trivialadditivecharacter<strong>of</strong> Edefined<br />

by<br />

ψE/F(x) = ψF(SE/Fx)


Introduction 5<br />

where SE/Fxis<strong>the</strong>trace<strong>of</strong> x. Wewanttoassociatetoeveryquasi­character χE<strong>of</strong> CEand<br />

everynon­trivialadditivecharacter ψE<strong>of</strong> Eanon­zerocomplexnumber ∆(χE, ψE).If Eis<br />

nonarchimedean,if Pm Eis<strong>the</strong>conductor<strong>of</strong> χE,andif P −n<br />

E is<strong>the</strong>largestidealonwhich ψEis<br />

trivialchooseany γwith OEγ = P m+n<br />

E andset<br />

<br />

UE<br />

∆(χE, ψE) = χE(γ)<br />

ψE<br />

<br />

α<br />

γ χ −1<br />

E (α)dα<br />

<br />

<br />

χ −1<br />

E (α)dα .<br />

Therightsidedoesnotdependon γ.If E = R,<br />

UE ψE<br />

α<br />

γ<br />

χE(x) = (sgnx) m |x| r<br />

with mequalto0or1,and ψE(x) = e 2πiux <strong>the</strong>n<br />

If E = C, ψC(z) = e 4πi Re(wz) ,and<br />

with m + n ≥ 0, mn = 0<strong>the</strong>n<br />

∆(χE, ψE) = (i sgnu) m |u| r .<br />

χC(z) = |z| r z m ¯z n<br />

∆(χC, ψC) = i m+n χC(w).<br />

Thebulk<strong>of</strong>thispaperistakenupwithapro<strong>of</strong><strong>of</strong><strong>the</strong>following<strong>the</strong>orem.<br />

Theorem A<br />

Suppose Fisagivenlocalfieldand ψFagivennon­trivialadditivecharacter<strong>of</strong> F.Itis<br />

possibleinexactlyonewaytoassigntoeachseparableextension E<strong>of</strong> Facomplexnumber<br />

λ(E/F, ψF)andtoeachequivalenceclassω<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong>Eacomplex<br />

number ε(ω, Ψ E/F)suchthat<br />

(i)If ωcorrespondsto<strong>the</strong>quasi­character χE<strong>the</strong>n<br />

(ii)<br />

ε(ω, ψ E/F) = ∆(χE, ψ E/F).<br />

ε(ω1 ⊕ ω2, ψ E/F) = ε(ω1, ψ E/F) ε(ω2, ψ E/F).


Introduction 6<br />

(iii)If ωis<strong>the</strong>equivalenceclass<strong>of</strong><strong>the</strong>representation<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong> Finducedfroma<br />

representation<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong> Ein<strong>the</strong>class θ<strong>the</strong>n<br />

ε(ω, ψF) = λ(E/F, ψF) dim θ ε(θ, ψ E/F).<br />

αs Fwilldenote<strong>the</strong>quasi­character x −→ |x|s F<strong>of</strong> CFaswellas<strong>the</strong>correspondingequivalenceclass<strong>of</strong>representations.Set<br />

<br />

ε(s, ω, ψF) = ε α s−1<br />

<br />

2 ⊗ ω, ψF .<br />

Theleftsidewillbe<strong>the</strong>product<strong>of</strong>anon­zeroconstantandanexponentialfunction.<br />

Nowtake Ftobeaglobalfieldand ωtobeanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weil<br />

group<strong>of</strong> F.Let Abe<strong>the</strong>adélegroup<strong>of</strong> Fandlet ψFbeanon­trivialcharacter<strong>of</strong> A/F.For<br />

eachplace vlet ψvbe<strong>the</strong>restriction<strong>of</strong> ψFto Fv. ψvisnon­trivialforeach vandalmostall<strong>the</strong><br />

<strong>functions</strong> ε(s, ωv, ψv)areidentically1sothatwecanform<strong>the</strong>product<br />

<br />

v ε(s, ωv, ψv).<br />

Itsvaluewillbeindependent<strong>of</strong> ψFandwillbewritten ε(s, ω).<br />

Theorem B<br />

Thefunctionalequation<strong>of</strong><strong>the</strong> L­functionassociatedto ωis<br />

L(s, ω) = ε(s, ω) L(1 − s, ω).<br />

This<strong>the</strong>oremisara<strong>the</strong>reasyconsequence<strong>of</strong><strong>the</strong>first<strong>the</strong>oremtoge<strong>the</strong>rwith<strong>the</strong>functional<br />

equations<strong>of</strong><strong>the</strong>Hecke L­<strong>functions</strong>.<br />

Forarchimedeanfields<strong>the</strong>first<strong>the</strong>oremsaysverylittle.Fornonarchimedeanfieldsitcan<br />

bereformulatedasacollection<strong>of</strong>identitiesforGaussiansums.Four<strong>of</strong><strong>the</strong>seidentitieswhich<br />

weformulateasourfourmainlemmasarebasic. All<strong>the</strong>o<strong>the</strong>rscanbededucedfrom<strong>the</strong>m<br />

bysimplegroup­<strong>the</strong>oreticarguments.Unfortunately<strong>the</strong>onlywayatpresentthatIcanprove<br />

<strong>the</strong>fourbasicidentitiesisbylongandinvolved,althoughra<strong>the</strong>relementary,computations.<br />

HoweverTheoremApromisestobe<strong>of</strong>suchimportancefor<strong>the</strong><strong>the</strong>ory<strong>of</strong>automorphicforms<br />

andgrouprepresentationsthatwecanhopethateventuallyamoreconceptualpro<strong>of</strong><strong>of</strong>itwill<br />

befound.Thefirstand<strong>the</strong>second,whichis<strong>the</strong>mostdifficult,<strong>of</strong><strong>the</strong>fourmainlemmasaredue<br />

toDwork[6].Iamextremelygratefultohimnotonlyforsendingmeacopy<strong>of</strong><strong>the</strong>dissertation<br />

<strong>of</strong>Lakkis[9]inwhichapro<strong>of</strong><strong>of</strong><strong>the</strong>setwolemmasisgivenbutals<strong>of</strong>or<strong>the</strong>interes<strong>the</strong>has<br />

showninthispaper.<br />

F


Chapter1 7<br />

Chapter <strong>On</strong>e.<br />

Weil Groups<br />

TheWeilgroupshavemanyproperties,most<strong>of</strong>whichwillbeusedatsomepointin<strong>the</strong><br />

paper.Itisimpossibletodescribeall<strong>of</strong><strong>the</strong>mwithoutsomeprolixity.Toreduce<strong>the</strong>prolixity<br />

toaminimumIshallintroduce<strong>the</strong>segroupsin<strong>the</strong>language<strong>of</strong>categories.<br />

Consider<strong>the</strong>collection<strong>of</strong>sequences<br />

S : C λ1 µ<br />

−→G −→G<br />

<strong>of</strong>topogicalgroupswhere λisahomeomorphism<strong>of</strong> Cwith<strong>the</strong>kernel<strong>of</strong> µand µinducesa<br />

homeomorphism<strong>of</strong> G/λCwith G.Suppose<br />

S1 : C1<br />

λ1 µ2<br />

−→G1 −→G1<br />

isano<strong>the</strong>rsuchsequence.Twocontinuoushomomorphisms ϕand ψfrom Gto G1whichtake<br />

Cinto C1willbecalledequivalentif<strong>the</strong>reisacin C1suchthat ψ(g) = cϕ(g)c−1forall g<br />

in G. Swillbe<strong>the</strong>categorywhoseobjectsare<strong>the</strong>sequences Sand HomS0 (S, S1)willbe<strong>the</strong><br />

collection<strong>of</strong><strong>the</strong>seequivalenceclasses. Swillbe<strong>the</strong>categorywhoseobjectsare<strong>the</strong>sequences<br />

Sforwhich Cislocallycompactandabelianand Gisfinite;if Sand S1belongto S<br />

HomS(S, S1) = HomS0 (S, S1).<br />

Let P1be<strong>the</strong>functorfrom Sto<strong>the</strong>category<strong>of</strong>locallycompactabeliangroupswhichtakes Sto<br />

Candlet P2be<strong>the</strong>functorfrom Sto<strong>the</strong>category<strong>of</strong>finitegroupswhichtakes Sto G.Wehave<br />

tointroduceonemorecategory S1,0. Theobjects<strong>of</strong> S1willbe<strong>the</strong>sequenceson Sforwhich<br />

Gc ,<strong>the</strong>commutatorsubgroup<strong>of</strong> G,isclosed.Moreover<strong>the</strong>elements<strong>of</strong> HomS1 (S, S1)willbe<br />

<strong>the</strong>equivalenceclassesinHomS(S, S1)all<strong>of</strong>whosemembersdeterminehomeomorphisms<strong>of</strong><br />

Gwithaclosedsubgroupf<strong>of</strong>initeindexin G1.<br />

If Sisin S1let V (S)be<strong>the</strong>topologicalgroup G/Gc . If Φ ∈ HomS1 (S, S1)let ϕbea<br />

homeomorphismin<strong>the</strong>class Φandlet G = ϕ(G). Composing<strong>the</strong>map G1/Gc 1 −→ G/Gc<br />

givenby<strong>the</strong>transferwith<strong>the</strong>map G/G c −→ G/Gcdeterminedby<strong>the</strong>inverse<strong>of</strong> ϕweobtain<br />

amap Φv : V (S1) −→ V (S)whichdependsonlyon Φ. Themap S −→ V (S)becomesa<br />

contravariantfunctorfrom S1to<strong>the</strong>category<strong>of</strong>locallycompactabeliangroups. If Sis<strong>the</strong><br />

sequence<br />

C −→ G −→ G


Chapter1 8<br />

<strong>the</strong>transferfromGtoCdeterminesahomomorphismτfromG/G c to<strong>the</strong>group<strong>of</strong>G­invariant<br />

elementsin C. τwillsometimesberegardedasamapfrom Gtothissubgroup.<br />

Thecategory Ewillconsist<strong>of</strong>allpairs K/Fwhere Fisaglobalorlocalfieldand Kis<br />

afiniteGaloisextension<strong>of</strong> F.Hom(K/F, L/E)willbeacertaincollection<strong>of</strong>isomorphisms<br />

<strong>of</strong> Kwithasubfield<strong>of</strong> Lunderwhich Fcorrespondstoasubfield<strong>of</strong> E. If<strong>the</strong>fieldsare<strong>of</strong><br />

<strong>the</strong>sametype,thatisallglobaloralllocalwedemandthat Ebefiniteandseparableover<strong>the</strong><br />

image<strong>of</strong> F. If Fisglobaland Eislocalwedemandthat Ebefiniteandseparableover<strong>the</strong><br />

closure<strong>of</strong><strong>the</strong>image<strong>of</strong> F.Iwanttoturn<strong>the</strong>mapwhichassociatestoeach K/F<strong>the</strong>group CK<br />

intoacontravariantfunctorwhichIwilldenoteby C∗ .If ϕ : K/F −→ L/Eand Fand Eare<br />

<strong>of</strong><strong>the</strong>sametypelet K1be<strong>the</strong>image<strong>of</strong> Kin Landlet ϕC∗be<strong>the</strong>composition<strong>of</strong> NL/K1with <strong>the</strong>inverse<strong>of</strong> ϕ.If Fisglobaland Eislocallet K1be<strong>the</strong>closurein L<strong>of</strong><strong>the</strong>image<strong>of</strong> K.As<br />

usual CK1maybeconsideredasubgroup<strong>of</strong><strong>the</strong>group<strong>of</strong>idèles<strong>of</strong> K. ϕC∗is<strong>the</strong>composition <strong>of</strong> NL/K1with<strong>the</strong>projection<strong>of</strong><strong>the</strong>group<strong>of</strong>idèlesonto CK.<br />

If Kisgivenlet E K be<strong>the</strong>subcategory<strong>of</strong> Ewhoseobjectsare<strong>the</strong>extensionswith<strong>the</strong><br />

largerfieldequalto Kandwhosemapsareequalto<strong>the</strong>identityon K.Let C∗be<strong>the</strong>functor<br />

on E K whichtakes K/Fto CF. If Fisgivenlet EFhaveasobjects<strong>the</strong>extensionswith<strong>the</strong><br />

smallerfieldequalto F.Itsmapsaretoequal<strong>the</strong>identityon F.<br />

AWeilgroupisacontravariantfunctor Wfrom Eto Swith<strong>the</strong>followingproperties:<br />

(i) P1 ◦ Wis C ∗ .<br />

(ii) P2 ◦ Wis<strong>the</strong>functor G : L/F −→ G(L/F).<br />

(iii)If ϕ ∈ G(L/F) ⊆ Hom(L/F, L/F)and gisanyelement<strong>of</strong> W L/F,<strong>the</strong>middlegroup<strong>of</strong><br />

<strong>the</strong>sequence W(L/F),whoseimagein G(L/F)is ϕ<strong>the</strong>n<strong>the</strong>map h −→ ghg −1 isin<strong>the</strong><br />

class ϕw.<br />

(iv)Therestriction<strong>of</strong> Wto E K takesvaluesin S1.Moreover,if K/Fbelongsto E K<br />

τ: W K/F/W c K/F<br />

−→ CF<br />

isahomeomorphism.Finally,if ϕ : K/F −→ K/Eis<strong>the</strong>identityon Kand Φ = ϕw<strong>the</strong>n<br />

<strong>the</strong>diagram<br />

W K/F/W c K/F<br />

Φv<br />

−→ WK/E/W c K/E<br />

τ ↓ ↓ τ<br />

CF<br />

−→<br />

ϕC ∗<br />

iscommutativeandif ψ : F/F −→ K/Fis<strong>the</strong>imbedding, ψWis τ.<br />

CE


Chapter1 9<br />

Since<strong>the</strong>functorialproperties<strong>of</strong><strong>the</strong>Weilgrouparenotalldiscussedby<strong>Artin</strong>andTate,<br />

weshouldreview<strong>the</strong>irconstruction<strong>of</strong><strong>the</strong>Weilgrouppointingout,whennecessary,how<br />

<strong>the</strong>functorialpropertiesarise.Thereisassociatedtoeach K/Fafundamentalclass α K/Fin<br />

H 2 (G(K/F), CK).Thegroup W(K/F)isanyextension<strong>of</strong> G(K/F)by CKassociatedtothis<br />

element.Wehavetoshow,atleast,thatif ϕ : K/F −→ L/E<strong>the</strong>diagram<br />

1 −→ CL −→ W L/E −→ G(L/E) −→ 1<br />

↓ ϕC∗ ↓ ϕG<br />

1 −→ CK −→ WK/F −→ G(K/F) −→ 1<br />

canbecompletedtoacommutativediagrambyinserting ϕ : W L/E −→ W K/F.Themap ϕC ∗<br />

commuteswith<strong>the</strong>action<strong>of</strong> G(L/E)on CLand CKsothat ϕexistsifandonlyif ϕC ∗(α L/E)is<br />

<strong>the</strong>restriction ϕ ∗ G (α K/F)<strong>of</strong> ϕ K/Fto G(L/E).Ifthisisso,<strong>the</strong>collection<strong>of</strong>equivalenceclasses<br />

towhich ϕmaybelongisaprincipalhomogeneousspace<strong>of</strong> H 1 (G(L/E), CK).Inparticular,<br />

ifthisgroupistrivial,asitiswhen ϕGisaninjection,<strong>the</strong>class<strong>of</strong> ϕisuniquelydetermined.<br />

Anexamination<strong>of</strong><strong>the</strong>definition<strong>of</strong><strong>the</strong>fundamentalclassandshowsthatitiscanonical.In<br />

o<strong>the</strong>rwords,ifϕisanisomorphism<strong>of</strong>Kand Land<strong>of</strong>FandE,<strong>the</strong>n ϕ ∗ G (α K/F) = ϕ −1 α L/E =<br />

ϕC ∗(α L/E).IfK = Landϕis<strong>the</strong>identityonK,<strong>the</strong>relationϕ ∗ G (α K/F) = α L/E = ϕC ∗(α L/E)<br />

isone<strong>of</strong><strong>the</strong>basicproperties<strong>of</strong><strong>the</strong>fundamentalclass. Thusin<strong>the</strong>setwocases ϕexists<br />

anditsclassisunique. Nowtake Ktobeglobaland Llocal. Supposeatfirstthat Kis<br />

containedin L,thatitsclosureis L,andthat F = K ∩ E. Then,by<strong>the</strong>verydefinition<strong>of</strong><br />

α K/F, ϕ ∗ G (α K/F) = ϕC ∗(α L/E).Moregenerally,ifK1is<strong>the</strong>image<strong>of</strong>KinL,andF1<strong>the</strong>image<br />

<strong>of</strong>FinE,wecanwriteϕasϕ1ϕ2ϕ3whereϕ3 : K/F −→ K1/F1, ϕ2 : K1/F1 −→ K1/K1∩E,<br />

and ϕ1 : K1/K1 ∩E −→ L/E. ϕ3and ϕ2exist.If<strong>the</strong>closure<strong>of</strong> K1is L<strong>the</strong>n ϕ1and<strong>the</strong>refore<br />

ϕ = ϕ3 ϕ2 ϕ1alsoexist.Theclass<strong>of</strong> ϕisuniquelydetermined.<br />

<strong>Artin</strong>andTateshowthat W c K/F isaclosedsubgroup<strong>of</strong> W K/F andthat τisahomeomorphism<strong>of</strong><br />

W K/F/W c K/F and CF. Grantedthis,itiseasytoseethat<strong>the</strong>restriction<strong>of</strong><br />

Wto ξ K takesvaluesin S1. Supposewehave<strong>the</strong>collection<strong>of</strong>fieldsin<strong>the</strong>diagramwith<br />

Land Knormalover Fand Land K ′ normalover F ′ . Let α, β,and νbe<strong>the</strong>imbeddings<br />

α : L/F −→ L/K, β : L/F ′ −→ L/K ′ , ν : L/F −→ L/F ′ .


Chapter1 10<br />

L<br />

K<br />

F<br />

Wehaveshown<strong>the</strong>existence<strong>of</strong> α, β,and ν.Itisclearthat ν β(W L/K ′)iscontainedin α(W L/K).<br />

Thuswehaveanaturalmap<br />

Letusverifythat<strong>the</strong>diagram<br />

K ′<br />

π : ν β(W L/K ′)/ν β(W c L/K ′) −→ α(W L/K)/α(W c L/K ).<br />

WL/K/W c<br />

L/K ′ −→ ν β(WL/K ′)/ν β(W C π<br />

L/K ′) −→ α(WL/K)/α(W c K/K ) −→ WL/K/W c L/K<br />

↓ τ ↓ τ<br />

Ck ′<br />

F ′<br />

N K ′ /K<br />

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ck (A)<br />

iscommutative.Toseethislet W L/K ′be<strong>the</strong>disjointunion<br />

U r i=1 CKhi.<br />

Thenwecanchoose h ′ i , g′ j , 1 ≤ i ≤ r, 1 ≤ j ≤ ssothat W L/Kis<strong>the</strong>disjointunion<br />

r<br />

i=1<br />

s<br />

j=1 CK g ′ jh ′ i<br />

and ν β(h ′ i ) = α(hi). Using<strong>the</strong>secosetrepresentativestocompute<strong>the</strong>transferoneimmediatelyverifies<strong>the</strong>assertion.Weshouldalsoobservethat<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>transferimplies<br />

<strong>the</strong>commutativity<strong>of</strong><strong>the</strong>diagram<br />

W K/F/W c K/F<br />

Φv<br />

−→ WK/F ′/W c K/F ′<br />

τ ↓ ↓<br />

CF<br />

−→<br />

ϕC ∗<br />

CF ′


Chapter1 11<br />

if Φis<strong>the</strong>class<strong>of</strong>animbedding ϕwhere ϕisanimbedding K/F −→ K/F ′ .<br />

Wehavestillnotdefined ϕW forall ϕ. Howeverwehavedefineditwhen ϕisan<br />

isomorphism<strong>of</strong><strong>the</strong>twolargerfieldsorwhen<strong>the</strong>secondlargefieldis<strong>the</strong>closure<strong>of</strong><strong>the</strong>first.<br />

Moreover<strong>the</strong>definitionissuchthat<strong>the</strong>thirdconditionandallparts<strong>of</strong><strong>the</strong>fourthcondition<br />

except<strong>the</strong>lastaresatisfied.Thelastcondition<strong>of</strong>(iv)canbemadeadefinitionwithoutviolating<br />

(i)and(ii). Whatwedonowisshowthat<strong>the</strong>reisoneandonlyoneway<strong>of</strong>extending<strong>the</strong><br />

definition<strong>of</strong> ϕWtoall ϕwithoutviolatingconditions(i)or(ii)and<strong>the</strong>functorialproperty.<br />

Suppose F ⊆ K ⊆ L, K/Fand L/FareGalois,and ψis<strong>the</strong>imbedding L/F −→ L/K.<br />

Itisobservedin<strong>Artin</strong>andTatethat<strong>the</strong>reisoneandonlyclass<strong>of</strong>maps {θ}whichmake<strong>the</strong><br />

followingdiagramcommutative<br />

1 −→ W L/K/W c L/K −→ ψW L/K/ ψW c L/K −→ W L/F/ ψW c L/K −→ W L/F/ ψW L/K −→ 1<br />

τ ↓ ↓ θ ↓<br />

1 −−−−−−−→ CK −−−−−−−−−−−−−−−−−−−−−−−−→ W K/F −−−−−−−→ G(K/F) −−−−−→ 1.<br />

Thehomomorphismon<strong>the</strong>rightisthatdeducedfrom<br />

W L/F/W L/K = G(L/F)/G(L/K) ≃ G(K/F).<br />

Let ϕ, µ,and νbeimbeddings ϕ : K/F −→ L/F, µ : K/K −→ L/K, ν : K/F −→ K/K.<br />

Then ψ ◦ ϕ = µ ◦ ν,sothat ν ◦ µ = ϕ ◦ ψ. Moreover ν ◦ µis<strong>the</strong>composition<strong>of</strong><strong>the</strong>map<br />

τ : WL/K −→ CKand<strong>the</strong>imbedding<strong>of</strong> CKin WK/F.Thus<strong>the</strong>kernel<strong>of</strong> ϕcontains ψW c L/K<br />

sothat ϕ ◦ ψrestrictedto WL/K/W c L/Kmustbe τand<strong>the</strong>onlypossiblechoicefor ϕis,apart<br />

fromequivalence, θ.Toseethatthischoicedoesnotviolate<strong>the</strong>secondconditionobservethat<br />

<strong>the</strong>restriction<strong>of</strong> τto CLwillbe NL/Kandthat ψis<strong>the</strong>identityon CL.<br />

Denote<strong>the</strong>map θ : W L/F −→ W K/Fby θ L/Kand<strong>the</strong>map τ : W K/F → CKby τ K/F.<br />

Itisclearthat τ K/F ◦ θ L/Kis<strong>the</strong>transferfrom W L/F/W c L/F to ψW L/K/ ψW c L/K followed<br />

by<strong>the</strong>transferfrom ψW L/K/ ψW c L/K to ψCL = CF. By<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>transfer<br />

τ K/F ◦ θ L/K = τ L/F.Itfollowsimmediatelythatif F ⊆ K ⊆ L ⊆ L ′ andallextensionsare<br />

Galois<strong>the</strong>map θ L ′ /Kand θ L/Kθ L ′ /Larein<strong>the</strong>sameclass.<br />

Supposethat ϕisanimbedding K/F −→ K ′ /F ′ andchoose Lsothat K ′ ⊆ Land L/F<br />

isGalois.Let ψ : K ′ /F ′ −→ L/F ′ , µ : K/F −→ L/F, ν : L/F −→ L/F ′ beimbeddings.<br />

Then ψ ◦ ϕ = ν ◦ µsothat µ ◦ ν = ϕ ◦ ψ.If α : L/F −→ L/K, β : L/F ′ −→ L/K ′ are<strong>the</strong>


Chapter1 12<br />

imbeddings<strong>the</strong>n<strong>the</strong>kernel<strong>of</strong> ψis ν βW c L/K ′whichiscontainedin αW c L/K<strong>the</strong>kernel<strong>of</strong> µ.<br />

Thus<strong>the</strong>reisonlyonewaytodefine ϕsothat µ ◦ ν = ϕ ◦ ψ.Thediagram<br />

W L/K ′/W c L/K ′<br />

bβ<br />

−→ W L/F ′/ βW c L/K ′<br />

bψ<br />

−−−−−−−−−−−−−−−−−→ W K ′ /F ′<br />

↓ ν ↓ ϕ<br />

W L/F/ν βW c L/K ′<br />

−→ W L/F/αW c L/K<br />

bµ<br />

−→ W K/F<br />

willbecommutative.Since ψ ◦ β = τL/K ′and µ ◦ α = τK/Fdiagram(A)showsthat ϕhas<br />

<strong>the</strong>requiredeffecton CK.<br />

Todefine ϕWingeneral,weobservethatevery ϕis<strong>the</strong>composition<strong>of</strong>isomorphisms,<br />

imbeddings<strong>of</strong>fields<strong>of</strong><strong>the</strong>sametype,andamap K/F −→ K ′ /F ′ where Kisglobal, K ′ is<br />

local, K ′ is<strong>the</strong>closure<strong>of</strong> K,and F = F ′ ∩ K.Ofcourse<strong>the</strong>identity<br />

(ϕ ◦ ψ)W = ψWϕW<br />

mustbeverified. Iomit<strong>the</strong>verificationwhichiseasyenough. Theuniqueness<strong>of</strong><strong>the</strong>Weil<br />

groupsin<strong>the</strong>sense<strong>of</strong><strong>Artin</strong>andTateimpliesthat<strong>the</strong>functor Wisuniqueuptoisomorphism.<br />

Thesequence<br />

S(n, C) : GL(n, C) id<br />

−→GL(n, C) −→ 1<br />

belongsto S1.If S : C −→ G −→ Gbelongsto S1<strong>the</strong>n<br />

HomS0 (S, S(n, C))<br />

is<strong>the</strong>set<strong>of</strong>equivalenceclasses<strong>of</strong> n­dimensionalcomplexrepresentations<strong>of</strong> G.Let Ωn(S)be<br />

<strong>the</strong>set<strong>of</strong>all ΦinHomS0 (S, S(n, C))suchthat,foreach ϕ ∈ Φ, ϕ(g)issemi­simpleforall g<br />

in G. Ωn(S)isacontravariantfunctor<strong>of</strong> Sandsois Ω(S) = ∞ n=1 Ωn(S).<strong>On</strong><strong>the</strong>category<br />

S1,itcanbeturnedintoacovariantfunctor. If ψ : S −→ S1,if Φ ∈ Ω(S),andif ϕ ∈ Φ,<br />

let ψassociateto Φ<strong>the</strong>matrixrepresentationscorrespondingto<strong>the</strong>inducedrepresentation<br />

Ind(G1, ψ(G), ϕ ◦ ψ−1 ). Itfollowsfrom<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocessthat Ωisa<br />

covariantfunctor<strong>of</strong> S1.<br />

Tobecompleteafur<strong>the</strong>robservationmustbemade.<br />

Lemma 1.1Suppose Hisasubgroup<strong>of</strong>finiteindexin Gand ρisafinite­dimensional<br />

complexrepresentation<strong>of</strong> Hsuchthat ρ(L)issemi­simpleforall hin H.If<br />

σ = Ind(G, H, ρ)


Chapter1 13<br />

<strong>the</strong>n σ(g)issemi­simpleforall g.<br />

Hcontainsasubgroup H1whichisnormaland<strong>of</strong>finiteindexin G,namely,<strong>the</strong>group<br />

<strong>of</strong>elementsactingtriviallyon H\G. Toshowthatanon­singularmatrixissemi­simpleone<br />

hasonlytoshowthatsomepower<strong>of</strong>itissemi­simple.Since σ n (g) = σ(g n )and g n belongs<br />

to H1forsome nweneedonlyshowthat σ(g)issemi­simplefor gin H1.Inthatcase σ(g)is<br />

equivalentto r<br />

i=1<br />

⊕ρ(gigg −1<br />

i )if Gis<strong>the</strong>disjointunion<br />

r<br />

i=1 Hgi<br />

Suppose L/Fand K/Fbelongto EFand ϕ ∈ HomEF (L/F, K/F). Since<strong>the</strong>maps<strong>of</strong><br />

<strong>the</strong>class ϕWalltake WK/Fonto WL/F<strong>the</strong>associatedmap Ω(W(L/F)) −→ Ω(W(K/F))is<br />

injective.Moreoveritisindependent<strong>of</strong>ϕ.IfL1/Fand L2/Fbelongto EF<strong>the</strong>reisanextension<br />

K/Fandmaps ϕ1 ∈ HomEF (L1/F, K/F), ϕ2 ∈ HomEF (L2/F, K/F). ω1in Ω(W(L1/F))<br />

and ω2in Ω(W(L2/F))have<strong>the</strong>sameimagein Ω(W(K/F))foronesuch Kifandonlyif<br />

<strong>the</strong>yhave<strong>the</strong>sameimageforallsuch K. Ifthisissowesaythat ω1and ω2areequivalent.<br />

Thecollection<strong>of</strong>equivalenceclasseswillbedenotedby Ω(F).Itsmembersarereferredtoas<br />

equivalenceclasses<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong> F.<br />

Let Fbe<strong>the</strong>categorywhoseobjectsarelocalandglobalfields. If Fand Eare<strong>of</strong><strong>the</strong><br />

sametypeHomF(F, E)consists<strong>of</strong>allisomorphisms<strong>of</strong> Fwithasubfield<strong>of</strong> Eoverwhich<br />

Eisseparable. If Fisglobaland EislocalHomF(F, E)consists<strong>of</strong>allisomorphisms<strong>of</strong> F<br />

withasubfield<strong>of</strong> Eoverwhoseclosure Eisseparable. Ω(F)isclearlyacovariantfunctoron<br />

F.Let Fgℓ,and Flocbe<strong>the</strong>subcategoriesconsisting<strong>of</strong><strong>the</strong>globalandlocalfieldsrespectively.<br />

Suppose Fand Eare<strong>of</strong><strong>the</strong>sametypeand ϕ ∈ HomF(F, E).If ω ∈ Ω(E)choose Ksothat<br />

ωbelongsto Ω(W(K/E)).Wemayassumethat<strong>the</strong>reisan L/Fandanisomorphism ψfrom<br />

Lonto Kwhichagreeswith ϕon F.Then ψW : W K/E −→ W L/Fisaninjection.Let θbe<strong>the</strong><br />

equivalenceclass<strong>of</strong><strong>the</strong>representation<br />

σ = Ind(W L/F, ψW(W K/E), ρ ◦ ψ −1<br />

W )<br />

with ρin ω. Iclaimthat θisindependent<strong>of</strong> Kanddependsonlyon ωand ϕ. Toseethisit<br />

isenoughtoshowthatif L ⊆ L ′ , L ′ /FisGalois, ψ ′ isanisomorphismfrom L ′ to K ′ which<br />

agreeswith ψon L,and ρ ′ isarepresentation<strong>of</strong> W K ′ /Fin ω<strong>the</strong>class<strong>of</strong><br />

σ ′ = Ind(WL ′ /F, ψ ′ W(WK ′ /E), ρ ′ ′ −1<br />

◦ ψ w )<br />

isalso Θ. Suppose µisamapfrom W K ′ /Eto W K/Eassociatedto<strong>the</strong>imbedding K/E −→<br />

K ′ /Eand νisamapfrom W L ′ /F to W L/F associatedto<strong>the</strong>imbedding L/F −→ L ′ /F.


Chapter1 14<br />

Wemaysupposethat ψW ◦ µ = ν ◦ ψ ′ W . Thekernel<strong>of</strong> µis W c K ′ /K if,forsimplicity<strong>of</strong><br />

. Moreover<br />

notation, WK ′ /Kisregardedasasubgroup<strong>of</strong> WK ′ /Eandthat<strong>of</strong> νis W c L ′ /L<br />

ψ ′ W (W c K ′ /K ) = W c L ′ /L .Take ρ′ = ρ ◦ µ.Then σactson<strong>the</strong>space V <strong>of</strong><strong>functions</strong> fon WK/F satisfying f(vw) ≡ ρ(ψ −1<br />

w (h))f(w)for vin ψw(W K/E). Let V ′ be<strong>the</strong>analogousspaceon<br />

which σ ′ acts.Then<br />

V ′ = {f ◦ ν | f ∈ V }.<br />

Theassertionfollows.Thus Ω(F)isacontravariantfunctoron Fgℓand Floc.<br />

Afterthislaboriousandclumsyintroductionwecansettoworkandprove<strong>the</strong>two<br />

<strong>the</strong>orems.ThefirststepistoreformulateTheoremA.


Chapter2 15<br />

Chapter Two.<br />

The Main Theorem<br />

Itwillbeconvenientinthisparagraphandatvariouslatertimestoregard WK/Easa<br />

subgroup<strong>of</strong> W K/Fif F ⊆ E ⊆ K.If F ⊆ E ⊆ L ⊆ Kweshallalsooccasionallytake W L/E<br />

tobe W K/E/W c K/L .<br />

If K/FisfiniteandGalois, P(K/F)willbe<strong>the</strong>set<strong>of</strong>extensions E ′ /Ewith F ⊆ E ⊆<br />

E ′ ⊆ Kand P◦(K/F)willbe<strong>the</strong>set<strong>of</strong>extensionsin P(K/F)with<strong>the</strong>lowerfieldequalto F.<br />

Theorem 2.1<br />

Suppose KisaGaloisextension<strong>of</strong><strong>the</strong>localfield Fand ψFisagivennon­trivialadditive<br />

character<strong>of</strong> F. Thereisexactlyonefunction λ(E/F, ψF)definedon P◦(K/F)with<strong>the</strong><br />

followingtwoproperties<br />

(i)<br />

(ii)If E1, . . ., Er, E ′ 1 , . . ., E′ s<br />

λ(F/F, ψF) = 1.<br />

arefieldslyingbetween F and K,if χEi , 1 ≤ i ≤ r,isa<br />

quasi­character<strong>of</strong> CEi ,if χE ′ j , 1 ≤ j ≤ s,isaquasi­character<strong>of</strong> CE ′ j ,andif<br />

isequivalentto<br />

<strong>the</strong>n r<br />

isequalto<br />

s<br />

⊕ r i=1 Ind(Wk/F, WK/Ei , χEi )<br />

⊕ s j=1 Ind(W K/F, W K/E ′ j , χ E ′ j )<br />

i=1 ∆(χEi , ψ Ei/F)λ(Ei/F, ψF)<br />

j=1 ∆(χE ′ j , ψ E ′ j /F)λ(E ′ j<br />

/F, ψF).<br />

A<strong>functions</strong>atisfying<strong>the</strong>conditions<strong>of</strong>this<strong>the</strong>oremwillbecalledaλ­function.Itisclear<br />

that<strong>the</strong>functionλ(E/F, ψF)<strong>of</strong>TheoremAwhenrestrictedto P◦(K/F)becomesa λ­function.<br />

Thus<strong>the</strong>uniquenessinthis<strong>the</strong>oremimpliesatleastpart<strong>of</strong><strong>the</strong>uniqueness<strong>of</strong>TheoremA.To<br />

showhowthis<strong>the</strong>oremimpliesall<strong>of</strong>TheoremAwehavetoanticipatesomesimpleresults<br />

whichwillbeprovedinparagraph4.


Chapter2 16<br />

First<strong>of</strong>allaλ­functioncannevertakeon<strong>the</strong>value0. Moreover,if F ⊆ K ⊆ L<strong>the</strong><br />

λ­functionon P◦(K/F)isjust<strong>the</strong>restrictionto P◦(K/F)<strong>of</strong><strong>the</strong> λ­functionon P◦(L/F).Thus<br />

λ(E/F, ψF)isdefinedindependently<strong>of</strong> K.Finallyif E ⊆ E ′ ⊆ E ′′<br />

λ(E ′′ /E, ψE) = λ(E ′′ /E ′ , ψ E ′ /E)λ(E ′ /E, ψE) [E′′ :E ′ ] .<br />

Wealsohavetouseaform<strong>of</strong>Brauer’s<strong>the</strong>orem[4]. If Gisafinitegroup<strong>the</strong>reare<br />

nilpotentsubgroups N1, . . ., Nm,one­dimensionalrepresentations χ1, . . ., χm<strong>of</strong> N1, . . ., Nm<br />

respectively,andintegers n1, . . ., nmsuchthat<strong>the</strong>trivialrepresentation<strong>of</strong> Gisequivalentto<br />

⊕ m i=1 niInd(G, Ni, χi).<br />

Themeaning<strong>of</strong>thiswhensome<strong>of</strong><strong>the</strong> niarenegativeisclear<br />

Lemma 2.2<br />

Suppose Fisaglobalorlocalfieldand ρisarepresentation<strong>of</strong> W K/F. Thereareintermediatefields<br />

E1, . . ., Emsuchthat G(K/Ei)isnilpotentfor 1 ≤ i ≤ m,one­dimensional<br />

representations χEi <strong>of</strong> W K/Ei ,andintegers n1, . . ., nmsuchthat ρisequivalentto<br />

⊕ m i=1 niInd(WK/F, WK/Ei , χEi ).<br />

Theorem2.1andLemma2.2toge<strong>the</strong>rimply<strong>the</strong>uniqueness<strong>of</strong>TheoremA.Beforeproving<br />

<strong>the</strong>lemmawemustestablishasimpleandwell­knownfact.<br />

Lemma 2.3<br />

Suppose Hisasubgroup<strong>of</strong>finiteindexin<strong>the</strong>group G.Suppose τisarepresentation<strong>of</strong><br />

G, σarepresentation<strong>of</strong> H,and ρ<strong>the</strong>restriction<strong>of</strong> τto H.Then<br />

τ ⊗ Ind(G, H, σ) ≃ Ind(G, H, ρ ⊗ σ).<br />

Let τacton V and σon W.ThenInd(G, H, σ)actson X,<strong>the</strong>space<strong>of</strong>all<strong>functions</strong> fon<br />

Gwithvaluesin Wsatisfying<br />

f(hg) = σ(h) f(g)<br />

whileInd(G, H, ρ ⊗ σ)actson Y,<strong>the</strong>space<strong>of</strong>all<strong>functions</strong> fon Gwithvaluesin V ⊗ W<br />

satisfying<br />

f(hg) = (ρ(h) ⊗ σ(h)) f(g).


Chapter2 17<br />

Clearly, V ⊗ Xand Yhave<strong>the</strong>samedimension.Themap<strong>of</strong> V ⊗ Xto Ywhichsends v ⊗ f<br />

to<strong>the</strong>function<br />

f ′ (g) = τ(g)v ⊗ f(g)<br />

is G­invariant. Ifitwerenotanisomorphism<strong>the</strong>rewouldbeabasis v1, . . ., vn<strong>of</strong> V and<br />

<strong>functions</strong> f1, . . ., fnwhicharenotallzerosuchthat<br />

Thisisclearlyimpossible.<br />

Σ n i=1 τ(g)vi ⊗ fi(g) ≡ 0.<br />

ToproveLemma2.2wetake<strong>the</strong>group G<strong>of</strong>Brauer’s<strong>the</strong>oremtobe G(K/F).Let Fibe<strong>the</strong><br />

fixedfield<strong>of</strong> Niandlet ρibe<strong>the</strong>tensorproduct<strong>of</strong> χi,whichwemayregardasarepresentation<br />

<strong>of</strong> W K/Fi and<strong>the</strong>restriction<strong>of</strong> ρto W K/Fi .Then<br />

ρ ≃ ρ ⊗ 1 ≃ ⊕ m i=1niInd(WK/Fi , ρi).<br />

Thistoge<strong>the</strong>rwith<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocessshowsthatinproving<strong>the</strong>lemma<br />

wemaysupposethat G(K/F)isnilpotent.<br />

Weprove<strong>the</strong>lemma,withthisextracondition,byinductionon [K : F]. Weuse<strong>the</strong><br />

symbol ωtodenoteanorbitin<strong>the</strong>set<strong>of</strong>quasi­characters<strong>of</strong> CKunder<strong>the</strong>action<strong>of</strong> G(K/F).<br />

Therestriction<strong>of</strong> ρto CKis<strong>the</strong>directsum<strong>of</strong>one­dimensionalrepresentations. If ρactson<br />

V let Vωbe<strong>the</strong>spacespannedby<strong>the</strong>vectorstransformingunder CKaccordingtoaquasicharacterin<br />

ω. V is<strong>the</strong>directsum<strong>of</strong><strong>the</strong>spaces Vωwhichareeachinvariantunder W K/F.<br />

Forourpurposeswemaysupposethat V = Vωforsome ω.Choose χKinthis ωandlet V0be<br />

<strong>the</strong>space<strong>of</strong>vectorstransformingunder CKaccordingto χK. Let Ebe<strong>the</strong>fixedfield<strong>of</strong><strong>the</strong><br />

isotrophygroup<strong>of</strong> χK. V0isinvariantunder W K/E.Let σbe<strong>the</strong>representation<strong>of</strong> W K/Ein<br />

V0.Itiswell­knownthat<br />

ρ ≃ Ind(W K/F, W K/E, σ).<br />

Toseethisonehasonlytoverifythat<strong>the</strong>space Xonwhich<strong>the</strong>representationon<strong>the</strong>right<br />

actsand Vhave<strong>the</strong>samedimensionandthat<strong>the</strong>map<br />

f −→ <br />

W K/E\W K/F<br />

ρ(g −1 )f(g)<br />

<strong>of</strong> Xinto Vwhichisclearly W K/F­invarianthasnokernel.Itiseasyenoughtodothis.<br />

If E = F<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmafollowsbyinduction.If E = Fchoose Lcontaining<br />

Fsothat K/Liscyclic<strong>of</strong>primedegreeand L/FisGalois.Then ρ(W K/L)isanabeliangroup<br />

and W c K/L iscontainedin<strong>the</strong>kernel<strong>of</strong> ρ.Thus ρmayberegardedasarepresentation<strong>of</strong> W L/F.


Chapter2 18<br />

Theassertionnowfollowsfrom<strong>the</strong>inductionassumptionand<strong>the</strong>concludingremarks<strong>of</strong><strong>the</strong><br />

previousparagraph.<br />

Nowtakealocalfield Eandarepresentation ρ<strong>of</strong> W K/E.Chooseintermediatefields<br />

E1, . . ., Em,one­dimensionalrepresentations χEi <strong>of</strong> W K/Ei ,andintegers n1, . . ., nmsothat<br />

If ωis<strong>the</strong>class<strong>of</strong> ρset<br />

ρ ≃ ⊕ m i=1 ni Ind(WK/E, WK/Ei , χEi ).<br />

ε(ω, ψE) = m<br />

i=1 {∆(χEi , Ψ Ei/E)λ(Ei/E, ΨE)} ni .<br />

Theorem2.1showsthat<strong>the</strong>rightsideisindependent<strong>of</strong><strong>the</strong>wayinwhich ρiswrittenasasum<br />

<strong>of</strong>inducedrepresentations.Thefirstandsecondconditions<strong>of</strong>TheoremAareclearlysatisfied.<br />

If ρis<strong>the</strong>representationaboveand σ<strong>the</strong>representation<br />

<strong>the</strong>n<br />

Thusif ω ′ is<strong>the</strong>class<strong>of</strong> σ<br />

while<br />

Ind(W K/F, W K/E, ρ)<br />

σ ≃ ⊕ m i=1 niInd(WK/F, WK/Ei , χEi ).<br />

ε(ω ′ , ψF) = m<br />

ε(ω, ψ E/F) = m<br />

Thethirdpropertyfollowsfrom<strong>the</strong>relations<br />

and<br />

i=1 {∆(χEi , ψ Ei/F)λ(Ei/F, ψF)} ni<br />

i=1 {∆(χEi , ψ Ei/F) λ(Ei/E, ψ E/F)} ni .<br />

dim ω = Σ m i=1 ni [Ei : E]<br />

λ(Ei/F, ψF) = λ(Ei/E, ψ E/F) λ(E/F, ψF) [Ei:E]


Chapter3 19<br />

Chapter Three.<br />

The Lemmas <strong>of</strong> Induction<br />

Inthisparagraphweprovetwosimplebutveryusefullemmas.<br />

Lemma 3.1<br />

Suppose KisaGaloisextension<strong>of</strong><strong>the</strong>localfield F. Suppose<strong>the</strong>subset A<strong>of</strong> P(K/F)<br />

has<strong>the</strong>followingfourproperties.<br />

(i)Forall E,with F ⊆ E ⊆ K, E/E ∈ A.<br />

(ii)If E ′′ /E ′ and E ′ /Ebelongto Asodoes E ′′ /E.<br />

(iii)If L/Ebelongsto P(K/F)and L/Eiscyclic<strong>of</strong>primedegree<strong>the</strong>n L/Ebelongsto A.<br />

(iv)Supposethat L/Ein P(K/F)isaGaloisextension.LetG = G(L/E).SupposeG = H ·C<br />

where H = {1}, H ∩ C = {1},and Cisanon­trivialabeliannormalsubgroup<strong>of</strong> Gwhichis<br />

containedineverynon­trivialnormalsubgroup<strong>of</strong> G.If E ′ is<strong>the</strong>fixedfield<strong>of</strong> Handifevery<br />

E ′′ /Ein P◦(L/E)forwhich [E ′′ : E] < [E ′ : E ′ ]isin Asois E ′ /E.Then Aisall<strong>of</strong> P(K/F).<br />

Itisconvenienttoproveano<strong>the</strong>rlemmafirst.<br />

Lemma 3.2<br />

Suppose KisaGaloisextension<strong>of</strong><strong>the</strong>localfield Fand F ⊂ = E ⊆ K. Supposethat<strong>the</strong><br />

onlynormalsubfield<strong>of</strong> Kcontaining Eis Kitselfandthat<strong>the</strong>rearen<strong>of</strong>ieldsbetween Fand<br />

E.Let G = G(K/F)andlet Ebe<strong>the</strong>fixedfield<strong>of</strong> H.Let Cbeaminimalnon­trivialabelian<br />

normalsubgroup<strong>of</strong> G.Then G = HC, H ∩ C = {1}and Ciscontainedineverynon­trivial<br />

normalsubgroup<strong>of</strong> G.Inparticularif H = {1}, G = Cisabelian<strong>of</strong>primeorder.<br />

Hiscontainedinnosubgroupbesidesitselfand Gcontainsnonormalsubgroupbut {1}.<br />

Thusif Hisnormalitis {1}and Ghasnopropersubgroupsandisconsequentlycyclic<strong>of</strong><br />

primeorder.Suppose Hisnotnormal.Since Gissolvableitdoescontainaminimalnon­trivial<br />

abeliannormalsubgroup C. Since Cisnotcontainedin H, H ⊂ = HCand G = HC. Since<br />

H ∩ Cisanormalsubgroup<strong>of</strong> Gitis {1}.If Disanon­trivialnormalsubgroup<strong>of</strong> Gwhich<br />

doesnotcontain C<strong>the</strong>n D ∩ C = {1}and Discontainedin<strong>the</strong>centralizer Z<strong>of</strong> C. Then<br />

DCisalsoand Zmustmeet Hnon­trivially.But Z ∩ Hisanormalsubgroup<strong>of</strong> G.Thisisa<br />

contradictionand<strong>the</strong>lemmaisproved.


Chapter3 20<br />

Thefirstlemmaiscertainlytrueif [K : F] = 1.Suppose [K : F] > 1and<strong>the</strong>lemmais<br />

validforallpairs [K ′ : F ′ ]with [K ′ : F ′ ] < [K : F].If<strong>the</strong>Galoisextension L/Ebelongsto<br />

P(K/F)<strong>the</strong>n A ∩ P(L/E)satisfies<strong>the</strong>condition<strong>of</strong><strong>the</strong>lemmawith Kreplacedby Land F<br />

by E.Thus,byinduction,if [L : E] < [K : F], P(L/E) ⊆ A.Inparticularif E ′ /Eisnotin G<br />

<strong>the</strong>n E = Fand<strong>the</strong>onlynormalsubfield<strong>of</strong> Kcontaining E ′ is Kitself.If Aisnot P(K/F)<br />

<strong>the</strong>namongstallextensionswhicharenotin Gchooseone E/Fforwhich [E : F]isminimal.<br />

Because<strong>of</strong>(ii)<strong>the</strong>rearen<strong>of</strong>ieldsbetween Fand E. Lemma3.2,toge<strong>the</strong>rwith(iii)and(iv),<br />

showthat E/Fisin A.Thisisacontradiction.<br />

Thereisavariant<strong>of</strong>Lemma3.1whichweshallhaveoccasiontouse.<br />

Lemma 3.3<br />

Suppose KisaGaloisextension<strong>of</strong><strong>the</strong>localfield F.Suppose<strong>the</strong>subset A<strong>of</strong> P◦(K/F)<br />

has<strong>the</strong>followingproperties.<br />

(i) F/F ∈ A.<br />

(ii)If L/Fisnormaland L ⊂ = K<strong>the</strong>n P◦(L/F) ⊆ A.<br />

(iii)If F ⊂ E ⊆ E ′ ⊆ Kand E/Fbelongto G<strong>the</strong>n E ′ /Fbelongto A.<br />

(iv)If L/Fin P◦(K/F)iscyclic<strong>of</strong>primedegree<strong>the</strong>n L/F ∈ A.<br />

(v) Supposethat L/Fin P◦(K/F)isGaloisand G = G(L/F). Suppose G = HCwhere<br />

H = {1}, H ∩ C = {1},and Cisanon­trivialabeliannormalsubgroup<strong>of</strong> Gwhichis<br />

containedineverynon­trivialnormalsubgroup.If Eis<strong>the</strong>fixedfield<strong>of</strong> Handifevery E ′ /F<br />

in P◦(L/F)forwhich [E ′ : F] < [E : F]isin Asois E/F.<br />

Then Ais P◦(K/F).<br />

AgainifAisnot P◦(K/F)<strong>the</strong>reisan E/FnotinAforwhich[E : F]isminimal.Certainly<br />

[E : F] > 1.By(ii)and(iii), Eiscontainedinnopropernormalsubfield<strong>of</strong> Kand<strong>the</strong>reareno<br />

fieldsbetween Eand F.Lemma3.2toge<strong>the</strong>rwith(iv)and(v)leadto<strong>the</strong>contradictionthat<br />

E/Fisin A.


Chapter4 21<br />

Chapter Four.<br />

The Lemma <strong>of</strong> Uniqueness<br />

Suppose K/F isafiniteGaloisextension<strong>of</strong><strong>the</strong>localfield F and ψF isanon­trivial<br />

additivecharacter<strong>of</strong> F.Afunction E/F −→ λ(E/F, ψF)on P◦(K/F)willbecalledaweak<br />

λ­functionif<strong>the</strong>followingtwoconditionsaresatisfied.<br />

(i) λ(F/F, ΨF) = 1.<br />

(ii)If E1, . . ., Er, E ′ 1 , . . ., E′ s arefieldslyingbetween Fand K,if µi, 1 ≤ i ≤ r,isaonedimensionalrepresentation<strong>of</strong><br />

G(K/Ei),if νj, 1 ≤ j ≤ s,isaone­dimensionalrepresentation<strong>of</strong><br />

G(K/E ′ j ),andif<br />

isequivalentto<br />

r<br />

s<br />

<strong>the</strong>n r<br />

isequalto<br />

s<br />

i=1<br />

j=1<br />

Ind(G(K/F), G(K/Ei), µi)<br />

Ind(G(K/F), G(K/Ej), νj)<br />

i=1 ∆(χEi , ψ Ei/F)λ(Ei/F, ψF)<br />

j=1 ∆(χE ′ j ψ E ′ j /F)λ(E ′ j/F, ψF)<br />

if χEi is<strong>the</strong>character<strong>of</strong> CEi correspondingto µiand χE ′ j is<strong>the</strong>character<strong>of</strong> CE ′ j correspondingto<br />

νj.<br />

Supposingthataweak λ­functionisgivenon P◦(K/F),weshallestablishsome<strong>of</strong>its<br />

properties.<br />

Lemma 4.1<br />

(i)If L/Fin P◦(K/F)isnormal<strong>the</strong>restriction<strong>of</strong> λ(·, ψF)to P◦(L/F)isaweak λ­function.<br />

(ii)If E/Fbelongsto P◦(K/F)and λ(E/F, ψF) = 0<strong>the</strong>functionon P◦(K/E)definedby<br />

isaweak λ­function.<br />

λ(E ′ /E, ψ E/F) = λ(E ′ /F, ψF) λ(E/F, ψF) −[E′ :E]


Chapter4 22<br />

Anyone­dimensionalrepresentation µ<strong>of</strong> G(L/E)maybeinflatedtoaone­dimensional<br />

representation,againcalled µ,<strong>of</strong> G(K/E)and<br />

isjust<strong>the</strong>inflationto G(K/F)<strong>of</strong><br />

Ind(G(K/F), G(K/E), µ)<br />

Ind(G(L/F), G(L/E), µ).<br />

Thefirstpart<strong>of</strong><strong>the</strong>lemmafollowsimmediatelyfromthisobservation.<br />

Asfor<strong>the</strong>secondpart,<strong>the</strong>relation<br />

λ(E/E, ψ E/F) = 1<br />

isclear.Iffields Ei, 1 ≤ i ≤ r, E ′ j , 1 ≤ j ≤ s,lyingbetween Eand Kandrepresentations<br />

µiand νjaregivenasprescribedandif<br />

isequivalentto<br />

r<br />

s<br />

<strong>the</strong>n r<br />

isequivalentto<br />

i=1 Ind(G(K/E), G(K/Ei), µi) = ρ<br />

j=1 Ind(G(K/E), G(K/E′ j), νj) = σ<br />

s<br />

sothat r<br />

isequalto<br />

s<br />

Since ρand σhave<strong>the</strong>samedimension<br />

sothat r<br />

i=1 Ind(G(K/F), G(K/Ei, µi)<br />

j=1 Ind(G(K/F), G(K/E′ j<br />

), νj)<br />

i=1 ∆(χEi , ψ Ei/F) λ(E1/F, ψF) (A)<br />

j=1 ∆(χE ′ j , ψ E ′ j /F) λ(E ′ j /F, ψF). (B)<br />

Σ r i=1 [Ei : E] = Σ s j=1 [E′ j : E]<br />

i=1 λ(E/F, ΨF) [Ei:E] = s<br />

j=1<br />

λ(E/F, ψF) [E′<br />

j :F] .


Chapter4 23<br />

Dividing(A)by<strong>the</strong>leftside<strong>of</strong>thisequationand(B)by<strong>the</strong>rightandobservingthat<strong>the</strong>results<br />

areequalweobtain<strong>the</strong>relationneededtoprove<strong>the</strong>lemma.<br />

If K/Fisabelian S(K/F)willbe<strong>the</strong>set<strong>of</strong>characters<strong>of</strong> CFwhichare1on N K/FCK.<br />

Lemma 4.2<br />

If K/Fisabelian<br />

λ(K/F, ΨF) = <br />

µF ∈S(K/F) ∆(µF, ψF).<br />

µF determinesaone­dimensionalrepresentation<strong>of</strong> G(K/F)whichwealsodenoteby<br />

µF.Thelemmaisanimmediateconsequence<strong>of</strong><strong>the</strong>equivalence<strong>of</strong><br />

and <br />

Lemma 4.3<br />

Ind(G(K/F), G(K/K), 1)<br />

µF ∈S(K/F)<br />

Ind(G(K/F), G(K/F), µF).<br />

Suppose K/Fisnormaland G = G(K/F).Suppose G = HCwhere H ∩ C = {1}and<br />

Cisanon­trivialabeliannormalsubgroup.Let Ebe<strong>the</strong>fixedfield<strong>of</strong> Hand Lthat<strong>of</strong> C.Let<br />

Tbeaset<strong>of</strong>representatives<strong>of</strong><strong>the</strong>orbits<strong>of</strong> S(K/L)under<strong>the</strong>action<strong>of</strong> G.If µ ∈ Tlet Bµbe<br />

<strong>the</strong>isotropygroup<strong>of</strong> µandlet Bµ = G(K/Lµ).Then [Lµ : F] < [E : F]and<br />

λ(E/F, ψF) = <br />

µ∈T ∆(µ′ , ψ Lµ/F) λ(Lµ/F, ψF).<br />

Here G(K/Lµ) = G(K/L) · (G(K/Lµ) ∩ G(K/E))and µ ′ is<strong>the</strong>character<strong>of</strong> CLµ associated<br />

to<strong>the</strong>character<strong>of</strong> G(K/Lµ) : g −→ µ(g1)if<br />

g = g1g2, g1 ∈ G(K/L), g2 ∈ G(K/Lµ) ∩ G(K/E),<br />

Wemayaswelldenote<strong>the</strong>givencharacter<strong>of</strong> G(K/Lµ)by µ ′ also.Toprove<strong>the</strong>lemma<br />

weshowthat<br />

Ind(G(K/F), G(K/E), 1) = σ<br />

isequivalentto<br />

<br />

µ∈T Ind(G(K/F), G(K/Lµ), µ ′ ).


Chapter4 24<br />

Since Thasatleasttwoelementsitwillfollowthat<br />

isgreaterthan<br />

[E : F] = dimInd(G(K/F), G(K/E), 1)<br />

[Lµ : F] = dimInd(G(K/F), G(K/Lµ), µ ′ ).<br />

Therepresentation σactson<strong>the</strong>space<strong>of</strong><strong>functions</strong>on H\G.If ν ∈ S(K/L),thatis,isa<br />

character<strong>of</strong> C,let ψν(hc) = ν(c)if h ∈ H, c ∈ C.Theset<br />

{ψν | ν ∈ S(K/L)}<br />

isabasisfor<strong>the</strong><strong>functions</strong>on H\G.If µ ∈ Tlet Sµbeitsorbit;<strong>the</strong>n<br />

Vµ = Σν∈Sµ Cψν<br />

isinvariantandirreducibleunder G.Moreover,if gbelongsto G(K/Lµ)<br />

Since<br />

σ(g)ψµ = µ ′ (g)ψµ.<br />

dim Vµ = [G(K/F), G(K/Lµ)]<br />

<strong>the</strong>Frobeniusreciprocity<strong>the</strong>oremimpliesthat<strong>the</strong>restriction<strong>of</strong> σto Vµisequivalentto<br />

Ind(G(K/F), G(K/Lµ), µ ′ ).<br />

Lemma4.2is<strong>of</strong>courseaspecialcase<strong>of</strong>Lemma4.3.<br />

Lemma 4.4<br />

λ(E/F, ΨF)isdifferentfrom0forall E/Fin P◦(K/F).<br />

Thelemmaisclearif [K : F] = 1.Weproveitbyinductionon [K : F].Let Gbe<strong>the</strong>set<strong>of</strong><br />

E/Fin P◦(K/F)forwhich λ(E/F, ψF) = 0.WemayapplyLemma3.3.Thefirstcondition<br />

<strong>of</strong>thatlemmaisclearlysatisfied.Thesecondfollowsfrom<strong>the</strong>inductionassumptionand<strong>the</strong><br />

firstpart<strong>of</strong>Lemma4.1;<strong>the</strong>thirdfrom<strong>the</strong>inductionassumptionand<strong>the</strong>secondpart<strong>of</strong>Lemma<br />

4.1. ThefourthandfifthfollowfromLemmas4.2and4.3respectively. We<strong>of</strong>courseuse<strong>the</strong><br />

factthat ∆(χE, ΨE),whichisbasicallyaGaussiansumwhen Eisnon­archimedean,isnever<br />

zero.


Chapter4 25<br />

Forevery E ′ /Ein P(K/F)wecandefine λ(E ′ /E, ψ E/F)tobe<br />

Lemma 4.5<br />

λ(E ′ /F, ψF) λ(E/F, ψF) −[E′ :E] .<br />

If E ′′ /E ′ and E ′ /Ebelongto P(K/F)<strong>the</strong>n<br />

Indeed<br />

whichequals<br />

λ(E ′′ /E, ψ E/F) = λ(E ′′ /E ′ , ψ E ′ /F)λ(E ′ /E, ψ E/F) E′′ :E ′ ] .<br />

λ(E ′′ /E, ψ E/F) = λ(E ′′ /F, ψF) λ(E/F, ψF) −[E′′ :E]<br />

λ(E ′′ /F, ψF) λ(E ′ /F, ψF) −[E′′ :E ′ ] λ(E ′ /F, ψF) [E′′ :E ′ ] λ(E/F, ψF) −[E′′ :E] <br />

andthisinturnequals<br />

Lemma 4.6<br />

λ(E ′′ /E ′ , ψ E ′ /F) λ(E ′ /E, ψ E/F) [E′′ :E ′ ] .<br />

If λ1(·, ΨF)and λ2(·, ΨF)aretwoweak λ­<strong>functions</strong>on P◦(K/F)<strong>the</strong>n<br />

forall E ′ /Ein P(K/F).<br />

λ1(E ′ /E, ψ E/F) = λ2(E ′ /E, ψ E/F)<br />

WeapplyLemma3.1to<strong>the</strong>collectionG<strong>of</strong>allpairsE ′ /Ein P(K/F)forwhich<strong>the</strong>equality<br />

isvalid.Thefirstcondition<strong>of</strong>thatlemmaisclearlysatisfied.Thesecondisaconsequence<strong>of</strong><br />

<strong>the</strong>previouslemma.Thethirdandfourthareconsequences<strong>of</strong>Lemmas4.2and4.3respectively.<br />

Sinceaλ­functionisalsoaweak λ­function<strong>the</strong>uniqueness<strong>of</strong>Theorem2.1isnowproved.


Chapter5 26<br />

Chapter Five.<br />

A Property <strong>of</strong> λ-Functions<br />

Itfollowsimmediatelyfrom<strong>the</strong>definitionthatif ψ ′ E (x) = ψE(βx)<strong>the</strong>n<br />

∆(χE, ψ ′ E ) = χE(β)∆(χE, ψE).<br />

Associatedtoanyequivalenceclass ω<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong><strong>the</strong>field Fisa<br />

one­dimensionalrepresentationor,whatis<strong>the</strong>same,aquasi­character<strong>of</strong> CF. Itisdenoted<br />

detωandisobtainedbytaking<strong>the</strong>determinant<strong>of</strong>anyrepresentationin ω.Suppose ρisin<strong>the</strong><br />

class ωand ρisarepresentation<strong>of</strong> W K/F.T<strong>of</strong>ind<strong>the</strong>value<strong>of</strong><strong>the</strong>quasi­character detωat β<br />

choose win W K/Fsothat τ K/Fw = β.Thencalculate det(ρ(w))whichequals detω(β).<br />

If F ⊆ E ⊆ K<strong>the</strong>map τ = τ K/F canbeeffectedintwostages. Wefirsttransfer<br />

W K/F/W c K/F into W K/E/W c K/E ;<strong>the</strong>nwetransfer W K/E/W c K/E into CK. If W K/F is<strong>the</strong><br />

disjointunion<br />

r<br />

i=1 W K/Ewi<br />

andif wiw = ui(w)wj(i)<strong>the</strong>n<strong>the</strong>transfer<strong>of</strong> win W K/E/W c K/E is<strong>the</strong>cosettowhich w′ =<br />

r<br />

i=1 ui(w)belongs.<br />

Suppose σisarepresentation<strong>of</strong> W K/Eand<br />

ρ = Ind(W K/F, W K/E, σ).<br />

ρactsonacertainspace V <strong>of</strong><strong>functions</strong>on W K/Fandif Viis<strong>the</strong>collection<strong>of</strong><strong>functions</strong>in V<br />

whichvanishoutside<strong>of</strong> W K/Ewi<strong>the</strong>n<br />

V = r<br />

i=1 Vi.<br />

Wedecompose<strong>the</strong>matrix<strong>of</strong> ρ(w)intocorrespondingblocks ρji(w). ρji(w)is0unless j = j(i)<br />

when ρji(w) = σ(ui, (w)). Thismakesitclearthatif ι E/F is<strong>the</strong>representation<strong>of</strong> W K/F<br />

inducedfrom<strong>the</strong>trivialrepresentation<strong>of</strong> W K/E<br />

or,if θis<strong>the</strong>class<strong>of</strong> σ,<br />

det(ρ(w)) = det(ι E/F(w)) dim σ det(σ(w ′ ))<br />

detω(β) = {det ι E/F(β)} dim θ {det θ(β)}.


Chapter5 27<br />

Lemma 5.1<br />

Suppose F isalocalfieldand E/F −→ λ(E/F, ψF)and ω −→ ε(ω, ψ E/F)satisfy<br />

<strong>the</strong>conditions<strong>of</strong>TheoremAfor<strong>the</strong>character ψF. Let ψ ′ F (x) = ψF(βx)with βin CF. If<br />

E/F −→ λ(E/F, ψ ′ F )and ω −→ ε(ω, ψ′ E/F )satisfy<strong>the</strong>conditions<strong>of</strong>TheoremAfor ψ′ F <strong>the</strong>n<br />

and<br />

λ(E/F, ψ ′ F ) = det ι E/F(β) λ(E/F, ψF)<br />

ε(ω, ψ ′ E/F ) = det ω(β) ε(ω, ψ E/F).<br />

Because<strong>of</strong><strong>the</strong>uniquenessallonehastodoisverifythat<strong>the</strong>expressionson<strong>the</strong>right<br />

satisfy<strong>the</strong>conditions<strong>of</strong><strong>the</strong><strong>the</strong>oremfor<strong>the</strong>character ψ ′ F .Thiscannowbedoneimmediately.


Chapter6 28<br />

Chapter Six.<br />

A Filtration <strong>of</strong> <strong>the</strong> Weil Group<br />

InthisparagraphIwanttoreformulatevariousfactsfoundinSerre’sbook[12]asassertionsaboutafiltration<strong>of</strong><strong>the</strong>Weilgroup.Althoughsome<strong>of</strong><strong>the</strong>lemmast<strong>of</strong>ollowwillbeused<br />

toprove<strong>the</strong>fourmainlemmas,<strong>the</strong>introduction<strong>of</strong><strong>the</strong>filtrationitselfisnotreallynecessary.<br />

Itservesmerelytouniteinaformwhichiseasilyremembered<strong>the</strong>separatelemmas<strong>of</strong>which<br />

wewillactuallybeinneed.<br />

Let KbeafiniteGaloisextension<strong>of</strong><strong>the</strong>non­archimedeanlocalfield F andlet G =<br />

G(K/F).Let OFbe<strong>the</strong>ring<strong>of</strong>integersin Fandlet pFbe<strong>the</strong>maximalideal<strong>of</strong> OF.If i ≥ −1<br />

isanintegerlet Gibe<strong>the</strong>subgroup<strong>of</strong> Gconsisting<strong>of</strong>thoseelementswhichacttriviallyon<br />

.If u ≥ −1isarealnumberand iis<strong>the</strong>smallestintegergreaterthanorequalto uset<br />

OF/p i+1<br />

F<br />

Gu = Gi.Finallyif u ≥ −1set<br />

ϕ K/F(u) =<br />

u<br />

0<br />

1<br />

[G0 : Gt] dt.<br />

Theintegrandisnotdefinedat­1butthatis<strong>of</strong>noconsequence. ϕ K/Fisclearlyapiecewise<br />

linear,continuous,andincreasingmap<strong>of</strong> [−1, ∞)ontoitself.Theinversefunction* ψ K/Fwill<br />

have<strong>the</strong>sameproperties.<br />

WetakefromSerre’sbook<strong>the</strong>followinglemma.<br />

Lemma 6.1<br />

If F ⊆ L ⊆ Kand L/Fisnormal<strong>the</strong>n ϕ K/F = ϕ L/F ◦ ϕ K/Land ψ K/F = ψ K/L ◦ ψ L/F.<br />

Thecircledenotescompositionnotmultiplication.Thislemmaallowsustodefine ϕ E/F<br />

and ψ E/Fforanyfiniteseparableextension E/FbychoosingaGaloisextension L<strong>of</strong> Fwhich<br />

contains Eandsetting<br />

ϕ E/F = ϕ L/F ◦ ψ L/E<br />

ψ E/F = ϕ L/E ◦ ψ L/F<br />

*Inthischapter ψ K/Fdoesnotappearasanadditivecharacter. None<strong>the</strong>less,<strong>the</strong>reisa<br />

regrettableconflict<strong>of</strong>notation.


Chapter6 29<br />

becauseif L ′ isano<strong>the</strong>rsuchextensionwecanchooseaGaloisextension Kcontainingboth L<br />

and L ′ and<br />

ϕ L/F ◦ ψ L/E = ϕ L/F ◦ ϕ K/L ◦ ψ K/L ◦ ψ L/E = ϕ K/F ◦ ψ K/E = ϕ L ′ /F ◦ ψ L ′ /E<br />

ϕ L/E ◦ ψ L/F = ϕ L/E ◦ ϕ K/L ◦ ψ K/L ◦ ψ L/F = ϕ K/E ◦ ψ K/F = ϕ L ′ /E ◦ ψ L ′ /F.<br />

Ofcourse ψ E/Fis<strong>the</strong>inverse<strong>of</strong> ϕ E/F.<br />

Lemma 6.2<br />

If E ⊆ E ′ ⊆ E ′′ and E ′′ /Eisfiniteandseparable, ϕ E ′′ /E = ϕ E ′ /E ◦ ϕ E ′′ /E ′ and<br />

ψ E ′′ /E = ψ E ′′ /E ′ ◦ ψ E ′ /E.<br />

Each<strong>of</strong><strong>the</strong>serelationscanbeobtainedfrom<strong>the</strong>o<strong>the</strong>rbytakinginverses;weverify<strong>the</strong><br />

second<br />

ψ E ′′ /E ′ ◦ ψ E ′ /E = ϕ L/E ′′ ◦ ψ L/E ′ ◦ ϕ L/E ′ ◦ ψ L/E = ϕ L/E ′′ ◦ ψ L/E = ψ E ′′ /E.<br />

Itwillbenecessaryforustoknow<strong>the</strong>values<strong>of</strong><strong>the</strong>se<strong>functions</strong>inafewspecialcases.<br />

Lemma 6.3<br />

(i)If K/FisGaloisandunramified ψ K|F(u) ≡ u.<br />

(ii)If K/Fiscyclic<strong>of</strong>primedegree ℓandif G = Gtwhile Gt+1 = {1}where tisanonnegativeinteger<strong>the</strong>n<br />

ψ K/F(u) = u u ≤ t<br />

= t + ℓ(u − t) u ≥ t.<br />

Theseassertionsfollowimmediatelyfrom<strong>the</strong>definitions.<br />

Lemma 6.4<br />

SupposeK/FisGaloisandG = G(K/F)isaproductHCwhere H = {1}, H∩C = {1},<br />

and Cisanon­trivialabeliannormalsubgroup<strong>of</strong> Gwhichiscontainedineverynon­trivial<br />

normalsubgroup.<br />

(i)If K/Fistamelyramifiedsothat G1 = {1}<strong>the</strong>n G0 = Cisacyclicgroup<strong>of</strong>primeorder<br />

ℓand [G : G0] = [H : 1]divides ℓ −1.If Eis<strong>the</strong>fixedfield<strong>of</strong> H, ψ E/F(u) = ufor u ≤ 0<br />

and ψ E/F(u) = ℓufor u ≥ 0.


Chapter6 30<br />

(ii)If K/Fiswildlyramified<strong>the</strong>reisaninteger t ≥ 1suchthat C = G1 = . . . = Gtwhile<br />

Gt+1 = {1}. [G0 : G1]divides [G1 : 1] − 1andeveryelement<strong>of</strong> Chasorder por1.If E<br />

is<strong>the</strong>fixedfield<strong>of</strong> Hand Lthat<strong>of</strong> C<br />

while<br />

ψ L/F(u) = u u ≤ 0<br />

= [G0 : G1]u u ≥ 0<br />

t<br />

ψE/F(u) = u u ≤<br />

[G0 : G1]<br />

t<br />

=<br />

[G0 : G1] + [G1<br />

<br />

t<br />

t<br />

: 1] u − u ≥<br />

[G0 : G1] [G0 : G1]<br />

Weobservedin<strong>the</strong>thirdparagraphthat Cmustbeitsowncentralizer. G0cannotbe {1}.<br />

Thus C ⊆ G0.Incase(i) G0isabelianandthus G0 = C.Inbothcasesif ℓisaprimedividing<br />

<strong>the</strong>order<strong>of</strong> C<strong>the</strong>set<strong>of</strong>elementsin C<strong>of</strong>order ℓor1isanon­trivialnormalsubgroup<strong>of</strong> Gand<br />

thus Citself.Incase(i) Ciscyclicandthus<strong>of</strong>primeorder ℓ.Moreover, Hwhichisisomorphic<br />

to G/G0isabelianand,if h ∈ H, {c ∈ C|hc = ch}isanormalsubgroup<strong>of</strong> Gandhence {1}<br />

or C.If h = 1itmustbe1.Consequentlyeachorbit<strong>of</strong> Hin C − {1}has [H : 1]elementsand<br />

[H : 1]divides ℓ − 1.<br />

Incase(ii) G1isanon­trivialnormalsubgroupandhencecontains C. G1and Careboth<br />

p­groups.Thecentralizer<strong>of</strong> G1in Cisnottrivial.Asanormalsubgroup<strong>of</strong> Gitcontains C.<br />

Thereforeitis Cand G1iscontainedin Cwhichisitsowncentralizer.Sinceeach G1, i ≥ 1,<br />

isanormalsubgroup<strong>of</strong> G,itisei<strong>the</strong>r Cor {1}. Thus<strong>the</strong>reisaninteger t ≥ 1suchthat<br />

G1 = Gt = Cwhile Gt+1 = {1}. If i ≥ 0isanintegerlet Ui Kbe<strong>the</strong>group<strong>of</strong>units<strong>of</strong> OK<br />

whicharecongruentto1modulo p i+1<br />

K ;let U(−1)<br />

K = CK,andif U ≥ −1isanyrealnumber<br />

let ibe<strong>the</strong>smallestintegergreaterthanorequalto uandset Uu K = Ui K . If θtis<strong>the</strong>map<strong>of</strong><br />

Gt/Gt+1into pt K /pt+1<br />

K and θ0<strong>the</strong>map<strong>of</strong> G0/G1into U0 K /U1 KintroducedinSerre<strong>the</strong>n,for g<br />

in G0and hin C,<br />

θt(ghg −1 ) = θ0(g) t Θt(h).<br />

If h = 1, ghg −1 = hifandonlyif θ0(g) t = 1and<strong>the</strong>n gbelongsto<strong>the</strong>centralizer<strong>of</strong> C,that<br />

isto G1.Again C − {1}isbrokenupintoorbits,eachwith [G0 : G1]elementsand [G0 : G1]<br />

divides [Gi : 1] − 1.Observethat tmustbeprimeto [G0 : G1].


Chapter6 31<br />

Itfollowsimmediatelyfrom<strong>the</strong>definitionsthat Hu = H ∩ Gu.Incase(i) H0willbe {1}<br />

and ϕ K/E(u)willbeidentically u.Thus ψ E/F = ψ K/Fand,from<strong>the</strong>definition, ψ K/F(u) = u<br />

if u ≤ 0while ψ K/F(u) = [G0 : 1]uif u ≥ 0.Incase(ii), ϕ K/E(u) = uif u ≤ 0and<br />

ϕ K/E(u) =<br />

if u ≥ 0while ψ K/F(u) = uif u ≤ 0and<br />

Thelemmafollows.<br />

Lemma 6.5<br />

u<br />

[H0 : 1] =<br />

u<br />

[G0 : G1]<br />

t<br />

ψK/F(u) = [G0 : G1]u 0 ≤ u ≤<br />

[G0 : G1]<br />

<br />

t<br />

t<br />

= t + [G0 : 1] u −<br />

≤ u.<br />

[G0 : G1] [G0 : G1]<br />

Foreveryseparableextension E ′ /E<strong>the</strong>function ψ E ′ /Eisconvex,andif uisaninteger<br />

sois ψ E ′ /E(u).<br />

Allwehavetodoisprovethat<strong>the</strong>assertionistrueforall E ′ /Ein P(K/F)if Fisan<br />

arbitrarynon­archimedeanlocalfieldand KanarbitraryGaloisextension<strong>of</strong>it. Todothis<br />

wejustcombine<strong>the</strong>previousthreelemmaswithLemma3.1. Wearegoingtouse<strong>the</strong>same<br />

methodtoprove<strong>the</strong>followinglemma.<br />

Lemma 6.6<br />

Foreveryseparableextension E ′ /Eandany u ≥ −1<br />

NE ′ /E (U ψE ′ /E (u)<br />

E ′ ) ⊆ U u E .<br />

Wehavetoverifythat<strong>the</strong>set G<strong>of</strong>all E ′ /Ein P(K/F)forwhich<strong>the</strong>assertionistruesatisfies<br />

<strong>the</strong>conditions<strong>of</strong>Lemma3.1.Thereisnoproblemwith<strong>the</strong>firsttwo.<br />

Lemma 6.7<br />

E ′ /Ebelongsto Gifandonlyifforeveryinteger n ≥ −1<br />

N E ′ /E<br />

<br />

U ψ E ′ /E (n)<br />

E ′<br />

<br />

⊆ U n E


Chapter6 32<br />

and<br />

N E ′ /E<br />

<br />

U ψ E ′ /E (n)+1<br />

E ′<br />

<br />

⊆ U n+1<br />

E .<br />

If E ′ /Ebelongsto Gchoose ε > 0sothat ψ E ′ /E(n + ε) = ψ E ′ /E(n) + 1.Thesmallest<br />

integergreaterthanorequalto n + εisatleast n + 1so<br />

N E ′ /E<br />

<br />

U ψ E ′ /E (n)+1<br />

E ′<br />

<br />

⊆ U n+ε<br />

E<br />

⊆ Un+1<br />

E .<br />

Converselysuppose<strong>the</strong>conditions<strong>of</strong><strong>the</strong>lemmaaresatisfiedand n < u < n + 1. Since<br />

ψ E ′ /E(n)isaninteger<strong>the</strong>smallestintegergreaterthanorequalto ψ E ′ /E(u)isatleast<br />

ψ E ′ /E(n) + 1.Thus<br />

Lemma 6.8<br />

and<br />

N E ′ /E<br />

<br />

U ψ E ′ /E (u)<br />

E ′<br />

<br />

⊆ NE ′ /E<br />

If L/EisGalois<strong>the</strong>n,foreveryinteger n ≥ −1,<br />

N L/E<br />

N L/E<br />

<br />

<br />

U ψ L/E(n)<br />

L<br />

U ψ L/E(n)+1<br />

L<br />

U ψ E ′ /E (n)+1<br />

E ′<br />

<br />

⊆ U n E<br />

<br />

<br />

⊆ U n+1<br />

E .<br />

⊆ U n+1<br />

E = Uu E.<br />

Theassertionisclearif n = −1.Apro<strong>of</strong>for<strong>the</strong>case n ≥ 0and L/Etotallyramifiedisgiven<br />

inSerre’sbook.Sincethatpro<strong>of</strong>worksequallywellforall L/Ewetake<strong>the</strong>lemmaasproved.<br />

Lemma 6.9<br />

Suppose K/FisGaloisand G = G(K/F).Suppose G = HCwhere H = {1}, H ∩ C =<br />

{1},andCisanon­trivialabeliannormalsubgroup<strong>of</strong>Gwhichiscontainedineverynon­trivial<br />

normalsubgroup<strong>of</strong> G.If Eis<strong>the</strong>fixedfield<strong>of</strong> H<br />

forall u ≥ −1.<br />

N E/F<br />

<br />

U ψ E/F(u)<br />

E<br />

<br />

⊆ U u F


Chapter6 33<br />

Let Lbe<strong>the</strong>fixedfield<strong>of</strong> C.If K/Fistamelyramified K/Eand L/Fareunramifiedso<br />

that ψE/F = ψK/Land Uv E = CE ∩ Uv K , Uv F = CF ∩ Uv Lforevery v ≥ −1.If αbelongsto CE,<br />

<strong>the</strong>ndelete NK/Lα = NE/Fα.Since K/LisGalois<br />

N E/F<br />

<br />

U ψ E/F(u)<br />

E<br />

If K/Fisnottamelyramified<br />

if n ≥ 1and 0 ≤ m < [G0 : G1].Thus<br />

if −1 ≤ v ≤ 0and<br />

if v ≥ 0or,morebriefly,<br />

forall v ≥ −1.In<strong>the</strong>samewaywefind<br />

forall v ≥ −1.Since K/Lisnormal<br />

N E/F<br />

<br />

U ψ E/F(u)<br />

E<br />

<br />

⊆ CF ∩ NK/L (U ψK/L(u) L ) ⊆ CF ∩ U u L = U u F.<br />

p n E = E ∩ p [G0:G1]n−m<br />

k<br />

U v E = GE ∩ U v K<br />

U v E = CE ∩ U [G0:G1]v<br />

K<br />

U v E = CE ∩ U ψ K/E(v)<br />

K<br />

U v F = CF ∩ U ψ L/F(v)<br />

L<br />

<br />

⊆ CF ∩ NK/L Lemma6.6nowfollowsimmediately.<br />

Lemma 6.10<br />

U ψ K/F(u)<br />

K<br />

<br />

⊆ CF ∩ U ψ L/F(u)<br />

L<br />

= U u F.<br />

(a)Suppose K/F isGaloisand G = G(K/F). Suppose t ≥ −1isanintegersuchthat<br />

G = Gt = Gt+1.Then ψ K/F(u) = ufor u ≤ t.Moreover N K/Fdefinesanisomorphism<br />

<strong>of</strong> CK/U t K with CF/U t F andif −1 ≤ u ≤ t<strong>the</strong>inverseimage<strong>of</strong> Uu F /Ut F is Uu K /Ut K .<br />

However<strong>the</strong>map<strong>of</strong> CK/U t+1<br />

K<br />

into CF/U t+1<br />

F definedby<strong>the</strong>normisnotsurjective.<br />

(b)Suppose K/FisGaloisand G = G(K/F).Suppose s ≥ −1isanintegerand G = Gs.If<br />

F ⊆ E ⊆ K, ψ E/F(u) = ufor u ≤ sand N E/Fdefinesanisomorphism<strong>of</strong> CE/U s E and<br />

CF/U s F .If −1 ≤ u ≤ s<strong>the</strong>inverseimage<strong>of</strong> Uu F /Us F is Uu E /Us E .<br />

If t = −1<strong>the</strong>assertions<strong>of</strong>part(a)areclear.If t ≥ 0, K/Fistotallyramified.Therelation<br />

ψ K/F(u) = ufor u ≤ tisanimmediateconsequence<strong>of</strong><strong>the</strong>definition. Since<strong>the</strong>extension


Chapter6 34<br />

istotallyramified N K/Fdefinesanisomorphism<strong>of</strong> U −1<br />

K /U0 K<br />

−1<br />

and UF /U0 F . Itfollowsfrom<br />

PropositionV.9<strong>of</strong>Serre’sbookthatif 0 ≤ n < t<strong>the</strong>associatedmap Un K /Un+1<br />

K −→ Un F /Un+1<br />

F<br />

isanisomorphismbutthat<strong>the</strong>map U t K /Ut+1<br />

K −→ Ut F /Ut+1<br />

F hasanon­trivialcokernel.The<br />

firstpart<strong>of</strong><strong>the</strong>lemmaisanimmediateconsequence<strong>of</strong><strong>the</strong>sefacts.<br />

Toprovepart(b)wefirstobservethat<strong>the</strong>reisat ≥ ssuchthat G = Gt = Gt+1. It<br />

<strong>the</strong>nfollowsfrompart(a)that<strong>the</strong>map NK/F determinesanisomorphism<strong>of</strong> CK/U s Kand CF/U s F underwhich Uu K /Us Kand Uu F /Us F correspondif −1 ≤ u ≤ s. Let Ebe<strong>the</strong>fixed<br />

field<strong>of</strong> H. Wehave Hs = H ∩ Gs = H,sothat NK/E determinesonisomorphism<strong>of</strong><br />

CK/U s Kand CE/U s Eunderwhich Uu K /Us Kand Uu E /Us Ecorrespondif −1 ≤ u ≤ s.Moreover<br />

if u ≤ s, ψK/F(u) = ψK/E(u) = usothat ψE/F(u) = u. Part(b)followsfrom<strong>the</strong>se<br />

observationsand<strong>the</strong>relation NK/F = NE/FNK/E. If Eisanynon­archimedeanlocalfieldand u > −1<br />

If αbelongsto CEset<br />

U u E = ∩v


Chapter6 35<br />

If σ = 1bothsidesareinfiniteand<strong>the</strong>assertionisclear.If σ = 1let Ebe<strong>the</strong>fixedfield<br />

<strong>of</strong> σ. If σ(w) = σ, wbelongsto W K/Eand v K/F(w) = ϕ E/F(v K/E(w)). Also v K/F(σ) =<br />

ϕ E/F(v K/E(σ)).Consequentlyitissufficienttoprove<strong>the</strong>lemmawhen F = E.Theset<br />

S = {τ K/F(w) | σ(w) = σ}<br />

isacoset<strong>of</strong> N K/F(CK)in CFand CFisgeneratedby N K/F(CK)toge<strong>the</strong>rwithanyelement<br />

<strong>of</strong> S.Moreover s = max{vF(β) | β ∈ S}is<strong>the</strong>largestintegersuchthat S ∩ U s F isnotempty.<br />

Since G = Gt = Gt+1<strong>the</strong>precedinglemmashowsthat s = t = ϕ K/F(t).<br />

Lemma 6.12<br />

(a)Forall wand w1in W K/F, v K/F(w) = v K/F(w −1 )and v K/F(w1w w −1<br />

1 ) = v K/F(w).<br />

(b)If F ⊆ E ⊆ Kand wbelongto W K/E<strong>the</strong>n<br />

(c)Forall win WK/F, τK/F(w) ⊂ U vK/F(w) F .<br />

v K/F(w) = ϕ E/F(v K/E(w)).<br />

Thefirsttwoassertionsfollowimmediatelyfrom<strong>the</strong>definitionsand<strong>the</strong>basicproperties<br />

<strong>of</strong><strong>the</strong>Weilgroup. Iproveonly<strong>the</strong>third. Letmefirstobservethatif F ⊆ E ⊆ Kand<br />

w ⊂ W K/E,<strong>the</strong>n<br />

τ K/F(w) = N E/F(τ K/E(w)).<br />

Toseethis,chooseaset<strong>of</strong>representatives w1, . . ., wrfor<strong>the</strong>cosets<strong>of</strong> CKin W K/Eand<strong>the</strong>n<br />

aset<strong>of</strong>representatives v1, . . ., vsfor<strong>the</strong>cosets<strong>of</strong> W K/Ein W K/F.Let wiw = aiw j(i)with ai<br />

in CK;<strong>the</strong>n<br />

τ K/E(w) = r<br />

i=1 ai.<br />

However vjwiw = vjaiv −1<br />

j vjw j(i)sothat<br />

τ K/F(w) = s<br />

j=1<br />

r<br />

i=1<br />

vjaiv −1<br />

j<br />

s<br />

=<br />

j=1 vjτK/E(w)v −1<br />

j = NE/F(τK/E(w)). Inparticular,ifEis<strong>the</strong>fixedfield<strong>of</strong>σ(w), τ K/E(w)iscontained U ψ E/F(v K/F(w))<br />

E<br />

iscontainedin<br />

Lemma 6.13<br />

N E/F (U ψ E/F(v K/F(w))<br />

E<br />

) ⊆ U vK/F(w) F .<br />

and τ K/F(w)


Chapter6 36<br />

If uand vbelongto W K/F<strong>the</strong>n<br />

v K/F(uv) ≥ min{v K/F(u), v K/F(v)}.<br />

Let σ = σ(u)andlet τ = σ(v). Because<strong>of</strong><strong>the</strong>secondassertion<strong>of</strong><strong>the</strong>previouslemma<br />

wemayassumethat σand τgenerate G(K/F).Let Ebe<strong>the</strong>fixedfield<strong>of</strong> στ.If<br />

t = {min(ψ K/F(v K/F(σ)), ψ K/F(v K/F(τ))}<br />

and G = G(K/F)<strong>the</strong>n G = Gt = Gt+1.AccordingtoLemma6.11,if<br />

s = min{v K/F(u), v K/F(v)},<br />

<strong>the</strong>n t ≥ ψ K/F(s)which,byLemma6.10,is<strong>the</strong>reforeequalto s.Since τ K/F(uv) =<br />

τ K/F(u)τ K/F(v), τ K/F(uv)liesin U s F .<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand<br />

τ K/F(uv) = N E/F(τ K/E(uv))<br />

sothat,byLemma6.10again, τ K/E(uv)belongsto U s E and<br />

v K/F(uv) ≥ ϕ E/F(s) = s.<br />

Thus<strong>the</strong>sets W x K/F , x ≥ −1,giveafiltration<strong>of</strong> W K/Fbyacollection<strong>of</strong>normalsubgroups.Thenextsequence<strong>of</strong>lemmasshowthat<strong>the</strong>filtrationisquiteanalogousto<strong>the</strong>upper<br />

filtration<strong>of</strong><strong>the</strong>Galoisgroups.<br />

Lemma 6.14<br />

Foreach x ≥ −1<strong>the</strong>map τ K/F,L/Ftakes G x K/F into Gx L/F .<br />

If wbelongsto W K/Flet ¯w = τ K/F,L/F(w).Wemustshowthat<br />

v L/F( ¯w) ≥ v K/F(w).<br />

Let σ = σ(w)andlet ¯σ = σ( ¯w).If Eis<strong>the</strong>fixedfield<strong>of</strong> σ<strong>the</strong>n E = E ∩ Lis<strong>the</strong>fixedfield<strong>of</strong><br />

¯σ.Since<br />

v L/F( ¯w) = ϕ E/F (v L/E ( ¯w))<br />

and<br />

v K/F(w) = ϕ E/F (v K/E (w))


Chapter6 37<br />

wemaysuppose E = F.Since τ K/F(w) = τ L/F( ¯w),Lemma6.12impliesthat τ L/F( ¯w)liesin<br />

U vK/F(w) F .Thus<br />

v L/F( ¯w) = vF(τ L/F( ¯w)) ≥ v K/F(w).<br />

Ofcourse W F/Fis CFand,if v ≥ −1, W v F/F = Uv F .<br />

Lemma 6.15<br />

Foreach v ≥ −1, τ K/Fmaps W v K/F onto Uv F .<br />

Since v1 ≤ v2implies W v2<br />

K/F<br />

⊆ W v1<br />

K/F<br />

itisenoughtoprove<strong>the</strong>lemmawhen v = nis<br />

aninteger. Thelemmaisclearif [K : F] = 1;soweproceedbyinductionon [K : F]. If<br />

[K : F] > 1,chooseanintermediatenormalextension Lsothat [L : F] = ℓisaprime. Let<br />

G = G(L/F).Lemma6.12impliesthat<br />

W ψ L/F(v)<br />

K/L<br />

= W K/L ∩ W v K/F .<br />

Thereisaninteger t ≥ −1suchthat G = Gtand Gt+1 = {1}. ItisshowninChapterV<strong>of</strong><br />

Serre’sbookthatif n > t <br />

NL/F <br />

= U n F.<br />

Byinduction<br />

τ K/L<br />

<br />

U ψ L/F(n)<br />

L<br />

W ψ L/F(n)<br />

K/L<br />

Since τ K/F(w) = N L/F(τ K/L(w))if wisin W K/L,<br />

<br />

τ K/F(W n K/F ) = Un F<br />

= U ψL/F(n) L .<br />

if n > t.Suppose σgenerates G.Then V L/F(σ) = t. ByHerbrand’s<strong>the</strong>orem<strong>the</strong>reisaσin<br />

G(K/F)with v K/F(σ) = twhoserestrictionto Lis σ.ByLemma6.11<strong>the</strong>reisawin W K/F<br />

suchthat σ = σ(w)and v K/F(w) = t.Then τ K/F(w)liesin U t F butnotin N L/F(CL).From<br />

Serre’sbookagain<br />

<br />

U t F : NL/F U ψ <br />

L/F(t)<br />

F = ℓ<br />

sothat Ut Fisgeneratedby τK/F(w)and NL/F(U ψL/F(t) L )andhenceiscontainedin<strong>the</strong>image<br />

<strong>of</strong> W t K/F . Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmawehaveonlytoobservethatLemma6.10<br />

impliesthat<br />

U n F = U t F N L/F<br />

<br />

U ψ L/F(n)<br />

L


Chapter6 38<br />

if n ≤ t.<br />

Lemma 6.16<br />

Suppose F ⊆ L ⊆ Kand L/Fand K/FareGalois.Then,foreach v ≥ −1, τ K/F,L/F<br />

maps W v K/F onto W v L/F .<br />

If [L : F] = 1thisisjust<strong>the</strong>previouslemmasoweproceedbyinductionon [L : F].We<br />

havetoshowthatif wbelongsto W L/F <strong>the</strong>reisawin W K/F suchthat w = τ K/F,L/F(w)<br />

and v K/F(w) ≥ v L/F(w). Let σ = σ(w)andlet E be<strong>the</strong>fixedfield<strong>of</strong> σ. If E = F<br />

<strong>the</strong>n,by<strong>the</strong>inductionassumption,<strong>the</strong>reisawin W K/Esuchthat τ K/E,L/E (w) = wand<br />

v K/E (w) ≥ v L/E (w).ByLemma6.12, v K/F(w) ≥ v L/F(w).Moreover,wemayassumethat<br />

τ K/E,L/E is<strong>the</strong>restrictionto W K/E <strong>of</strong> τ K/F,L/F.<br />

Suppose E = F.Then v L/F(w) = vF(τ L/F(w)).Choose w1inW K/Fsothat τ K/F(w1) =<br />

τ L/F(w)andv K/F(w1) ≥ vF(τ L/F(w)).Letw1 = τ K/F,L/F(w1)andsetu = w −1<br />

1 w.Certainly<br />

v L/F(u) ≥ v L/F(w).Moreover, τ L/F(u) = 1.Let F ⊆ L1 ⊆ Lwhere L1/Fiscyclic<strong>of</strong>prime<br />

order.If udoesnotbelongto W L/L1 <strong>the</strong>group CFisgeneratedby N L1/F(CL1 )and τ L/F(u),<br />

whichisimpossiblesince τ L/F(u) = 1.Thus ubelongsto W L/L1 and,asobserved,<strong>the</strong>reisa<br />

uin W K/L1 suchthat τ K/F,L/F(u) = τ K/L1,L/L1 (u) = u.Then τ K/F,L/F(uw1) = w.


Chapter7 39<br />

Chapter Seven.<br />

Consequences <strong>of</strong> Stickelberger’s Result<br />

DavenportandHasse[5]haveshownthatStickelberger’sarithmeticcharacterization<strong>of</strong><br />

Gaussiansumsoverafinitefieldcanbeusedtoestablishidentitiesbetween<strong>the</strong>seGaussian<br />

sums. AfterreviewingStickelberger’sresultweshallprove<strong>the</strong>identities<strong>of</strong>Davenportand<br />

Hassetoge<strong>the</strong>rwithsomemorecomplicatedidentities. Howeverfor<strong>the</strong>pro<strong>of</strong><strong>of</strong>Stickelberger’sresultitself,IrefertoDavenportandHasse.<br />

If Z = e 2πi<br />

p and αbelongsto GF(p)<strong>the</strong>meaning<strong>of</strong> Z α isclear.If κisanyfinitefieldand<br />

Sis<strong>the</strong>absolutetrace<strong>of</strong> κlet ψ 0 κ be<strong>the</strong>character<strong>of</strong> κdefinedby ψ0 κ (α) = ZS(α) .If χκisany<br />

character<strong>of</strong> κ ∗ and ψκisanynon­trivialadditivecharacter<strong>of</strong> κwewilltake<strong>the</strong>Gaussiansum<br />

τ(χκ, ψκ)tobe<br />

Weabbreviate τ(χκ, ψ0 κ )to τ(χκ).<br />

− <br />

χ−1<br />

α∈κ∗ κ (α)ψκ(α).<br />

Let knbe<strong>the</strong>fieldobtainedbyadjoining<strong>the</strong> n th roots<strong>of</strong>unityto<strong>the</strong>rationalnumbers.<br />

If ̟ = Z − 1<strong>the</strong>nin kp<strong>the</strong>ideal (p)equals (̟ p−1 ).If q = p f and κhas qelements<strong>the</strong>nin<br />

kq−1<strong>the</strong>ideal (p)isaproduct pp ′ . . .where<strong>the</strong>residuefields<strong>of</strong> pp ′ , . . .areisomorphicto κ.<br />

In k p(q−1)<br />

(p) = (p p ′ . . .) p−1<br />

with P = (p, ̟), P ′ = (p ′ , ̟),andsoon.Theresiduefields<strong>of</strong> P, P ′ , . . .arealsoisomorphic<br />

to κ.Chooseone<strong>of</strong><strong>the</strong>seprimeideals,say P.<strong>On</strong>ceanisomorphism<strong>of</strong><strong>the</strong>residuefieldwith<br />

κischosen<strong>the</strong>map<strong>of</strong><strong>the</strong> (q − 1) th roots<strong>of</strong>unityto<strong>the</strong>residuefielddefinesanisomorphism<br />

<strong>of</strong> κ ∗ and<strong>the</strong>group<strong>of</strong> (q − 1) th roots<strong>of</strong>unity.Then χκcanberegardedasacharacter<strong>of</strong><strong>the</strong><br />

lattergroup.Choose α = α(χκ, P)with 0 ≤ α < q − 1sothat χκ(ζ) = ζ α forall (q − 1) th<br />

roots<strong>of</strong>unity.Write<br />

α = α0 + α1p + . . . + αf−1p f−1<br />

Notall<strong>of</strong><strong>the</strong> αicanbeequalto p − 1.Set<br />

σ(α) = α0 + α1 + . . . + αf−1<br />

γ(α = α0!α1! . . .αf−1!<br />

0 ≤ αi < p.<br />

ThefollowinglemmaisStickelberger’sarithmeticalcharacterization<strong>of</strong> τ(χκ).


Chapter7 40<br />

Lemma 7.1<br />

(a) τ(χκ)liesin k p(q−1)andisanalgebraicinteger.<br />

(b)If χκ = 1<strong>the</strong>n τ(χκ) = 1butif χκ = 1<strong>the</strong>absolutevalue<strong>of</strong> τ(χκ)andallitsconjugates<br />

is √ q.<br />

(c)Everyprimedivisor<strong>of</strong> τ(χκ)in k p(q−1)isadivisor<strong>of</strong> p.<br />

(d)If βisanon­zeroelement<strong>of</strong><strong>the</strong>primefield<strong>the</strong>n<strong>the</strong>automorphism Z −→ Z β <strong>of</strong> k p(q−1)<br />

over kq−1sends τ(χκ)to χκ(β) τ(χκ).<br />

(e)If Pisaprimedivisor<strong>of</strong> pin k p(q−1)and α = α(χκ, p)<strong>the</strong>multiplicativecongruence<br />

isvalid.<br />

τ(χκ) ≡ ̟σ (α)<br />

γ(α)<br />

(mod ∗ P)<br />

(f)Suppose ℓisaprimedividing q − 1and χκ = χ ′ κχ ′′ κ where<strong>the</strong>order<strong>of</strong> χ′ κ isapower<strong>of</strong><br />

ℓandthat<strong>of</strong> χ ′′ κ isprimeto ℓ.If ℓa is<strong>the</strong>exactpower<strong>of</strong> ℓdividing q − 1and λ = ζ0 − 1<br />

where ζ0isaprimitive ℓ a ­throot<strong>of</strong>unity<strong>the</strong>n<br />

τ(χκ) ≡ τ(χ ′′ κ) (mod λ).<br />

Beforestating<strong>the</strong>identitiesforGaussiansumswhichareimpliedbythislemma,Ishall<br />

proveafewelementarylemmas.<br />

Lemma 7.2<br />

Suppose 0 ≤ α < p f − 1and<br />

α = α0 + α1p + . . . + αf−1p f−1 0 ≤ αi < p.<br />

Supposealsothat 0 ≤ j0 < j1 < . . . < jr = fandset<br />

If σ = r−1<br />

s=0 βsand γ = r−1<br />

s=0 βs!<strong>the</strong>n<br />

βs = αjs + αjs+1 p + . . . + αj s+1 −1p js+1−js−1 .<br />

̟ σ<br />

γ<br />

= ̟σ(α)<br />

γ(α)<br />

(mod ∗ P).


Chapter7 41<br />

First<strong>of</strong>all,Iremarkonceandforallthatif n ≥ 1, 0 < u ≤ p n − 1,and v = u(modp n )<br />

<strong>the</strong>n v ≡ u(mod ∗ p).Thusif 0 ≤ u ≤ p n − 1and v ≥ 0<br />

Alsoif v ≥ 0<br />

and,byinduction,<br />

(u + vp n )! = (vp n )! u<br />

p n<br />

w=1 (w + vpn ) ≡ u!(vp n )! (mod ∗ p).<br />

w=1 (vpn + w) ≡ (v + 1) p n ! (mod ∗ p)<br />

(vp n )! ≡ v!(p n !) v<br />

(mod ∗ p).<br />

Inparticular p (n+1) ! ≡ p!(p n !) p ≡ (−p) (p n !) p .Applyinductiontoobtain<br />

From<strong>the</strong>relations<br />

and<br />

Weconcludethat<br />

p = p−1<br />

p n ! ≡ (−p) pn −1<br />

p−1 (mod ∗ p).<br />

i=1 (1 − Zi ) = (−̟)<br />

p−1 p−1<br />

i=1<br />

Z i − 1<br />

Z − 1<br />

Z i − 1<br />

Z − 1 = 1 + Z + . . . + Zi−1 ≡ i (mod ∗ p).<br />

p = (p − 1)!(−̟) p−1 ≡ −̟ p−1<br />

(mod ∗ p).<br />

Thelemmaitselfisclearif r = fsoweproceedbyinductiondownwardfrom f. Suppose<br />

r < f, js+2 − js = t > 1,and<strong>the</strong>lemmaisvalidfor<strong>the</strong>sequence j0, j1, . . ., js+1 −<br />

1, js+1, . . .jr.Toproveitfor<strong>the</strong>givensequencewehaveonlytoshowthatif<br />

and y = αjs+1−1<strong>the</strong>n<br />

But<br />

and<br />

x = αjs + αjs+1 p + . . . + αj s+1 −2 p t−2<br />

̟ x+y<br />

x!y!<br />

≡ ̟x+ypt−1<br />

(x + yp t−1 )!<br />

(mod ∗ p).<br />

̟ y(pt−1 −1) ≡ (−p) y pt−1 −1<br />

p−1 (mod ∗ p)<br />

(x + yp t−1 )! = x!y!(p t−1 !) y ≡ x!y!(−p) yt−1 −1<br />

p−1 (mod) ∗ p).


Chapter7 42<br />

Lemma 7.3<br />

Suppose β0, . . ., βr−1and γ0, . . ., γr−1arenon­negativeintegersall<strong>of</strong>whicharelessthan<br />

orequalto q − 1.Supposethat q = p f isaprimepowerand<br />

r−1<br />

i=0 (βi + γi)q i < 2(q r − 1).<br />

Supposealsothat δi, 0 ≤ i ≤ r − 1,aregivensuchthat 0 ≤ δi ≤ q − 1,<br />

r−1<br />

i=0 δiq i < q r − 1<br />

and r−1<br />

i=0 (βi + γi)q i = r−1<br />

i<br />

δiq<br />

i=0<br />

(modq r − 1).<br />

(a) If r−1<br />

i=0 (βi + γi)q i < q r−1 andif νis<strong>the</strong>number<strong>of</strong> k, 1 ≤ k ≤ r,forwhich<br />

k−1<br />

i=0 (βi + γi) ≥ q k <strong>the</strong>n<br />

r−1<br />

i=0 (βi + γi − δi) = ν(q − 1).<br />

(b) If r−1<br />

i=0 (βi + γi)q i ≥ q r − 1andif νis<strong>the</strong>number<strong>of</strong> k, 1 ≤ k ≤ r,forwhich<br />

1 = k−1<br />

i=0 (βi + γi)q i ≥ q k <strong>the</strong>n<br />

r−1<br />

i=0 (βi + γi − δi) = ν(q − 1).<br />

Observeimmediatelythatif 1 ≤ k ≤ r,<strong>the</strong>n 0 ≤ βk−1 + γk−1 ≤ 2(q − 1)and<br />

k−1<br />

i=0 (βi + γi)q i ≤ 2(q − 1) k−1<br />

i=0 qi = 2(q k − 1).<br />

If r = 1<strong>the</strong>n β0 + γ0 = δ0 + ε(q − 1)with εequalto0or1. If ε = 0weareincase(a)and<br />

ν = 0while β0 + γ0 − δ0 = 0.If ε = 1weareincase(b);here ν = 1and β0 + γ0 − δ0 = q − 1.<br />

Suppose<strong>the</strong>nthat r ≥ 2andthatif β ′ 0 , . . ., β′ r−1 , γ′ 0 , . . ., γ′ r−2 , δ′ 0 , . . ., δ′ r−2 ,and ν′ aregiven<br />

asin<strong>the</strong>lemma(with rreplacedby r − 1)<strong>the</strong>n<br />

r−2<br />

i=0 (β′ i + γ ′ i − δ ′ i) = ν ′ (q − 1).


Chapter7 43<br />

Weestablishpart(a)first.Inthiscase<br />

r−1<br />

i=0 (βi + γi)q i = r−1<br />

i=0<br />

and r−2<br />

i=0 (βi + γi)q i = r−2<br />

i=0 δiq i + εq r−1<br />

with ε = δr−1 −βr−1 −γr−1.If εwerenegative<strong>the</strong>leftside<strong>of</strong><strong>the</strong>equationwouldbenegative;<br />

if εweregreaterthan1<strong>the</strong>leftsidewouldbegreaterthan 2(qr−1 − 1).Sincenei<strong>the</strong>r<strong>of</strong><strong>the</strong>se<br />

possibilitiesoccur εis0or1.<br />

Supposefirstthat ε = 0.If r−2 i=0 δiqi < qr−1 −1choose β ′ i = βi, γ ′ i = γi, 0 ≤ i ≤ r −2.<br />

Then δ ′ i = δi, 0 ≤ i ≤ r − 2,and ν ′ = ν.Theassertion<strong>of</strong><strong>the</strong>lemmafollowsinthiscase.If<br />

r−2 1=0 δiqi = qr−1 − 1<strong>the</strong>n δi = q − 1, 0 ≤ i ≤ r − 2.Then β0 + γ0 ≡ q − 1 (modq)and,asa<br />

consequence, β0 + γ0 = q − 1.Weshowbyinductionthat βi + γi = q − 1, 0 ≤ i ≤ r − 2.If<br />

thisiss<strong>of</strong>or i < j<strong>the</strong>n<br />

r−2<br />

i=j (βi + γi)q i = r−2<br />

i=j (q − 1)qi .<br />

Hence βj + γj ≡ q − 1 (modq)and βj + γj = q − 1.Itfollowsimmediatelythat ν = 0and<br />

r−1<br />

i=0 (βi + γi − δi) = 0.<br />

Nowsupposethat ε = 1.If<br />

r−2<br />

δiq i<br />

i=0 (βi + γi)q i = 2(q r−1 − 1)<br />

<strong>the</strong>n βi = γi = q − 1, 0 ≤ i ≤ r − 2, δ0 = q − 2,and δi = q − 1, 1 ≤ i ≤ r − 2. Thus<br />

ν = r − 1and<br />

r−1<br />

Suppose<strong>the</strong>nthat<br />

From<strong>the</strong>relation<br />

i=0 (βi + γi − δi) = 1 + (r − 1) (q − 1) − 1 = (r − 1) (q − 1).<br />

r−2<br />

r−2<br />

i=0 (βi + γi)q i < 2(q r−1 − 1).<br />

i=0 (βi + γi)q i = r−2<br />

i=0 δiq i + 1 + (q r−1 − 1).<br />

Weconcludethat r−2<br />

i=0 δiq i < q r−1 − 1.Thenforsome m,with 0 ≤ m ≤ r − 2, δm < q − 1.<br />

Wechoose<strong>the</strong>minimalvaluefor m.<br />

r−2<br />

i=0 (βi + γi)q i = (δm + 1)q m + r−2<br />

i=m+1 δiq i + (q r−1 − 1).


Chapter7 44<br />

Thusif β ′ i = βi, γ ′ i = γi, 0 ≤ i ≤ r − 2,<strong>the</strong>n δ ′ i = 0, i < m, δ′ m = δm + 1,and δ ′ i = δi, m <<br />

i ≤ r − 2.Arguingbycongruencesasbeforeweseethat βi + γi = q − 1for i < m.Thus<br />

k−1<br />

i=0 (βi + γi)q i = q k − 1<br />

for k ≤ m. However βm + γm = q − 1andthus βm + γm + 1isprimeto q. Moreoverif<br />

r − 1 ≥ k > m<br />

1 + k−1<br />

i=1 (βi + γi)q i ≡ (βm + γm + 1)q m (modq m+1 ).<br />

Thusitisgreaterthanorequalto q k ifandonlyifitisgreaterthanorequalto q k +1.Itfollows<br />

that ν ′ = ν + mandthat<br />

r−2<br />

i=0 (βi + γi − δi) = −m(q − 1) + r−2<br />

i=0 (β′ i + γ′ i − δ′ i ) = ν(q − 1) + 1.<br />

Since βr−1 + γr−1 − δr−1 = −1<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmafollows.<br />

and<br />

Nowletustreatpart(b).Inthiscase<br />

r−1<br />

i=0 (βi + γi)q i = r−1<br />

1 + r−2<br />

i=0 (βi + γi)q i = r−2<br />

i=0 δiq i + (q r − 1)<br />

i=0 δiq i + εq r−1<br />

with ε = δr−1 − βr−1 − γr−1 + q.Again εis0or1.If βi = γi = q − 1for 0 ≤ i ≤ r − 2<strong>the</strong>n<br />

ε = 1and δi = q − 1for 0 ≤ i ≤ r − 2.Also ν = rand<br />

r−1<br />

i=0 (βi + γi − δi) = (r − 1) (q − 1) + βr−1 + γr−1 − δr−1 = r(q − 1).<br />

Havingtakencare<strong>of</strong>thiscase,wesupposethat<br />

r−2<br />

i=0 (βi + γi)q i < 2(q r−1 − 1).<br />

Firsttake ε = 0.If δ0 = 0<strong>the</strong>n 1+β0+γ0 ≡ 0 (modq)and β0+γ0 = q−1.Thusone<strong>of</strong><strong>the</strong>mis<br />

lessthan q −1.Bysymmetrywemaysupposeitis β0.Let β ′ 0 = β0 +1, β ′ i = βi, 1 ≤ i ≤ r −2,<br />

and γ ′ i = γi, 0 ≤ i ≤ r − 2.Since δ0 = 0<br />

r−2<br />

i=0 δiq i ≤ q r−1 − q < q r−1 − 1


Chapter7 45<br />

and δ ′ i = δi, 0 ≤ i ≤ r − 1.Also ν = ν ′ + 1sothat<br />

r−1<br />

i=0 (βi + γi − δi) = r−2<br />

i=0 (β′ i + γ′ i − δ′ i ) − 1 + q = ν(q − 1)<br />

asrequired.If δ0 > 0take β ′ i = βiand γ ′ i = γi, 0 ≤ i ≤ r − 2.Then δ ′ 0 = δ0 − 1, δ ′ i = δi, 1 ≤<br />

i ≤ r − 2.Alsoif k ≤ r − 1<br />

k−1<br />

i=0 (βi + γi)q i ≡ δ0 − 1 = −1(modq)<br />

and<strong>the</strong>left­handsideisgreaterthanorequalto q k ifandonlyifitisgreaterthanorequalto<br />

q k − 1.Itfollowsthat ν = ν ′ + 1.Consequently<br />

r−1<br />

i=0 (βi + γi − δi) = r−2<br />

i=0 (β′ i + γ′ i − δ′ i ) − 1 + q = ν(q − 1).<br />

If ε = 1take γ ′ i = γiand β ′ i = βi, 0 ≤ i ≤ r − 2.Then δ ′ i = δi, 0 ≤ i ≤ r − 2,and ν = ν ′ + 1<br />

sothat r−1<br />

1=0 (βi + γi − δi) = ν ′ (q − 1) + (βr−1 + γr−1 − δr−1) = ν(q − 1).<br />

Lemma 7.4<br />

Suppose βiand γiaretwoperiodicsequences<strong>of</strong>integerswithperiod r.Thatis βi+r = βi<br />

and γi+r = γiforall iin Z.Suppose 0 ≤ βi ≤ q − 1, 0 ≤ γi ≤ q − 1forall iandthatnone<strong>of</strong><br />

<strong>the</strong>numbers<br />

εk = r−1<br />

i=0 (βi+k + γi+k)q i<br />

isdivisibleby q r − 1.Let<br />

r−1<br />

i=0 (βi + γi)q i ≡ r−1<br />

i=0 δiq i (mod q r − 1)<br />

with 0 ≤ δi ≤ q − 1and r−1<br />

i=0 δiq i < q r − 1.If µis<strong>the</strong>number<strong>of</strong> εk, 1 ≤ k ≤ r,whichare<br />

greaterthanorequalto q r − 1<strong>the</strong>n<br />

r−1<br />

i=0 (βi + γi − δi) = µ(q − 1).<br />

Since ε0 ≤ 2(q r − 1)andisnotdivisibleby q r − 1itislessthan 2(q r − 1).Thusallwe<br />

needdoisshowthat<strong>the</strong> µ<strong>of</strong>thislemmaisequalto<strong>the</strong> ν<strong>of</strong><strong>the</strong>precedinglemma. Observe<br />

first<strong>of</strong>allthat εj ≥ q r − 1ifandonlyif εj ≥ q r .


Chapter7 46<br />

Suppose ε0 < q r .If 1 ≤ k < r<br />

r−1<br />

sothat r−1<br />

Thus,if εk ≥ q r ,<br />

q r ≤ r−1<br />

i=k (βi + γi)q i < q r<br />

i=k (βi + γi)q i−k < q r−k .<br />

i=r−k (βi+k + γi+k) q i + r−k−1<br />

i=0<br />

k−1<br />

r−k<br />

< q<br />

i=0 (βi + γi)q i + q r−k<br />

and k−1<br />

Converselyif 1 ≤ k < rand k−1<br />

<strong>the</strong>n<br />

r−1<br />

Thus µ = νinthiscase.<br />

i=0 (βi + γi)q i ≥ q k .<br />

i=0 (βi + γi)q i ≥ q k ,<br />

i=0 (βi+k + γi+k)q i ≥ r−1<br />

Nowsuppose ε0 ≥ q r .If 1 ≤ k < r<br />

r−1<br />

i=k (βi + γi)q i ≥ q r − k−1<br />

If k−1<br />

<strong>the</strong>n<br />

r−1<br />

i=0 (βi+k + γi+k)q i ≥ r−1<br />

(βi+k + γi+k)q i<br />

i=r−k (βi+k + γi+k)q i<br />

k−1<br />

r−k<br />

= q<br />

i=0 (βi + γi)q i ≥ q r .<br />

i=0 (βi + γi)q i ≥ q r − 2(q k − 1).<br />

i=0 (βi + γi)q i ≥ q k − 1<br />

i=r−k (βi+k + γi+k)q i + r−k−1<br />

i=0<br />

(βi+k + γi+k)q i<br />

= q r−k k−1<br />

i=0 (βi + γi)q i + q −k r−1<br />

i=k (βi + γi)q i<br />

≥ q r−k (q k − 1) + q r−k − 2 + 2q −k .


Chapter7 47<br />

Thus εk ≥ q r − 1andhence εk ≥ q r .Converselyif εk ≥ q r ,<br />

Thus<br />

andagain µ = ν.<br />

Lemma 7.5<br />

k−1<br />

r−k<br />

q<br />

i=0 (βi + γi)q i = r−1<br />

i=r−k (βi+k + γi+k)q i<br />

k−1<br />

≥ q r − r−k−1<br />

i=0<br />

≥ q r − 2(q r−k − 1)<br />

= q r − 2q r−k + 2.<br />

i=0 (βi + γi)q i ≥ q k − 1<br />

(βi+k + γi+k)q i<br />

Supposeq = p f isaprimepower, ℓisapositiveinteger,and(ℓ, q) = 1.Letℓm ≡ 1 (modq)<br />

andif xisanyintegerlet ϕ(x),with 0 ≤ ϕ(x) < q,be<strong>the</strong>remainder<strong>of</strong> xupondivisionby q.<br />

If 0 ≤ β < qandif ψ(x) = ϕ(x)!<br />

ℓβ<br />

β!<br />

ℓ−1<br />

k=0<br />

ψ((β − k)m)<br />

ψ(−km) ≡ 1(mod∗ p).<br />

If ℓ = ℓ1 + uqwith ℓ1 > 0and u ≥ 0<strong>the</strong>n ℓ β ≡ ℓ β<br />

1 (mod∗ p).Moreover<br />

ℓ−1<br />

k=0<br />

and ℓ−1<br />

ψ((β − k)m)<br />

ψ(−km) =<br />

<br />

ℓ1−1<br />

k=0<br />

k=ℓ1<br />

ψ(−km) = { q−1<br />

<br />

ψ((β − k)m) ℓ−1<br />

ψ(−km) k=ℓ1<br />

j=0 j!}u = ℓ−1<br />

k=ℓ1<br />

ψ((β − k)m).<br />

<br />

ψ((β − k)m)<br />

ψ(−km)<br />

Thusitisenoughtoprove<strong>the</strong>lemmawith ℓreplacedby ℓ1.Ino<strong>the</strong>rwordswemaysuppose<br />

that 0 < ℓ < q. Thecase ℓ = 1istrivialandweexcludeitfrom<strong>the</strong>followingdiscussion.<br />

Finallywesupposethat 0 < m < q.


Chapter7 48<br />

Let q − 1 = rℓ + swith 0 < rand 0 ≤ s < ℓ.Arrange<strong>the</strong>integersfrom0to q − 1into<br />

<strong>the</strong>followingarray.<br />

0 1 2 . . . . . . . l − 1<br />

l l + 1 l + 2 . . . . . . . 2l − 1<br />

. . .<br />

. . .<br />

. . β − l + 1 .<br />

. . . β .<br />

. . .<br />

. . .<br />

(r − 1)l (r − 1)l + 1 q − l . rl − 1<br />

rl rl + 1 . . . . . rl + s<br />

Since ℓdoesnotdivide q, rℓ + s = q − 1doesnotliein<strong>the</strong>lastcolumn.Also q − ℓliesin<strong>the</strong><br />

columnfollowingthatinwhich rℓ + slies.<br />

Wereplaceeachnumber jin<strong>the</strong>abovearrayby ϕ(jm). Theresultingarray,whichis<br />

writtenoutbelow,hassomespecialfeatureswhichmustbeexplained. Thefirstcolumnis<br />

explainedby<strong>the</strong>observation xℓm ≡ x(modq). Theo<strong>the</strong>rentries,apartfromthoseat<strong>the</strong><br />

foot<strong>of</strong>eachcolumn,areexplainedby<strong>the</strong>observationthat,when 1 ≤ jand xℓ + jliesin<strong>the</strong><br />

firstarray, ϕ(x + mj) > rwhile 0 < ϕ(mj) + x < q + rsothat ϕ(x + mj) = ϕ(mj) + x.<br />

Theposition<strong>of</strong> q − 1isexplainedby<strong>the</strong>relation m(q − ℓ) ≡ −mℓ ≡ q − 1(mod q). The<br />

o<strong>the</strong>rentriesat<strong>the</strong>feet<strong>of</strong><strong>the</strong>columnsareexplainedby<strong>the</strong>observationthatif 1 ≤ j ≤ ℓ − 1<br />

<strong>the</strong>n ϕ(jm) > r ≥ 1while m(q − k) = m(q − ℓ) + m(ℓ − k) ≡ ϕ((ℓ − k)m) − 1(modq)if<br />

1 ≤ k ≤ ℓ − 1.<br />

0 m . . . . . . . ϕ((l − 1)m)<br />

l m + 1 . . . . . . . ϕ((l − 1)m) + 1<br />

. . .<br />

. . .<br />

. . ϕ((β − l + 1)m) .<br />

. . . ϕ(βm) .<br />

. . .<br />

. . .<br />

r − 1 m + r − 1 q − 1 . ϕ((l − 2 − s)m) − 1<br />

r m + r . . . . ϕ((l − 1)m) − 1<br />

Supposefirst<strong>of</strong>allthat β < ℓ − 1. Then<strong>the</strong>numbers ϕ((β − k)m), 0 ≤ k ≤ ℓ − 1<br />

constitute<strong>the</strong>first β + 1toge<strong>the</strong>rwith<strong>the</strong>last ℓ − β − 1numbersin<strong>the</strong>array.(Theorder<strong>of</strong>


Chapter7 49<br />

<strong>the</strong>numbersin<strong>the</strong>arrayis<strong>the</strong>orderinwhich<strong>the</strong>yappearwhen<strong>the</strong>arrayisreadasthough<br />

itwereaprintedpage.)Thenumbers ϕ(−km), 1 ≤ k ≤ ℓ − 1,are<strong>the</strong>last ℓ − 1numbers<strong>of</strong><br />

<strong>the</strong>array,thatis,<strong>the</strong>numbersafter q − 1.Cancellingin<strong>the</strong>product<strong>of</strong><strong>the</strong>lemma<strong>the</strong>termsin<br />

numeratoranddenominatorcorrespondingto<strong>the</strong>last ℓ − β − 1terms<strong>of</strong><strong>the</strong>array,weobtain<br />

asrequired.<br />

β<br />

j=1<br />

ϕ(jm)!<br />

(ϕ(jm) − 1)!<br />

= β<br />

j=1 ϕ(jm) ≡ mβ β! (mod ∗ p)<br />

Nowtake β ≥ ℓ − 1.Then<strong>the</strong>numbers β, β − 1, . . ., β − (ℓ − 1)occurasindicatedin<strong>the</strong><br />

firstarray.Inparticular<strong>the</strong>reisexactlyoneineachcolumn.Thenumeratorin<strong>the</strong>product<strong>of</strong><br />

<strong>the</strong>lemmais<strong>the</strong>product<strong>of</strong><strong>the</strong>factorials<strong>of</strong><strong>the</strong>correspondingelements<strong>of</strong><strong>the</strong>secondarray.<br />

Thedenominatoris<strong>the</strong>product<strong>of</strong><strong>the</strong>factorials<strong>of</strong><strong>the</strong>elementsappearingafter q − 1. As<br />

indicated tis<strong>the</strong>elementlyingabove q − 1.Thus tislargerthananyelementappearingina<br />

columno<strong>the</strong>rthanthat<strong>of</strong> t.Theproduct<strong>of</strong><strong>the</strong>lemmais t!times<strong>the</strong>product<strong>of</strong><strong>the</strong>factorials<br />

<strong>of</strong><strong>the</strong>o<strong>the</strong>relementson<strong>the</strong>brokenlinedividedby<strong>the</strong>factorials<strong>of</strong><strong>the</strong>elementsat<strong>the</strong>foot<strong>of</strong><br />

<strong>the</strong>columninwhich<strong>the</strong>ylie.Thusitequals t!dividedby<strong>the</strong>product<strong>of</strong>all<strong>the</strong>elementsbelow<br />

<strong>the</strong>brokenlineexceptthosewhichliedirectlybelow t. But t!is<strong>the</strong>product<strong>of</strong>allnumbers<br />

in<strong>the</strong>secondarrayexceptthosewhichliebelow t. Thus<strong>the</strong>quotientis<strong>the</strong>product<strong>of</strong>all<br />

numberswhichlieaboveoron<strong>the</strong>brokenline,thatis,<br />

asrequired.<br />

Lemma 7.6<br />

β<br />

j=1<br />

ϕ(jm) ≡ β<br />

j=1 jm = mβ β! (mod ∗ p)<br />

Supposethat q = p f isaprimepower,that ℓisapositiveintegerdividing q − 1,that<br />

0 ≤ α1 < q − 1,that (ℓ, α1) = 1,andthat<br />

α2 = α1<br />

ℓ<br />

q ℓ − 1<br />

q − 1 .<br />

Then α2isanintegerand 0 ≤ α2 < q − 1.Moreoverif<br />

with 0 ≤ γi ≤ q − 1for 0 ≤ i ≤ ℓ − 1<strong>the</strong>n<br />

α2 = γ0 + γ1q + . . . + γℓ−1 q ℓ−1<br />

ℓ−1<br />

j=1<br />

j=0 γj = α1 + ℓ−1<br />

j ·<br />

q − 1<br />


Chapter7 50<br />

and<br />

ℓ α1<br />

ℓ−1<br />

j=1<br />

j=0 γj! ≡ α1! ℓ−1<br />

Certainly 0 ≤ α2 < q ℓ − 1;moreover<br />

<br />

jq − 1!<br />

ℓ<br />

(mod ∗ p).<br />

q ℓ − 1<br />

q − 1 = 1 + q + . . . + qℓ−1 ≡ ℓ (mod ℓ)<br />

sothat α2isaninteger.Let α1 = mℓ + kwith m ≥ 0and 0 ≤ k < ℓandfor 0 ≤ j < ℓlet<br />

(ℓ − 1 − j)k = ij + δjℓ<br />

with δj ≥ 0and 0 ≤ ij < ℓ.Clearly iℓ−1 = δℓ−1 = 0.Also (ℓ − 1)k = ℓ − k + ℓ(k − 1)sothat<br />

i0 = ℓ−kand δ0 = k −1.If j ≥ 1<strong>the</strong>n (δj−1 −δj)ℓ = k+(ij −ij−1).Since −ℓ < ij −ij−1 < ℓ<br />

and 0 < k < ℓ<strong>the</strong>right­handsideisgreaterthan −ℓandlessthan 2ℓsothat δj−1 − δjis0or<br />

1.Ifitis1<strong>the</strong>n k + ij ≥ ℓand ij ≥ ℓ − k.Ifitis0<strong>the</strong>n ij = ij−1 − k < ℓ − k.Recallingthat<br />

i0 = ℓ − kweseethat<br />

and<br />

S = {j|1 ≤ j ≤ ℓ − 1 and δj−1 − δj = 1} = {j|0 ≤ j < ℓ and ij > ℓ − k}.<br />

Weshallprovethat<br />

γj = m + ij<br />

γ0 = m + i0<br />

(q − 1)<br />

ℓ<br />

(q − 1)<br />

ℓ<br />

+ k − δ0<br />

+ δj−1 − δj 1 ≤ j < ℓ.<br />

Since (k, ℓ) = 1<strong>the</strong>numbers ijaredistinctanditwillfollowimmediatelythat<br />

ℓ−1<br />

j=0<br />

j=0 γj = (mℓ + k) + ℓ−1<br />

Moreoverwewillhave<br />

ℓ−1<br />

j=0 γj!<br />

<br />

ℓ−1<br />

= m + j<br />

j=0<br />

Recallthat k − δ0 = 1.Dividing<strong>the</strong>firsttermby<br />

j · q − 1<br />

ℓ = α1 + ℓ−1<br />

j=1<br />

q − 1<br />

j · .<br />

ℓ<br />

<br />

(q − 1) q − 1<br />

! m+i0<br />

ℓ<br />

ℓ +k−δ0<br />

<br />

<br />

<br />

m + 1 + ij<br />

j∈S<br />

ℓ−1<br />

j=0<br />

<br />

j ·<br />

<br />

(q − 1)<br />

!<br />

ℓ<br />

<br />

(q − 1)<br />

.<br />


Chapter7 51<br />

weobtain<br />

ℓ−1<br />

j=0<br />

Theproduct<strong>of</strong><strong>the</strong>lasttwotermsis<br />

ℓ−1<br />

j=ℓ−k<br />

m<br />

n=1<br />

<br />

n + j<br />

<br />

m + 1 + j<br />

<br />

(q − 1)<br />

.<br />

ℓ<br />

<br />

(q − 1)<br />

.<br />

ℓ<br />

If 1 ≤ n ≤ mand 0 ≤ j ≤ ℓ − 1<strong>the</strong>n nℓ − j < α1 < qsothat<strong>the</strong>product<strong>of</strong> ℓ mk and<strong>the</strong>first<br />

<strong>of</strong><strong>the</strong>setwoexpressionsismultiplicativelycongruentto<br />

ℓ−1<br />

j=0<br />

m<br />

n=1<br />

(nℓ − j) = (mℓ)!<br />

Moreover,if ℓ − k ≤ j ≤ ℓ − 1,<strong>the</strong>n 0 ≤ (m + 1)ℓ − j ≤ (m + 1)ℓ − (ℓ − k) = α1 < qand<strong>the</strong><br />

second<strong>of</strong><strong>the</strong>seexpressionsuponmultiplicationby ℓ k becomesmultiplicativelycongruentto<br />

ℓ−1<br />

j=ℓ−k<br />

((m + 1)ℓ − j) = k<br />

j=1<br />

Therelationstoge<strong>the</strong>rimply<strong>the</strong>secondidentity<strong>of</strong><strong>the</strong>lemma.<br />

(mℓ + j).<br />

Toverifythat<strong>the</strong> γj, 0 ≤ j < ℓ,have<strong>the</strong>formasserted,westartwith<strong>the</strong>relation<br />

α2 = qℓ − 1<br />

q − 1<br />

Thesecondtermisequalto<br />

Thus<br />

ℓ−1<br />

j=0<br />

α2 =<br />

j−1<br />

i=0 qi<br />

· mℓ + k<br />

ℓ<br />

q − 1<br />

ℓ<br />

= ℓ−1<br />

j=0 qj m + ℓ−1<br />

j=0<br />

q j k<br />

ℓ .<br />

<br />

k + k = k + ℓ−2<br />

j=0 (ℓ − 1 − j)qj q − 1<br />

· · k.<br />

ℓ<br />

<br />

<br />

q − 1<br />

m + (ℓ − 1)k · + k +<br />

ℓ ℓ−1<br />

<br />

<br />

q − 1<br />

m + (ℓ − 1 − j)k · q<br />

j=1<br />

ℓ<br />

j<br />

<br />

<br />

q − 1<br />

= m + i0 · + k − δ0 +<br />

ℓ ℓ−1<br />

<br />

q − 1<br />

m + ij ·<br />

j=1 ℓ + δj−1<br />

<br />

− δj .<br />

Moreover m < q−1<br />

ℓ sothat<br />

0 ≤ m + i0 ·<br />

q − 1<br />

ℓ + k − δ0<br />

q − 1<br />

< ℓ · + 1 = q<br />


Chapter7 52<br />

and<br />

0 ≤ m + ij ·<br />

Therequiredrelationsfollowimmediately.<br />

q − 1<br />

ℓ + δj−1<br />

q − 1<br />

− δj < ℓ · + 1 = q.<br />

ℓ<br />

Nowwecanstateandprove<strong>the</strong>promisedidentitiesforGaussiansums.Each<strong>of</strong><strong>the</strong>sewill<br />

amounttoanassertionthatacertainnumberin k p(q−1)is1.Toprovethiswewillshowfirst<br />

that<strong>the</strong>numberisinvariantunderallautomorphisms<strong>of</strong> k p(q−1)over k (q−1)andthusliesin<br />

kq−1.Theonlyprimeidealsoccurringin<strong>the</strong>factorization<strong>of</strong><strong>the</strong>number,whichisnot a priori<br />

analgebraicinteger,intoprimeidealswillbedivisors<strong>of</strong> p.Weshowthateveryconjugate<strong>of</strong><br />

<strong>the</strong>numberhasabsolutevalue1andthatitismultiplicativelycongruentto1moduloevery<br />

divisor<strong>of</strong> p.Itwillfollowthatitisaroot<strong>of</strong>unityin kq−1andhencea(q − 1)throot<strong>of</strong>unityif<br />

qisoddanda2(q − 1)throot<strong>of</strong>unityif qiseven.If qisodd<strong>the</strong>multiplicativecongruences<br />

implythat<strong>the</strong>numberis1.If qiseven<strong>the</strong>yimplythat<strong>the</strong>numberis ±1.Toshowthatitis<br />

actually1somesupplementarydiscussionwillbenecessary.<br />

Stickelberger’sresultisdirectlyapplicableonlyto<strong>the</strong>normalizedGaussiansum τ(χκ).<br />

Weshallhavetouse<strong>the</strong>obviousrelation τ(χκ, Ψκ) = χκ(β)τ(χκ)if ψκ(α) = ψ 0 κ(βα).If κis<br />

anextension<strong>of</strong> λand ψλisgiven,weset<br />

ψ κ/λ(α) = ψλ(S κ/λ(α))<br />

for αin κ.If χλisgiven χ κ/λis<strong>the</strong>characterdefinedby<br />

Lemma 7.7<br />

Set<br />

χ κ/λ(α) = χλ(N κ/λ(α)).<br />

If κisafiniteextension<strong>of</strong><strong>the</strong>finitefieldand χλand ψλaregiven<strong>the</strong>n<br />

τ(χ κ/λ, ψ κ/λ) = {τ(χλ, ψλ)} [κ:λ] .<br />

Since χ κ/λ(β) = χλ(β) [κ:λ] itwillbeenoughtoshowthat<br />

τ(χ κ/λ) = {τ(χλ)} [κ:λ] .<br />

µ =<br />

[χ:λ]<br />

{τ(χλ)}<br />

.<br />

τ(χκ/λ)


Chapter7 53<br />

Let λhave q = p ℓ elementsandlet κhave p k = q f .ItfollowsimmediatelyfromLemma7.1<br />

that<strong>the</strong>absolutevalue<strong>of</strong> µandallitsconjugatesis1,thatitliesin k p(q f −1),thatitisinvariant<br />

underallautomorphisms<strong>of</strong> k p(q f −1)over k q f −1,andthatitsonlyprimefactorsaredivisors<strong>of</strong><br />

p.Themapping β −→ Nκ/λβsends βto β qf −1<br />

q−1.Thusif α = α(χλ, p)and Pdivides p<br />

ApplyingLemmas7.1and7.2,weseethat<br />

and<br />

Consequently<br />

α(χ κ/λ, p) = qf − 1<br />

q − 1 α = α + αq + . . . + αqf−1 .<br />

τ(χλ) ≡ ̟α<br />

α!<br />

τ(χ κ/λ) ≡ ̟fα<br />

(α!) f<br />

(mod ∗ P)<br />

µ ≡ 1 (mod ∗ P).<br />

(mod ∗ P).<br />

Thus µ = 1if qisoddand µ = ±1if qiseven.If χλ = 1<strong>the</strong>n χ κ/λ = 1and,frompart(b)<strong>of</strong><br />

Lemma7.1, µis1.If q = 2<strong>the</strong>n χλ = 1.Suppose<strong>the</strong>n qisevenandgreaterthan2.If χλis<br />

notidentically1chooseaprime rdividing<strong>the</strong>order<strong>of</strong> χλ.Set χλ = χ ′ λ χ′′ λ where<strong>the</strong>order<strong>of</strong><br />

χ ′ λ isapower<strong>of</strong> rand<strong>the</strong>order<strong>of</strong> χ′′ λ isprimeto r.Theanalogousdecomposition<strong>of</strong> χ κ/λis<br />

χ ′ κ/λ χ′′ κ/λ .Ofcourse χλand χ κ/λhave<strong>the</strong>sameorder.Define µ ′ and µ ′′ in<strong>the</strong>obviousway.<br />

Accordingtopart(f)<strong>of</strong>Lemma7.1<br />

µ ≡ µ ′′<br />

(modr).<br />

Since rdoesnotdivide2thisimpliesthat µ = µ ′′ . Thusonecanshowbyinductionon<strong>the</strong><br />

number<strong>of</strong>primesdividing<strong>the</strong>order<strong>of</strong> χλthat µ = 1.<br />

Lemma 7.8<br />

Suppose λisafinitefieldwith qelements, κisafiniteextension<strong>of</strong> λ,and [κ : λ] = f.<br />

Suppose ℓisaprimeand<strong>the</strong>order<strong>of</strong> qmodulo ℓis f.Let Tbeaset<strong>of</strong>representativesfor<strong>the</strong><br />

orbits<strong>of</strong><strong>the</strong>non­trivialcharacters<strong>of</strong> κ ∗ <strong>of</strong>order ℓunder<strong>the</strong>action<strong>of</strong> G(κ/λ)andlet χλbea<br />

character<strong>of</strong> λ ∗ .If ψλisanynon­trivialcharacter<strong>of</strong> λ<br />

χλ(ℓ ℓ )τ(χ ℓ λ , ψλ) <br />

µκ∈T τ(µκ, ψ κ/λ) = τ(χλ, ψλ) <br />

µκ∈T τ(χ κ/λ µκ, ψ κ/λ).


Chapter7 54<br />

Since<strong>the</strong>isotropygroup<strong>of</strong>eachpointin Tistrivial<br />

χ ℓ λ(β) <br />

µκ∈T µκ(β) = χλ(β) <br />

andwemaycontentourselveswithshowingthat<br />

µκ∈T χ κ/λ(β) µκ(β)<br />

χλ(ℓ ℓ ) τ(χ ℓ <br />

λ )<br />

µκ∈T τ(µκ) = τ(χλ) <br />

µκ∈T τ(χκ/λ µκ).<br />

Ofcourse χλ(ℓℓ )is<strong>the</strong>value<strong>of</strong> χλat<strong>the</strong>element<strong>of</strong><strong>the</strong>primefieldcorrespondingto ℓℓ .Let<br />

µbe<strong>the</strong>quotient<strong>of</strong><strong>the</strong>rightsideby<strong>the</strong>left.Thecharacters<strong>of</strong> κ∗<strong>of</strong>order ℓare<strong>the</strong>characters<br />

µ k κ , 0 ≤ k < ℓ,definedby<br />

α(µ k κ , P) = k · qf − 1<br />

.<br />

ℓ<br />

Since<strong>the</strong>order<strong>of</strong> qmodulo ℓis f,if T = {µ k κ|k ∈ A}everynon­trivialcharacter<strong>of</strong>order ℓ<br />

isrepresentableas µ η(qi k)<br />

κ<br />

with 0 ≤ i < fand k ∈ A. η(q i k)is<strong>the</strong>remainder<strong>of</strong> q i kupon<br />

divisionby ℓ. Thusaswealreadysaw, Thas ℓ−1<br />

f elements. Lemma7.1againshowsthat µ<br />

andallitsconjugateshaveabsolutevalue1andthat µisinvariantunderallautomorphisms<br />

<strong>of</strong> k p(q f −1)over k q f −1.<br />

let<br />

Let α = α(χλ, p)andlet β = α(χℓ λ , p).Then ℓα = β + ν(q − 1)with ν ≥ 0.If 0 ≤ k < ℓ<br />

α(µ k κ , P) = k · qf − 1<br />

ℓ<br />

= f−1<br />

j=0 γk j qj<br />

with 0 ≤ γ k j ≤ q −1.Inparticular, γk 0 is<strong>the</strong>residue<strong>of</strong> k · qf −1<br />

ℓ modulo q.Moreoverif k1 ≡ q i k<br />

(modulo ℓ)<strong>the</strong>n<br />

α(µ k κ, P) = f−1<br />

Itisunderstoodthatif j + i ≥ ℓ<strong>the</strong>n γ k1<br />

j+i<br />

divisionby q,<br />

Certainly<br />

{γ k j<br />

| k ∈ A, 0 ≤ j < f} =<br />

j=0 γk1<br />

j+i qj .<br />

α(χκ/λ µ k κ, P) ≡ qf − 1<br />

q − 1 α + k · qf − 1<br />

ℓ<br />

= γk1<br />

j+i−ℓ .Thusif ϕ(x)is<strong>the</strong>remainder<strong>of</strong> xupon<br />

<br />

ϕ k · qf <br />

− 1<br />

| 0 < k < ℓ .<br />

ℓ<br />

(mod(q f − 1)).


Chapter7 55<br />

Let 0 ≤ k ′ < ℓandlet ν + k ≡ k ′ (modℓ).Since,bydefinition, ℓα = β + ν(q − 1)<br />

qf − 1<br />

q − 1 α + k qf − 1<br />

ℓ ≡ qf − 1<br />

·<br />

ℓ<br />

β<br />

q − 1 + k′ qf − 1<br />

ℓ<br />

(mod(q f − 1)).<br />

Since 0 ≤ β < q −1<strong>the</strong>rightsideisnon­negativeandatmost qf −2.Thusitis α(χκ/λ µ k κ , P).<br />

Let<br />

with 0 ≤ δ k j ≤ q − 1.Thus δk 0 is<strong>the</strong>residue<strong>of</strong><br />

α(χκ/λ µ k f−1<br />

κ , P) =<br />

j=0 δk j qj<br />

q f − 1<br />

ℓ<br />

·<br />

β<br />

q − 1 + k′ · qf − 1<br />

ℓ<br />

modulo q.Since χ κ/λisinvariantunderautomorphisms<strong>of</strong> κ/λ<br />

α(χκ/λ µ k f−1<br />

κ , P) =<br />

j=0 δk1<br />

j+i qj<br />

if k1 ≡ qik (modℓ).Since<strong>the</strong>residue<strong>of</strong> qf −1<br />

αmodulo qis α,<br />

q−1<br />

{α} ∪ {δ k j | 0 ≤ j < ℓ, k ∈ A} =<br />

f q − 1<br />

ϕ ·<br />

ℓ<br />

β<br />

q − 1 + k qf <br />

− 1<br />

| 0 ≤ k < ℓ .<br />

ℓ<br />

Since χλ(ℓℓ ) ≡ ℓαℓ (mod ∗ P)<strong>the</strong>number µismultiplicativelycongruentmodulo Pto<br />

<strong>the</strong>quotient<strong>of</strong><br />

̟α̟ε α! ℓ−1 k∈A j=0 δk j !,<br />

<br />

ε =<br />

k∈A<br />

f−1<br />

j=0 δk j<br />

by<br />

Since<br />

ℓβ ̟β ̟ε′ ℓ−1 β! <br />

k∈A<br />

f−1<br />

j=0<br />

weconcludefromLemma7.4that<br />

fα + f−1<br />

j=0 γk j !, ε′ = <br />

k∈A<br />

f−1<br />

k j<br />

α + γj q ≡<br />

j=0<br />

f−1<br />

j−0 γk j .<br />

j=0 δk j qj ,<br />

k<br />

γj − δ k j = ρ(q − 1),


Chapter7 56<br />

if ρis<strong>the</strong>number<strong>of</strong> i, 0 ≤ i < f,suchthat<br />

Since<br />

<strong>the</strong>number<br />

qf <br />

− 1<br />

α + α µ<br />

q − 1 η(qi <br />

k)<br />

κ , P<br />

≥ q f .<br />

q f − 1<br />

q − 1 · α + α(µ0 κ , P) = qf − 1<br />

q − 1 α,<br />

(ℓ − 1)α + <br />

k∈A<br />

f−1<br />

j=0<br />

is (q − 1)times<strong>the</strong>number<strong>of</strong> k, 0 ≤ k < ℓ,suchthat<br />

qf − 1<br />

q − 1 α + k · qf − 1<br />

ℓ<br />

= qf − 1<br />

q − 1<br />

Thenumber<strong>of</strong>such kis νbecause ν < ℓand<br />

while<br />

Thus<br />

q f − 1<br />

q − 1<br />

If ℓm ≡ 1 (modq)<br />

and<br />

<br />

q f − 1<br />

q − 1<br />

k<br />

γj − δ k j<br />

β<br />

ℓ + (k + ν) qf − 1<br />

ℓ ≥ qf .<br />

β<br />

ℓ + (ℓ − ν + ν) qf − 1<br />

ℓ ≥ 1 + qf − 1 = q f<br />

β<br />

ℓ + (ℓ − 1) qf − 1<br />

ℓ < qf − 1<br />

ℓ + (ℓ − 1) qf − 1<br />

ℓ = qf − 1.<br />

k∈A<br />

f−1<br />

f q − 1<br />

ϕ ·<br />

ℓ<br />

ItfollowsimmediatelyfromLemma7.5that<br />

ℓ β α! <br />

j=0 (γk j − δ k j ) = ν(q − 1) − (ℓ − 1)α = α − β.<br />

k∈A<br />

<br />

ϕ k · qf <br />

− 1<br />

= ϕ(−km)<br />

ℓ<br />

β<br />

q − 1 + k qf <br />

− 1<br />

= ϕ((β − k)m).<br />

ℓ<br />

f−1<br />

j=0 δk j ! ≡ β! <br />

k∈A<br />

f−1<br />

j=0 γk j !<br />

Thus µ = 1if qisoddand µ = ±1if qiseven.If χλ = 1<strong>the</strong>number µisclearly1.This<br />

timetoo,onecanapplypart(f)<strong>of</strong>Lemma7.1andinductionon<strong>the</strong>number<strong>of</strong>primesdividing<br />

<strong>the</strong>order<strong>of</strong> χλtoshowthat µ = 1if qiseven.


Chapter7 57<br />

Lemma 7.9<br />

Let λbeafinitefieldwith qelementsandlet κbeafiniteextension<strong>of</strong> λwith [κ : λ] = ℓ<br />

where ℓisaprimedividing q − 1.Suppose χλisacharacter<strong>of</strong> λ ∗ whoserestrictionto<strong>the</strong> ℓth<br />

roots<strong>of</strong>unityisnottrivialand χκisacharacter<strong>of</strong> κ ∗ suchthat χ ℓ κ = χ κ/λ.If Tis<strong>the</strong>set<strong>of</strong><br />

non­trivialcharacters<strong>of</strong> λ ∗ <strong>of</strong>order ℓ<br />

χλ(ℓ)τ(χλ, ψλ) <br />

µλ∈T τ(µλ, ψλ) = τ(χκ, ψ κ/λ).<br />

If σ ∈ G(κ/λ)define χσ κby χσκ(α) = χκ(ασ−1). Since χσ κ/λ = χκ/λ, χσℓ κ = χκ/λand χσ−1 κ isacharacter<strong>of</strong>order ℓ.If χσ−1 κ = 1forsome σ = 1<strong>the</strong>nitis1forall σand χκ(α) = 1<br />

if αisa(q − 1)thpower,thatis,if Nκ/λ(α) = 1. Consequently<strong>the</strong>reisacharacter νλ<strong>of</strong> λ∗ suchthat χκ = νκ/λ. Then νℓ λ = χλand χλistrivialon<strong>the</strong> ℓthroots<strong>of</strong>unity,contraryto<br />

assumption.Thus<br />

{χ σ−1<br />

κ | σ = 1} = {µ κ/λ | µλ ∈ T }.<br />

If β ∈ λ ∗ and β = N κ/λ(γ)<strong>the</strong>n<br />

χκ(β) = <br />

σ χκ(γ σ−1 ) = χκ(γ ℓ ) <br />

because µλ(β) = µ κ/λ(γ),anditwillbeenoughtoshowthat<br />

χλ(ℓ) τ(χλ) <br />

σ=1 χσ−1 κ (γ) = χλ(β) <br />

σ=1 µλ(β),<br />

µλ∈T τ(µλ) = τ(χκ).<br />

Let µbe<strong>the</strong>quotient<strong>of</strong><strong>the</strong>leftsideby<strong>the</strong>right.Thus µisanumberin Kp(q−1)and<strong>the</strong><br />

onlyprimesappearingin<strong>the</strong>factorization<strong>of</strong> µaredivisors<strong>of</strong> p.Since χ κ/λisnotidentically<br />

1nei<strong>the</strong>ris χκ.Thus<strong>the</strong>absolutevalue<strong>of</strong> µandallitsconjugatesis1.Let α = α(χλ, p)and<br />

let β = α(χκ, P)where Pdivides p.Then<br />

Since ℓdivides qℓ −1<br />

q−1 wecanwrite<br />

ℓβ ≡ α qℓ − 1<br />

q − 1<br />

β = qℓ − 1<br />

q − 1<br />

(mod(q ℓ − 1)).<br />

α<br />

·<br />

ℓ − j · qℓ − 1<br />

.<br />


Chapter7 58<br />

Since<strong>the</strong>restriction<strong>of</strong> χλto<strong>the</strong> ℓthroots<strong>of</strong>unityisnottrivial, α · q−1<br />

ℓ ≡ 0 (mod(q − 1)).<br />

Thus ℓdoesnotdivide α.Forall i ≥ 0<br />

<br />

τ χ qi<br />

<br />

κ = τ(χκ).<br />

Moreover<br />

<br />

α<br />

Since qi −1<br />

q−1<br />

χ qi<br />

κ<br />

<br />

, P ≡ αℓ − 1<br />

q − 1<br />

≡ qℓ − 1<br />

q − 1<br />

α<br />

ℓ − j αℓ − 1<br />

ℓ + (qi − 1) qℓ − 1<br />

q − 1<br />

α<br />

ℓ +<br />

i ℓ q − 1 q − 1<br />

α − j .<br />

q − 1 ℓ<br />

≡ i (modℓ)wechoose isothat iα ≡ j (mod ℓ);<strong>the</strong>n<br />

α(χ qi<br />

κ , P) ≡ qℓ − 1<br />

q − 1<br />

α<br />

ℓ<br />

(mod(q ℓ − 1)).<br />

α<br />

ℓ − j(qi − 1) qℓ − 1<br />

ℓ<br />

Bothsides<strong>of</strong>thiscongruencearenon­negativeandlessthan q ℓ − 1.Thusitisanequalityand<br />

wecanassumethat β = qℓ−1 q−1<br />

definedby<br />

χ −1<br />

κ<br />

· α<br />

ℓ<br />

. Theset Tconsists<strong>of</strong><strong>the</strong>characters µj<br />

λ , 1 ≤ j ≤ ℓ − 1,<br />

α(µ j j<br />

λ , P) =<br />

ℓ<br />

(q − 1).<br />

Under<strong>the</strong>automorphism z −→ z m <strong>of</strong> k p(q ℓ −1)over k q ℓ −1<strong>the</strong>number µismultipliedby<br />

(m) χλ(m) <br />

µλ∈T µλ(m)whichis1because mbelongsto λ.Let<br />

with 0 ≤ γi ≤ q − 1.Then<br />

and<br />

τ(χκ) ≡<br />

χλ(ℓ)τ(χλ) ℓ−1<br />

j=1 τ(µj λ ) ≡<br />

β = γ0 + γ1q + . . . + γℓ−1 q ℓ−1<br />

̟ε<br />

ℓ−1 j=0 γj! (mod∗P), ε = ℓ−1<br />

j=0 γj,<br />

α! ℓ−1<br />

j=1<br />

ℓ α ̟ ε′<br />

j · q−1<br />

ℓ<br />

!<br />

(mod ∗ P), ε ′ = α + ℓ−1<br />

j=0<br />

q − 1<br />

j · .<br />

ℓ<br />

Lemma7.6impliesimmediatelythat µ ≡ 1 (mod ∗ P).Thus µ = 1if qisoddand µ = ±1if q<br />

iseven.If ℓ ′ isaprimedivisor<strong>of</strong> q −1differentfrom ℓ,wewrite χλas χ ′ λ χ′′ λ where<strong>the</strong>order<strong>of</strong>


Chapter7 59<br />

χ ′ λ isapower<strong>of</strong> ℓ′ and<strong>the</strong>order<strong>of</strong> χ ′′ λ isprimeto ℓ.Inasimilarfashionwewrite χκas χ ′ κχ ′′ κ .<br />

Thepair χ ′′ λ and χ′′ κ alsosatisfy<strong>the</strong>conditions<strong>of</strong><strong>the</strong>lemma.Thefinalassertion<strong>of</strong>Lemma7.1<br />

showsthat,if µ ′′ isdefinedin<strong>the</strong>samewayas µ, µ = µ ′′ .Arguingbyinductionweseethatit<br />

isenoughtoverifythat µ = 1when<strong>the</strong>order<strong>of</strong> χλisapower<strong>of</strong> ℓ.Applying<strong>the</strong>lastpart<strong>of</strong><br />

Lemma7.1,againweseethat<strong>the</strong>reisaprime qdividing ℓsuchthat<br />

Since χλ(ℓ)isan ℓ ω throot<strong>of</strong>unityforsome ω,<br />

Thus µ ≡ 1 (modℓ)and µ = 1.<br />

τ(χλ) ≡ τ(χκ) ≡ τ(µ j<br />

λ ) ≡ 1 (modq).<br />

χλ(ℓ) ≡ 1 (modq).


Chapter8 60<br />

Chapter Eight.<br />

A Lemma <strong>of</strong> Lamprecht<br />

Let Fbeanon­archimedeanlocalfieldandlet ψFbeanon­trivialcharacter<strong>of</strong> F. n =<br />

n(ψF)is<strong>the</strong>largestintegersuchthat ψF istrivialon P −n<br />

F . If χF isaquasi­character<strong>of</strong><br />

CF, m = m(χF)is<strong>the</strong>smallestnon­negativeintegersuchthat χFistrivialon Um F .If γin CF<br />

issuchthat γOF = P m+n<br />

F set<br />

<br />

UF<br />

∆1(χF,ψF; γ) =<br />

ψF<br />

<br />

α<br />

γ χ −1<br />

F (α)dα<br />

<br />

<br />

χ −1<br />

F (α)dα .<br />

Then<br />

UF ψF<br />

α<br />

γ<br />

∆(χF,ψF) = χF(γ)∆1(χF, ψF, γ).<br />

AssuggestedbyHasse[8],weshall,in<strong>the</strong>pro<strong>of</strong>s,<strong>of</strong><strong>the</strong>mainlemmas,makeextensive<br />

use<strong>of</strong><strong>the</strong>followinglemmawhichiscentralto<strong>the</strong>paper[10]<strong>of</strong>Lamprecht.<br />

Lemma 8.1<br />

(a)If m = m(χF) = 2dwith dintegralandpositive<strong>the</strong>reisaunit βin OFsuchthat<br />

<br />

βx<br />

ψF = χF(1 + x)<br />

γ<br />

forall xin Pd F .Foranysuch β<br />

∆1(χF,ψF; γ) = ψF<br />

<br />

β<br />

χ<br />

γ<br />

−1<br />

F (β).<br />

(b)If m = m(χF) = 2d + 1with dintegralandpositive<strong>the</strong>reisaunit βin OFsuchthat,for<br />

all xin P d+1<br />

F ,<br />

ψF<br />

Foranysuch β, ∆1(χF, ψF; γ)isequalto<br />

ψF<br />

<br />

β<br />

χ<br />

γ<br />

−1<br />

F (β)<br />

<br />

βx<br />

= χF(1 + x).<br />

γ<br />

<br />

<br />

<br />

OF /PF ψF<br />

<br />

δβx<br />

γ<br />

OF /PF ψF<br />

<br />

δβx<br />

γ<br />

<br />

χ −1<br />

F (1 + δx)dx<br />

<br />

χ −1<br />

F (1 + δx)dx


Chapter8 61<br />

if δOF = P d F .<br />

Let m = 2d + εwith ε = 0incase(a)and ε = 1incase(b).Thefunction ψF<br />

OF, y ∈ P d+ε<br />

F canberegardedasafunctionon<br />

OF/P d F<br />

× Pd+ε<br />

F /Pm F .<br />

<br />

xy<br />

γ , x ∈<br />

Forfixed xitisacharacter<strong>of</strong> P d+ε<br />

F /PmF whichistrivialifandonlyif x ∈ PdF andforfixed y<br />

itisacharacter<strong>of</strong> OF/Pd Fwhichistrivialifandonlyif y ∈ Pm F .Thusitdefinesaduality<strong>of</strong><br />

OF/P d F<br />

and Pd+ε<br />

F /Pm F .Theexistence<strong>of</strong>aβsuchthat<br />

χF(1 + x) = ψF<br />

for xin P d+ε<br />

F followsimmediatelyfrom<strong>the</strong>relation<br />

βx<br />

γ<br />

χF(1 + x) χF(1 + y) = χF(1 + x + y)<br />

whichisvalidfor xin P d+ε<br />

F .Thenumber βmustbeaunitbecause χF(1+x)isdifferentfrom<br />

1forsome xin P m−1<br />

F .<br />

Incase(a)<br />

isequalto<br />

<br />

UF /U d F<br />

ψF<br />

<br />

UF<br />

ψF<br />

<br />

<br />

α<br />

χ<br />

γ<br />

−1<br />

F (α)dα<br />

<br />

α<br />

χ<br />

γ<br />

−1<br />

F (α)<br />

Pd ψF<br />

F<br />

(α − β)x<br />

γ<br />

<br />

dx dα.<br />

Themainintegralis1or0accordingas α − βdoesordoesnotliein Pd F .Thusthisexpression<br />

isequalto<br />

<br />

β<br />

ψF χ<br />

γ<br />

−1<br />

F (β) [UF : U d F] −1 .<br />

Thefirstpart<strong>of</strong><strong>the</strong>lemmafollows.<br />

Incase(b) <br />

isequalto<br />

<br />

UF /U d+1<br />

F<br />

ψF<br />

UF<br />

ψF<br />

<br />

α<br />

χ<br />

γ<br />

−1<br />

F (α)dα<br />

<br />

α<br />

χ<br />

γ<br />

−1<br />

F (α)<br />

P d+1<br />

ψF<br />

F<br />

(α − β)x<br />

γ<br />

<br />

dx dα.


Chapter8 62<br />

Theinnerintegralis0unless α − βliesin P d F whenitis1.Thusthisexpressionisequalto<br />

ψF<br />

<br />

β<br />

χ<br />

γ<br />

−1<br />

F (β) [UF : U d F ]−1<br />

Thesecondpart<strong>of</strong><strong>the</strong>lemmafollows.<br />

<br />

OF /PF<br />

ψF<br />

<br />

δβx<br />

γ<br />

χ −1<br />

F (1 + δx)dx.<br />

Thenumber βisonlydeterminedmodulo Pd F .Whenapplying<strong>the</strong>lemmaweshall,after<br />

choosing β,set<br />

<br />

β<br />

∆2(χF,ψF; γ) = ψF χ<br />

γ<br />

−1<br />

F (β)<br />

and<strong>the</strong>ndefine ∆3(χF, ψF; γ),whichwillbe1when miseven,by<strong>the</strong>equation,<br />

∆1(χF,ψF; γ) = ∆2(χF, ψF; γ) ∆3(χF, ψF; γ).<br />

Whenweneedtomake<strong>the</strong>relationbetween βand χFexplicitwewrite βas β(χF).Tobe<strong>of</strong><br />

anyusetousthislemmamustbesupplementedbysomeo<strong>the</strong>robservations.<br />

If KisafiniteGaloisextension<strong>of</strong> F anyquasi­character χF <strong>of</strong> CF determinesaonedimensionalrepresentation<strong>of</strong><br />

W K/Fwhoserestrictionto CKisaquasi­character χ K/F<strong>of</strong> CK.<br />

Thecharacter χ K/Fmaybedefineddirectlyby<br />

χ K/F(α) = χF(N K/Fα).<br />

Moregenerally,if Eisanyfiniteseparableextension<strong>of</strong> Fwedefine χ E/Fby<br />

χ E/F(α) = χF(N E/Fα).<br />

Toapply<strong>the</strong>lemma<strong>of</strong>Lamprechtweshallneedtoknow,insomespecialcases,<strong>the</strong>relation<br />

between β(χF)and β(χ E/F).<br />

Suppose misapositiveintegerand m = 2d + εwhere εis0or1and disapositive<br />

integer.Let m ′ = ψ E/F(m − 1) + 1andlet m ′ = 2d ′ + ε ′ where ε ′ is0or1and d ′ isapositive<br />

integer.*Since ψ E/Fisconvex<br />

ψ E/F<br />

<br />

m − 1<br />

2<br />

≤ 1<br />

2 ψ E/F(m − 1) + 1<br />

2 ψ E/F(0) = 1<br />

2 (m′ − 1) < d ′ + ε ′<br />

*Weareheredealingnotwithanadditivecharacter,butwith<strong>the</strong>function<strong>of</strong>Chapter6!


Chapter8 63<br />

and<br />

d ′ + ε ′ = ψ E/F(u)<br />

with u > m−1<br />

m−1<br />

2 .Since<strong>the</strong>leastintegergreaterthan 2 is d + ε,Lemma6.6impliesthat<br />

Ino<strong>the</strong>rwords,if x ∈ P d′ +ε ′<br />

E<br />

Lemma6.6alsoimpliesthat<br />

<br />

NE/F U d′ +ε ′ <br />

E ≤ U u F<br />

<strong>the</strong>n<br />

if x ∈ Pm′ E .If x ∈ Pd′ +ε ′<br />

E and y ∈ Pm′ E <strong>the</strong>n<br />

iscongruentto<br />

≤ Ud+ε<br />

F .<br />

N E/F(1 + x) − 1 ∈ P d+ε<br />

F .<br />

N E/F(1 + x) − 1 ∈ P m F<br />

N E/F(1 + x + y) − 1 = N E/F(1 + x)N E/F<br />

modulo P m F .Thusif x ∈ Pd′ +ε ′<br />

E<br />

Therightsideis<br />

whichequals<br />

N E/F(1 + x) − 1<br />

and y ∈ P d′ +ε”<br />

E<br />

<br />

1 + y<br />

<br />

− 1<br />

1 + x<br />

sothat xy ∈ P m′<br />

E ,<strong>the</strong>n<br />

N E/F(1 + x + y) − 1 ≡ N E/F(1 + x + y + xy) − 1 (modP m F ).<br />

N E/F(1 + x)N E/F(1 + y) − 1,<br />

{N E/F(1 + x) − 1} + {N E/F(1 + y) − 1} + {(N E/F(1 + x) − 1) (N E/F(1 + y) − 1)}<br />

andthisiscongruentto<br />

modulo P m F .Thus<strong>the</strong>map<br />

{N E/F(1 + x) − 1} + {N E/F(1 + y) − 1}<br />

P E/F : x −→ N E/F(1 + x) − 1


Chapter8 64<br />

isahomomorphismfrom P d′ +ε ′<br />

E<br />

/P m′<br />

E<br />

to Pd+ε<br />

F /Pm F .If E ⊆ E′ wecanreplace Fby E, Eby<br />

E ′ , mby m ′ ,and m ′ by ψ E ′ /E(m ′ − 1) + 1,anddefine P E ′ /E.Since ψ E ′ /F = ψ E ′ /E ◦ ψ E/F<br />

and<br />

N E ′ /F(1 + x) − 1 = N E/F(1 + (N E ′ /E(1 + x) − 1)) − 1,<br />

<strong>the</strong>relation<br />

isvalid.<br />

P E ′ /F = P E/F ◦ P E ′ /E<br />

If n = n(ψF)and n ′ = n(ψ E/F),choose γFin CFsothat γFOF = P m+n<br />

F<br />

sothat γEOE = P m′ +n ′<br />

E<br />

and γEin CE<br />

. Iapologizeagainfor<strong>the</strong>unfortunateconflict<strong>of</strong>notation. ψ E/Fis<br />

on<strong>the</strong>onehandafunctionon {u ∈ R | u ≥ −1}andon<strong>the</strong>o<strong>the</strong>racharacter<strong>of</strong> E.However,<br />

warnedoneagain,<strong>the</strong>readershouldnotbetooinconveniencedby<strong>the</strong>conflict.Define<br />

by<strong>the</strong>relation<br />

ψF<br />

P ∗ E/F : OF/P d F<br />

−→ OE/P d′<br />

E<br />

<br />

∗<br />

x PE/F(y) PE/F (x)y<br />

= ψE/F .<br />

γF<br />

Itwill<strong>of</strong>tenbenecessarytokeepinmind<strong>the</strong>dependence<strong>of</strong> P ∗ E/F on γFand γE. Thenwe<br />

shallwrite<br />

P ∗ E/F (x) = P ∗ E/F (x; γE, γF).<br />

Itisclearthat<br />

Lemma 8.2<br />

P ∗ E ′ /F (x; γE ′, γF) = P ∗ E ′ /E (P ∗ E/F (x; γE, γF); γE ′, γE).<br />

Let K/Fbeabelianandlet G = G(K/F).Suppose<strong>the</strong>reisaninteger tsuchthat G = Gt<br />

while Gt+1 = {1}.Suppose m ≥ t+1and m > 1and γFischosen.If µFbelongsto S(K/F),<br />

<strong>the</strong>set<strong>of</strong>characters<strong>of</strong> CF/N K/FCK,<strong>the</strong>n m ≥ m(µF)sothatforsome α(µF)in OF<br />

µF(1 + x) = ψF<br />

γE<br />

<br />

α(µF)x<br />

forall xin P d+ε<br />

F .Theelement γKmaybetakenequalto γFandif P ∗ K/F (β) = P ∗ K/F (β; γF, γF)<br />

<strong>the</strong>n<br />

NK/F(P ∗ <br />

K/F (β)) ≡ (β + α(µF)) (modP<br />

µF<br />

d F)<br />

γF


Chapter8 65<br />

forall βin OF.<br />

If t = −1<strong>the</strong>n n(ψF) = n(ψ K/F)and m ′ = msothat γKmaybetakenequalto γF.If<br />

t ≥ 0<strong>the</strong>extensionisramified.Let P δ K/F<br />

K<br />

Bydefinition<br />

be<strong>the</strong>different<strong>of</strong> K/F.Then<br />

n(ψ K/F) = [K : F]n(ψF) + δ K/F.<br />

ψ K/F(m − 1) = t + [K : F](m − t − 1).<br />

ByProposition4<strong>of</strong>paragraphIV.2<strong>of</strong>Serre’sbook δ K/F = ([K : F] − 1)(t + 1).Thus<br />

andwecanagaintake γK = γF.<br />

m ∗ + n(ψ K/F) = [K : F] (m + n(ψF))<br />

Since m(µF) = t + 1wehave m ≥ m(µF)and<br />

µF(1 + x + y) = µF(1 + x) µF(1 + y)<br />

for xand yin P d+ε<br />

F .Thus<strong>the</strong>existence<strong>of</strong> α(µF)isassured.Thelastassertion<strong>of</strong><strong>the</strong>lemma<br />

willbeprovedbyinduction.Wewillneedtoknowthatif x ≡ y(modPd′ K )<strong>the</strong>n<br />

N K/Fx ≡ N K/Fy(modP d F ).<br />

Whenprovingthiswemaysupposethat xOK = P r K with r ≤ d′ andthat y<br />

x<br />

Then<br />

<br />

NK/Fx − NK/Fy = NK/Fx 1 − NK/F <br />

1 +<br />

<br />

y − x<br />

.<br />

x<br />

belongsto OK.<br />

If r ≥ d<strong>the</strong>reisnothingtoprove.Suppose r ≤ d.If d ′ − r = ψK/F(u)and sis<strong>the</strong>smallest<br />

integergreaterthanorequalto u<strong>the</strong>rightsidebelongsto P s+r<br />

F .Since<strong>the</strong>derivative<strong>of</strong> ψK/F isatleastoneeverywhere ψK/F(u + r) ≥ d ′ .But<br />

d ′ ≥ m′ − 1<br />

=<br />

2<br />

1<br />

2 ψK/F(m − 1) + 1<br />

2 ψ <br />

m − 1<br />

K/F(0) ≥ ψK/F .<br />

2<br />

Thus u + r ≥ m−1<br />

2 and s + r ≥ d.<br />

Suppose F ⊆ L ⊆ Kand L/F iscyclic<strong>of</strong>primeorder. Let H = G(K/L)andlet<br />

G = G(L/F).Certainly H = Htwhile Ht+1 = {1}.Since ψ K/F(t) = ψ K/L(t) = t,wehave<br />

ψ L/F(t) = tand,byHerbrand’s<strong>the</strong>orem,<br />

Gt = G t = HG t /H = G/H = G.


Chapter8 66<br />

Moreover t + 1 = ψ L/F(t + δ)with δ > 0sothat<br />

Gt+1 = G t+δ = HG t+δ /H = H/H = {1}.<br />

Finally, ψ L/F(m −1)+1 ≥ t +1sothat L/Fand K/L,with mreplacedby ψ L/F(m −1)+1,<br />

satisfy<strong>the</strong>conditions<strong>of</strong><strong>the</strong>lemma. S(L/F)isasubgroup<strong>of</strong> S(K/F).If µFand νFbelong<br />

to S(K/F)<strong>the</strong>n µ L/F = ν L/Fifandonlyif µFand νFbelongto<strong>the</strong>samecoset<strong>of</strong> S(L/F).<br />

Take Stobeaset<strong>of</strong>representativesfor<strong>the</strong>secosets;<strong>the</strong>n<br />

S(K/L) = {µ L/F | µF | µF ∈ S}.<br />

Wetake α(µFνF) = α(µF) + α(νF)if µF belongsto Sand νF belongsto S(L/F). If µF<br />

belongsto Swetake α(µ L/F)tobe P ∗ L/F (α(µF)). If<strong>the</strong>lemmaisvalidfor K/Land L/F<br />

<strong>the</strong>n<br />

N K/F(P ∗ K/F (β)) = N L/F(N K/L(P ∗ K/L (P ∗ L/F (β)))<br />

whichiscongruentmodulo P d F to<br />

N L/F<br />

or <br />

Thisiscongruentmodulo P d F to<br />

whichequals<br />

<br />

µF ∈S<br />

<br />

µF ∈S (P ∗ L/F (β) + P ∗ L/F (α(µF)))<br />

µF ∈S {N L/F(P ∗ L/F<br />

<br />

<br />

(β + α(µF)))}.<br />

νF ∈S(L/F) {β + α(µF) + α(νF)}<br />

µF ∈S(K/F)<br />

{β + α(µF)}.<br />

Thusitisenoughtoprove<strong>the</strong>lemmawhen K/Fiscyclic<strong>of</strong>primeorder. Inthiscase<br />

morepreciseinformationisneededand<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmawillfollowimmediately<br />

fromit.<br />

Lemma 8.3<br />

If K/Fisunramifiedand m ≥ 1wemaytake P ∗ K/F (β) = β.<br />

AccordingtoparagraphV.2<strong>of</strong>Serre’sbook<br />

N K/F(1 + y) − 1 ≡ S K/F(y) (mod P m F )


Chapter8 67<br />

if y ∈ P d′ +ε ′<br />

K .Thus P K/F(y) = S K/F(y)and<br />

Lemma 8.4<br />

ψF<br />

<br />

x PK/Fy xy<br />

= ψK/F γF<br />

Suppose K/Fisabelian,totallyramified,and [K : F] = ℓisanoddprime.If d ≥ t + 1<br />

(β) = β.<br />

wemaytake P ∗ K/L<br />

Therelation<br />

impliesthat m ′ ≡ m(mod 2), ε ′ = ε,and<br />

Since<br />

wehave<br />

Moreover<br />

γF<br />

<br />

.<br />

m ′ = t + 1 + ℓ(m − 1 − t) = ℓm − (t + 1) (ℓ − 1)<br />

d ′ = ℓd +<br />

ℓ − 1<br />

2<br />

ℓ − 1<br />

(ε − t − 1) = d + (m − t − 1).<br />

2<br />

ℓ − 1<br />

(m − t − 1) ≥ m − t − 1 ≥ d + ε<br />

2<br />

d ′ + ε ′ ≥ 2(d + ε) ≥ m.<br />

2(d ′ + ε ′ ) + δ K/F<br />

ℓ<br />

sothatbyLemma5<strong>of</strong>paragraphV.3<strong>of</strong>Serre’sbook<br />

if x ∈ P d′ +ε ′<br />

K .Thelemmafollows.<br />

Let pbe<strong>the</strong>characteristic<strong>of</strong> OF/PF.<br />

Lemma 8.5<br />

≥ m′ + δ K/F<br />

ℓ<br />

= m<br />

N K/F(1 + x) − 1 ≡ S K/F(x) (mod P m F )<br />

Suppose K/Fisabelian,totallyramified,and [K : F] = ℓisanoddprime. Suppose<br />

t+1 ≤ m ≤ 2t+1.Chooseanon­trivialcharacter µFin S(K/F).Wemaychoose α = α(µF)<br />

sothat αOF = P v F ,if m = t + 1 + v,sothat α = N K/Fα1forsome α1in OK,andsothat<br />

µF(1 + x) = ψF<br />

<br />

αx<br />

γF


Chapter8 68<br />

for xin Ps t<br />

F . Here sis<strong>the</strong>leastintegergreaterthanorequalto 2 . If ζisa(p − 1)throot<strong>of</strong><br />

unityin F<strong>the</strong>reisauniqueinteger jwith 1 ≤ j ≤ p − 1suchthat ζ − jliesin PF. Set<br />

µ ζ<br />

F = µj<br />

F .Wemaytake α(µζ F )tobe ζα.If βbelongsto OFwecanfindaβ1in OKsuchthat<br />

β ≡ N K/Fβ1(modP d F ).Then<br />

If<br />

P ∗ K/F (β) ≡ β − β1<br />

α<br />

α1<br />

µF(1 + x) = ψF<br />

(mod P d′<br />

K).<br />

<br />

αx<br />

for xin P s F <strong>the</strong>n,necessarily, αOF = P v F . Choose δ1in OKsuchthat δ1OK = P v K andset<br />

δ = N K/Fδ1.Set α = ωδwhere ωisyettobechosen.Wemusthave<br />

µF(1 + x) = ψF<br />

γF<br />

<br />

ωδx<br />

if x ∈ Ps F . Thisequationdetermines<strong>the</strong>unit wmodulo Pr Fif r = t − s. Sinceanyunitis<br />

anormmodulo Pt Fwemaysuppose ω = NK/Fω1. Take α1 = ω2δ1. β1existsforasimilar<br />

reason.<br />

Thenumber ζ − jmustliein pOF.But K/Fiswildlyramified,because 2t + 1 ≥ m ><br />

1, ℓ = pand p = SK/F(1)sothat,byparagraphV.3<strong>of</strong>Serre’sbook, pbelongsto Pu Fif uis<br />

<strong>the</strong>greatestintegerin<br />

(ℓ − 1) t + 1<br />

(t + 1) ≥<br />

ℓ<br />

2 .<br />

However d + ε ≥ ssothat d + ε + u ≥ t + 1and,if xbelongsto P d+ε<br />

F<br />

Thus<br />

and<br />

Since<br />

ψF<br />

γF<br />

<br />

α(ζ − j)x<br />

= µF (1 + (ζ − j)x) = 1<br />

γF<br />

µ j<br />

F (1 + x) = µj<br />

F (1 + x) = ψF<br />

2s + δ K/F<br />

ℓ<br />

<br />

jαx<br />

γF<br />

≥ t + 1 + δ K/F<br />

ℓ<br />

Thelemmas<strong>of</strong>paragraphV.3<strong>of</strong>Serre’sbookimplythat<br />

= ψF<br />

= t + 1.<br />

ζαx<br />

N K/F(1 + x) ≡ 1 + S K/F(x) + N K/F(x) (modP t+1<br />

F )<br />

γF<br />

, (ζ − j)xliesin Pt+1<br />

F .<br />

<br />

.


Chapter8 69<br />

if xbelongsto P s K and<strong>the</strong>n<br />

1 = µF(N K/F(1 + x)) = µF(1 + S K/F(x) + N K/F(x)).<br />

Asweobserved d + ε ≥ s.Moreover d + ε ≤ t + 1sothat<br />

d + ε + δ K/F<br />

ℓ<br />

≥ d + ε<br />

and SK/F(x)and NK/F(x)belongto P d+ε<br />

F if xbelongsto P d+ε<br />

K .Thus,forsuch x,<br />

<br />

αNK/F(x) −αSK/F(x)<br />

.<br />

sothat<br />

Again<br />

if x ∈ P d′ +ε ′<br />

K .Moreover<br />

ψF<br />

γF<br />

= ψF<br />

2(d ′ + ε ′ ) + δ K/F<br />

ℓ<br />

≥ m<br />

N K/F(1 + x) − 1 = S K/F(x) + N K/F(x) (modP m F )<br />

d ′ + ε ′ = d + ε +<br />

ℓ − 1<br />

2<br />

γF<br />

(m − t − 1) ≥ d + ε<br />

sothat NK/F(x)andhence SK/F(x)belongto P d+ε<br />

F .Thus<br />

<br />

β1x<br />

βNK/Fx ≡ αNK/F But β1x/α1belongsto P d′ +ε ′ −v<br />

K<br />

sothat<br />

whichequals<br />

ψF<br />

⎛<br />

ψF<br />

and<br />

d ′ + ε ′ − v = d + ε +<br />

<br />

β PK/F(x)<br />

γF<br />

⎝ β S K/F(x) − αS K/F<br />

γF<br />

= ψF<br />

β1x<br />

α1<br />

α1<br />

ℓ − 1<br />

2<br />

(mod P m F ).<br />

v − v ≥ d + ε<br />

<br />

β SK/F(x) + β NK/F(x) ⎞<br />

⎠ = ψ K/F<br />

γF<br />

<br />

β − αβ1<br />

<br />

x<br />

α1 γF


Chapter8 70<br />

asrequired.<br />

Lemma 8.6<br />

Suppose K/Fisawildlyramifiedquadraticextension, m ≥ t + 1,and m = t + 1 + v.<br />

Let µFbe<strong>the</strong>non­trivialcharacterin S(K/F).If βbelongsto OF<strong>the</strong>reisaβ1in OKandaδ<br />

in Ut Fsuchthat β ≡ δNK/Fβ1(modP d F ).Wecanchoose α = α(µF)sothat<br />

µF(1 + x) = ψF<br />

<br />

αδx<br />

if xisin Ps Fandsothat α = NK/Fα1forsome α1in OK. Here shas<strong>the</strong>samemeaningas<br />

, t + 1 = r + s.With<strong>the</strong>sechoices<br />

before.Thus,if ris<strong>the</strong>integralpart<strong>of</strong> t+1<br />

2<br />

isin U t F<br />

P ∗ β1αδ<br />

K/F (β) ≡ β −<br />

α1<br />

<br />

γF<br />

mod P d′<br />

K<br />

If β = 0<strong>the</strong>existence<strong>of</strong> δand β1isclear.O<strong>the</strong>rwisewecanfindaβ1suchthat NK/Fβ1/β .Wechoose δaccordingly.If m = t + 1 + vand<br />

µF(1 + x) = ψF<br />

<br />

αδx<br />

for xin P s F <strong>the</strong>n OFα = P v F .Choose η1in OKsothat OKη1 = P v K andset η = N K/Fη1.Set<br />

α = ωηwhere ωisyettobechosen.Wemusthave<br />

µF(1 + x) = ψF<br />

γF<br />

<br />

ωηδx<br />

if x ∈ P s F .Thisequationdetermines<strong>the</strong>unit ωmodulo Pr F .Sinceanyunitisanormmodulo<br />

P t F wemaysuppose ω = N K/Fω1.Take α1 = ω1η1.<br />

Since<br />

Since<strong>the</strong>extensionisquadratic<br />

γF<br />

<br />

.<br />

N K/F(1 + x) = 1 + S K/F(x) + N K/F(x).<br />

s + δ K/F<br />

2<br />

= s + t + 1<br />

2<br />

≥ s


Chapter8 71<br />

both S K/F(x)and N K/F(x)arein P s F if xbelongsto Ps K and<br />

ψF<br />

<br />

αδNK/F(x)<br />

γF<br />

= ψF<br />

−αδSK/F(x)<br />

Wehave m ′ = 2m − (t + 1)and d ′ = m − s,sothat d ′ + ε ′ = m − rand d ′ + ε ′ − v = s.Thus<br />

if xbelongsto P d′ +ε ′<br />

K<br />

<br />

β1x<br />

βNK/F(x) ≡ αδNK/F (modP m F )<br />

and β1x/α1liesin P s K .Consequently<br />

asrequired.<br />

Lemma 8.7<br />

ψF<br />

γF<br />

α1<br />

γF<br />

α1<br />

<br />

.<br />

<br />

β PK/Fx<br />

αδ x<br />

= ψK/F β − β1<br />

If K/Fisatamelyramifiedquadraticextensionand m ≥ 2wemaytake P ∗ K/F (β) = β.<br />

Noticethat t + 1 = 1sothat m ≥ t + 1. Inthiscase m ′ = 2m − 1, d ′ = m − 1,and<br />

d ′ + ε ′ = m.If x ∈ P d′ +ε ′<br />

K<br />

iscongruentto<br />

modulo P m F .Thelemmafollows.<br />

N K/F(1 + x) = 1 + S K/F(x) + N K/F(x)<br />

1 + S K/F(x)<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma8.2wehavetoshowthatif K/Fiscyclic<strong>of</strong>primeorder<br />

NK/F(P ∗ <br />

K/F (β)) ≡<br />

µF ∈S(K/F) (β + α(µF)) (modP d F).<br />

Weconsider<strong>the</strong>casesdiscussedin<strong>the</strong>previouslemmasonebyone. If<strong>the</strong>extensionis<br />

unramifiedwemaytakeall<strong>the</strong>numbers α(µF)tobe0.Thecongruences<strong>the</strong>nreduceto<strong>the</strong><br />

identity β n = β n . Thesameistrueif K/Fiscyclic<strong>of</strong>oddorderand d ≥ t + 1or K/Fis<br />

quadraticand t = 0. If K/Fiscyclic<strong>of</strong>oddorder ℓand t + 1 ≤ m ≤ 2t + 1<strong>the</strong>rightside<br />

becomes<br />

β ℓ − βα ℓ−1 .<br />

γF


Chapter8 72<br />

If β ≡ 0 (modPd F )bothsidesarecongruentto0modulo PdF .Suppose βdoesnotbelongto<br />

Pd Fand βOF = Pu F .Then β1OK = Pu Kand iscongruentto<br />

N K/F<br />

<br />

β − β1<br />

<br />

α<br />

α2<br />

β ℓ − βα ℓ−1 + ℓ−1<br />

i=1 (−1)iβ ℓ E i<br />

<br />

β1α<br />

βα1<br />

modulo Pd F . If x ∈ K<strong>the</strong>n Ei (x)is<strong>the</strong> i<strong>the</strong>lementarysymmetricfunction<strong>of</strong> xandits<br />

(ℓ−1) (v−u)<br />

conjugates.Moreover β1α/βα1belongsto P .If ℓ − 1 ≥ i ≥ 1<br />

Therightsideis<br />

i(ℓ − 1) (v − u) + (ℓ − 1) (t + 1)<br />

ℓ<br />

K<br />

≥<br />

(ℓ − 1)<br />

m − pu ≥ d − ℓu.<br />

ℓ<br />

Theargument<strong>of</strong>paragraphV.3<strong>of</strong>Serre’sbookshowsthat<br />

N K/F<br />

<br />

β − β1<br />

(ℓ − 1) (v + t + 1)<br />

ℓ<br />

<br />

α<br />

≡ β ℓ − βα ℓ−1 (modP d F).<br />

α1<br />

− ℓu.<br />

Forawildlyramifiedquadraticextensionweuse<strong>the</strong>notation<strong>of</strong>Lemma8.6. Theright<br />

side<strong>of</strong><strong>the</strong>congruencemaybetakentobe β2 + βαδ.Theidentityisagainnon­trivialonlyif<br />

βOF = Pu Fwith u < d.Then<strong>the</strong>leftsidemaybetakentobe<br />

whichiscongruentto<br />

modulo P d F .Since<br />

wehave<br />

β 2 − β 2 δS K/F<br />

<br />

β1α<br />

+ δ<br />

βα1<br />

2 αNK/Fβ1 β 2 + αβδ − β 2 δS K/F<br />

v − u + t + 1<br />

2<br />

β 2 S K/F<br />

≥ m<br />

2<br />

<br />

β1α<br />

βα1<br />

− u ≥ d − u<br />

<br />

β1α<br />

≡ 0 (modP<br />

βα1<br />

d F).


Chapter8 73<br />

Suppose χFisaquasi­character<strong>of</strong> CF, m = m(χF),and β = β(χF).If,assometimes<br />

happens, m ′ = m(χ K/F)wecantake β(χ K/F) = P ∗ K/F (β).<br />

Lemma 8.8<br />

Suppose K/FisGaloisand G = G(K/F).Suppose s ≥ 0isanintegerand G s = {1}.If<br />

m = m(χF)and m > s<strong>the</strong>n<br />

m ′ = ψ K/F(m − 1) + 1 = m(ψ K/F).<br />

ItfollowsfromparagraphV.6<strong>of</strong>Serre’sbookthat<br />

NK/F(U ψK/F(v) K ) = U v F<br />

if v ≥ s. Thus χ K/F istrivialon U u K if u > ψ K/F(m − 1)butisnottrivialon U i K if<br />

u = ψ K/F(m − 1).<br />

Wecannowcollecttoge<strong>the</strong>r,withoneortwoadditionalcomments,<strong>the</strong>previousresults<br />

inaformwhichwillbeusefulin<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>firstmainlemma.Weuse<strong>the</strong>samenotation.<br />

Lemma 8.9<br />

SupposeK/Fisacyclicextension<strong>of</strong>primeorderℓ, χFisaquasi­character<strong>of</strong>CF , m(χF) ≥<br />

t + 1, m(χF) > 1,and m(χ K/F) − 1 = ψ K/F(m(χF) − 1).<br />

(a)If K/Fisunramifiedwemaytake β(χ K/F) = β(χF)and β(µFχF) = β(χF)forall µF<br />

in S(K/F).<br />

(b)If ℓisoddand d ≥ t + 1wemaytake β(χ K/F) = β(χF)and β(µFχF) = β(χF)forall<br />

µFin S(K/F).<br />

(c)If ℓisoddand t + 1 ≤ m ≤ 2t + 1and µFisagivennon­trivialcharacterin S(K/F)we<br />

maychoose α = α(µF) = N K/Fα1asinLemma8.5and β = β(χF) = N K/Fβ1forsome<br />

β1in UK.Thenwemaychoose<br />

and<br />

β(χ K/F) = β − β1<br />

α<br />

α1<br />

β(µ ζ<br />

F χF) = N K/F(β1 + ζα1).


Chapter8 74<br />

(d)If ℓis2and K/Fiswildlyramifiedwechoose α = α(µF)asinLemma8.6. Wemay<br />

choose β = β(χF)in<strong>the</strong>form δN K/Fβ1with δin U t F .Thenwemaychoose<br />

and<br />

β(χ K/F) = β − β1<br />

αδ<br />

α1<br />

β(µFχF) = β + αδ.<br />

(e)If ℓis2and K/Fistamelyramifiedwemaytake β(χ K/F) = β(µFχF) = β(χF).<br />

<strong>On</strong>lypart(c)requiresanyfur<strong>the</strong>rverification.Itmustbeshownthat<br />

Theleftsideiscongruentto<br />

Allweneeddoisshowthat<br />

Therightsideis<br />

N K/F(β1 + ζα1) ≡ β + ζα (modP d F ).<br />

N K/F<br />

βN K/F<br />

<br />

1 + ζα1<br />

<br />

.<br />

β1<br />

<br />

1 + ζα1<br />

<br />

≡ 1 +<br />

β1<br />

ζα<br />

β<br />

1 + N K/F<br />

ζα1<br />

β1<br />

<br />

.<br />

(modP d F).<br />

AccordingtoparagraphV.3<strong>of</strong>Serre’sbook<strong>the</strong>congruencewillbesatisfiedif<br />

v + (ℓ − 1) (t + 1)<br />

ℓ<br />

≥ d.<br />

But t + 1 = d + xwith x ≥ 0sothat d + x + v = 2d + εand v = d + ε − x.Thus<br />

v + (ℓ − 1) (t + 1)<br />

ℓ<br />

= d + ε − x + (ℓ − 1) (d + x)<br />

ℓ<br />

= d +<br />

ε + (ℓ − 2)x<br />

ℓ<br />

Theprecedingdiscussionhasnowtoberepeatedwithdifferenthypo<strong>the</strong>sesanddifferent,<br />

butsimilar,conclusions.<br />

Lemma 8.10<br />

≥ d.


Chapter8 75<br />

Suppose K/Fisabelianand G = G(K/F).Suppose<strong>the</strong>reisat ≥ 0suchthat G = Gt<br />

while Gt+1 = {1}.If 2 ≤ m ≤ t+1<strong>the</strong>n m ′ = ψK/F(m−1)+1isjust m.Let t+1 = m+v,let<br />

δbesuchthat δOF = P t+1+n(ψF )<br />

F ,let ε1in OKbesuchthat ε1OK = Pv K ,andlet ε = NK/Fε1. Wemaychoose γF = δ/εand γK = δ/ε1. Let rbe<strong>the</strong>greatestintegerin t+1<br />

andlet 2<br />

s = t + 1 − r.If µFisanon­trivialcharacterin S(K/F)<strong>the</strong>n m(µF) = t + 1.Let<br />

for xin P s F .Then<br />

β <br />

µF(1 + x) = ψF<br />

<br />

β(µF)x<br />

µF =1 (βε + β(µF)) ≡ N K/F(P ∗ K/F (β)) (modPd F).<br />

Therelation m ′ = ψ K/F(m − 1) + 1 = misanimmediateconsequence<strong>of</strong><strong>the</strong>definitions.<br />

Since<strong>the</strong>extensionistotallyramified<br />

if n = n(ψF).Thus<br />

and<br />

n(ψ K/F) = [K : F]n + ([K : F] − 1)(t + 1)<br />

m + n = (t + 1 + n) − v<br />

m ′ + n(ψ K/F) = [K : F](t + 1 + n) + (m − t − 1) = [K : F](t + 1 + n) − v.<br />

Consequently γFand γKcanbechosenasasserted.Theresults<strong>of</strong>chapterV<strong>of</strong>Serre’sbook<br />

implythat m(µF) = t + 1if µFisnottrivial.<br />

WesawwhenprovingLemma8.2thatifx ≡ y(modP d′<br />

K )<strong>the</strong>nN K/Fx ≡ N K/Fy(modP d F )<br />

andthatif F ⊆ L ⊆ Kboth L/Fand K/Lsatisfy<strong>the</strong>conditions<strong>of</strong><strong>the</strong>lemma.For L/F, ε1<br />

isreplacedby N K/Lε1and,for K/L, εisreplacedby N K/Lε1.Take Q ∗ L/F tobe P ∗ L/F in<strong>the</strong><br />

specialcasethat m = t + 1and ε1 = 1.Then<br />

ψ L/F<br />

NK/L(ε1)x P ∗ L/F (β)<br />

bydefinition.Therightsideisequalto<br />

δ<br />

ψ L/F<br />

<br />

δ<br />

= ψF<br />

<br />

∗ x QL/F (εβ)<br />

.<br />

δ<br />

<br />

εPL/F(x)β<br />

δ


Chapter8 76<br />

Thus<br />

Q ∗ L/F (εβ) ≡ N K/L(ε1)P ∗ L/F (β) (modPs L ).<br />

If µF belongsto S(K/F)butnotto S(L/F)<strong>the</strong>n m(µ L/F) = m(µF)and β(µ L/F)may<br />

betakentobe Q ∗ L/F (β(µF)). Let S ′ beaset<strong>of</strong>representativesfor<strong>the</strong>cosets<strong>of</strong> S(L/F)in<br />

S(K/F) − S(L/F)andsuppose<strong>the</strong>lemmaistruefor K/Land L/F.Then<br />

iscongruentto<br />

N K/F(P ∗ K/F (β)) = N L/F(N K/L(P ∗ K/L (P ∗ L/F (β))))<br />

NL/F(P ∗ <br />

L/F (β)<br />

µF ∈S ′{NK/L(ε1)P ∗ L/F (β) + Q∗L/F (β(µF))})<br />

modulo P d F .Thisinturniscongruentto<br />

NL/F(P ∗ <br />

L/F (β))<br />

µF ∈S ′ NL/F(Q ∗ L/F (εβ + β(µF))).<br />

Applying<strong>the</strong>inductionhypo<strong>the</strong>sisto<strong>the</strong>firstpartandLemma8.2to<strong>the</strong>second,weseethat<br />

<strong>the</strong>wholeexpressioniscongruentto<br />

β<br />

<br />

modulo P d F asrequired.<br />

νF ∈S(L/F) (εβ + β(νF))<br />

νF =1<br />

<br />

µF ∈S ′ (εβ + β(µF) + β(νF))<br />

νF ∈S(L/F)<br />

<strong>On</strong>ceagainwedevotealemmatocyclicextensions<strong>of</strong>primeorder.<br />

Lemma 8.11<br />

Suppose K/Fiscyclic<strong>of</strong>primeorder ℓand 2 ≤ m ≤ t+1.Chooseanon­trivialcharacter<br />

µFin S(K/F).Thereisan α1in UKsuchthatif α = N K/Fα1<br />

µF(1 + x) = ψF<br />

<br />

αx<br />

<br />

δ<br />

for xin P s F .If βbelongsto OF<strong>the</strong>reisaβ1in OKsuchthat β ≡ N K/F(β1) (modP t F ).Then<br />

P ∗ ε<br />

K/F (β) ≡ β<br />

ε1<br />

− β1<br />

α<br />

α1<br />

(mod P d′<br />

K ).


Chapter8 77<br />

Since β(µF)isdeterminedonlymodulo P s F and s ≤ twecantake β(µF) = N K/Fα1for<br />

some α1in UK.Theexistence<strong>of</strong> β1als<strong>of</strong>ollowsasbefore.Since t + 1 ≥ m<br />

and<br />

2(d ′ + ε ′ ) + (ℓ − 1) (t + 1)<br />

ℓ<br />

≥<br />

m + (ℓ − 1) (t + 1)<br />

ℓ<br />

≥ m<br />

N K/F(1 + x) ≡ 1 + S K/F(x) + N K/F(x) (modP m F )<br />

if xbelongsto P d′ +ε ′<br />

K .Thus<br />

<br />

εPK/F(x)β εxβ<br />

ψF<br />

= ψK/F δ<br />

δ<br />

But d ′ + ε ′ + t ≥ t + 1sothat<br />

N K/F(ε1x)β ≡ αN K/F<br />

ε1β1<br />

Since t + 1 = m + v, d ′ + ε ′ + v ≥ sandif y = ε1β1<br />

α1<br />

in P s K .But<br />

sothat<br />

Consequently<br />

Inconclusion<br />

asrequired.<br />

α1<br />

2s + (t + 1)(ℓ − 1)<br />

ℓ<br />

ψF<br />

<br />

· x<br />

NK/F(ε1x)β<br />

δ<br />

(mod P t+1<br />

F )<br />

<br />

.<br />

· x<strong>the</strong>n ywhichliesin P d′ +ε ′ +v<br />

K<br />

≥ t + 1<br />

N K/F(1 + y) ≡ 1 + S K/F(y) + N K/F(y) (mod P t+1<br />

F ).<br />

ψF<br />

ψF<br />

<br />

−αNK/F(y)<br />

<br />

εPK/F(x)β<br />

= ψK/F δ<br />

δ<br />

= ψF<br />

ε1<br />

δ<br />

αSK/F(y)<br />

ε<br />

ε1<br />

δ<br />

· β − α<br />

α1<br />

<br />

.<br />

· β1<br />

<br />

x<br />

alsolies<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma8.10wehavetoshowthatwhen K/Fiscyclic<strong>of</strong>prime<br />

order, ℓ<br />

β <br />

µF =1 (βε + β(µF)) ≡ N K/F(P ∗ K/F (β)) (mod Pd F )<br />

Since 2 ≤ m ≤ t + 1<strong>the</strong>extensioniswildlyramified, ℓ = p,andonce<strong>the</strong>character µF is<br />

chosenasin<strong>the</strong>previouslemmawecandefine µ ζ<br />

FasinLemma8.5.Theleftsideiscongruent to<br />

β β ℓ−1 ε ℓ−1 + (−1) ℓ α ℓ−1 .


Chapter8 78<br />

If β ∈ Pd Fthisiscongruentto0andsois<strong>the</strong>rightside.Suppose βOF = Pu Fwith u < d.The<br />

rightsideiscongruentto<br />

Since<br />

thisiscongruentto<br />

Since<br />

Weseethat<br />

N K/F<br />

<br />

β ε<br />

ε1<br />

− β1<br />

α1<br />

(ℓ − 1)(u + v) + (ℓ − 1)(t + 1)<br />

ℓ<br />

βα ℓ−1<br />

<br />

βN K/F<br />

<br />

α<br />

≡ βα ℓ−1 <br />

β<br />

NK/F N K/F<br />

β<br />

andthat<strong>the</strong>expression(8.1)iscongruentto<br />

modulo P d F .<br />

Lemma 8.12<br />

β1<br />

≥<br />

α1<br />

α<br />

ℓ − 1<br />

ℓ<br />

β1<br />

α1<br />

α<br />

· (t + 1) ≥<br />

ε<br />

ε1<br />

<br />

− 1 .<br />

t + 1<br />

2<br />

≥ d<br />

<br />

ε<br />

+ (−1) ℓ<br />

<br />

. (8.1)<br />

ε1<br />

−1<br />

t−u<br />

β1 ≡ 1 (mod PF ).<br />

β ℓ+1 N K/Fβ −1<br />

1 ≡ βℓ (mod P t F)<br />

β ℓ ε ℓ−1 + (−1) ℓ βα ℓ−1<br />

SupposeK/Fisabelianand G = G(K/F).Suppose<strong>the</strong>reisaninteger tsuchthatG = Gt<br />

while Gt+1 = {1}. Let χFbeaquasi­character<strong>of</strong> CFandsuppose 2 ≤ m(χF) ≤ t + 1. If<br />

m(χF) < t + 1<strong>the</strong>n m(χ K/F) = m(χF).If m(χF) = t + 1<strong>the</strong>n m(µFχF) < t + 1forsome<br />

µFin S(K/F)ifandonlyif m(χ K/F) < m(χF).<br />

ItfollowsimmediatelyfromLemma6.7thatif χFisanyquasi­character<strong>of</strong> CFand Eany<br />

finiteseparableextension<strong>of</strong> F<strong>the</strong>n<br />

m(χ E/F) − 1 ≤ ψ E/F(m(χF) − 1).<br />

In<strong>the</strong>particularcaseunderconsiderationLemma6.10showsthatif m = m(χF) ≤ t<strong>the</strong>n<br />

NK/F : U m−1<br />

K /Ut K −→ Um−1<br />

F /U t F


Chapter8 79<br />

isanisomorphism.Thus χK/F(α)willbedifferentfrom1forsome αin U m−1<br />

K and m(χK/F) willbeatleast m.If m(χF) = t + 1<strong>the</strong>n m(µFχF)islessthan t + 1forsome µFin S(K/F)<br />

ifandonlyif χF istrivialon<strong>the</strong>image<strong>of</strong> Ut K /Ut+1<br />

K in Ut F /Ut+1<br />

F . Thisissoifandonlyif<br />

m(χK/F) ≤ t.<br />

Weshallneed<strong>the</strong>followinglemmain<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>firstmainlemma.<br />

Lemma 8.13<br />

Suppose K/Fiscyclic<strong>of</strong>primeorder, χFisaquasi­character<strong>of</strong> CFwith m(χF) ≤ t + 1,<br />

and m(χ K/F) = m(χF). Choose α, α1, ε, ε1inLemma8.11. Wemaychoose β = β(χF) =<br />

N K/Fβ1with β1in UKandwemaychoose<br />

β(χ K/F) = β ε<br />

Moreover m(µ ζ<br />

F χF) = t + 1andwemaytake<br />

ε1<br />

− β1<br />

α<br />

.<br />

α1<br />

β(µ ζ<br />

F χF) = N K/F(ζα1 + ε1β1).<br />

Since β(χF)isdeterminedonlymodulo Pd Fand d ≤ t<strong>the</strong>existence<strong>of</strong> β1isclear. Itis<br />

alsoclearthat m(µ ζ<br />

FχF) = t + 1.Theelements β(χF), β(χK/F),and β(µ ζ<br />

FχF)aretosatisfy <strong>the</strong>followingconditions:<br />

(i)If xisin P d F<br />

(ii)If xisin P d′<br />

K<br />

(iii)If xisin P s F<br />

χF(1 + x) = ψF<br />

χ K/F(1 + x) = ψ K/F<br />

µ ζ<br />

F (1 + x)χF(1 + x) = ψF<br />

εβ(χF)x<br />

δ<br />

<br />

.<br />

ε1β(χ K/F)x<br />

Wehavealreadyshownthat β(χ K/F)maybetakentobe<br />

β ε<br />

ε1<br />

α<br />

− β1<br />

α1<br />

δ<br />

<br />

.<br />

<br />

β(µ ζ<br />

FχF)x <br />

.<br />

δ


Chapter8 80<br />

β(µ ζ<br />

F χF)mustbecongruentto ζα + εβmodulo P r F<br />

Since<br />

Therightsideiscongruentto<br />

modulo P r F .∗<br />

N K/F(ζα1 + ε1β1) = ζαN K/F<br />

ν + (ℓ − 1)(t + 1)<br />

ℓ<br />

ζα<br />

<br />

1 + N K/F<br />

∗(1998)Themanuscript<strong>of</strong>Chapter8endshere.<br />

≥<br />

ε1β1<br />

ζα1<br />

<br />

1 + ε1β1<br />

<br />

.<br />

ζα1<br />

ℓ − 1<br />

(t + 1) ≥ r.<br />

ℓ<br />

<br />

= ζα + εβ


Chapter9 81<br />

Chapter Nine.<br />

A Lemma <strong>of</strong> Hasse<br />

Let λ ⊆ κbetw<strong>of</strong>initefieldsandlet G = G(κ/λ).If x ∈ κset<br />

ω κ/λ(x) = x σ1 x σ2<br />

where<strong>the</strong>sumistakenoverallunorderedpairs<strong>of</strong>distinctelements<strong>of</strong> G.Itisclearthat<br />

ω κ/λ(x + y) = ω κ/λ(x) + ω κ/λ(y) + S κ/λ(x)S κ/λ(y) − S κ/λ(xy).<br />

<strong>On</strong>ereadilyverifiesalsothatif λ ≤ η ≤ κ<strong>the</strong>n<br />

ω κ/λ(x) = ω η/λ(S κ/η(x)) + S η/λ (ω κ/η(x)).<br />

Suppose ψλisanon­trivialcharacter<strong>of</strong> λand ϕλisanowherevanishingfunctionon λ<br />

satisfying<strong>the</strong>identity<br />

ϕλ(x + y) = ϕλ(x)ϕλ(y) ψλ(xy).<br />

Define ϕ κ/λon κby<br />

Then ϕ κ/λ(x + y)isequalto<br />

whichis<br />

ϕ κ/λ(x) = ϕλ(S κ/λ(x)) ψλ(−ω κ/λ(x)).<br />

ϕλ(S κ/λ(x + y)) ψλ (−ω κ/λ(x) − ω κ/λ(y) − S κ/λ(x)S κ/λ(y) + S κ/λ(xy))<br />

ϕ κ/λ(x)ϕ κ/λ(y)ψ κ/λ(xy).<br />

If<strong>the</strong>fieldshaveoddcharacteristic<strong>the</strong>followinglemmais,basically,aspecialcase<strong>of</strong><br />

Lemma7.7.ThatlemmahasbeenproveninasimpleanddirectmannerbyWeil[14].Weshall<br />

usehismethodtoprove<strong>the</strong>followinglemmawhichincharacteristictwo,whenitcannotbe<br />

reducedto<strong>the</strong>previouslemma,isduetoHasse[8].<br />

Lemma 9.1<br />

Let<br />

σ(ϕλ) = − <br />

x∈λ ϕλ(x)


Chapter9 82<br />

andlet<br />

Then<br />

If<br />

σ(ϕ κ/λ) = − <br />

x∈κ ϕ κ/λ(x).<br />

σ(ϕ κ/λ) = σ(ϕλ) [κ:λ] .<br />

P(X) = X m − aX m−1 + bX m−2 − +...<br />

isanymonicpolynomialwithcoefficientsin λset m(P) = mand<br />

χλ(P) = ϕλ(a) ψλ(−b).<br />

If<strong>the</strong>degree<strong>of</strong><strong>the</strong>polynomialis1, bistakentobe0;if<strong>the</strong>degreeis0both aand baretaken<br />

tobe0.If<br />

P ′ (X) = X m′<br />

− a ′ X m′ −1 ′ m<br />

+ b X ′ −2<br />

− +...<br />

<strong>the</strong>n<br />

and<br />

PP ′ (X) = X m+m′<br />

− (a + a ′ ) X m+m′ −1 ′ ′ m+m<br />

+ (b + b + aa )X ′ −2<br />

− +...<br />

χλ(PP ′ ) = ϕλ(a + a ′ ) ψλ(−b − b ′ − aa ′ ) = χλ(P)χλ(P ′ ).<br />

If tisanindeterminateweintroduce<strong>the</strong>formalseries<br />

Fλ(t) = χλ(P)t m(P) = (1 − χλ(P)t m(P) ) −1 .<br />

Thesumisoverallmonicpolynomialswithcoefficientsin λand<strong>the</strong>productisoverallirreduciblepolynomials<strong>of</strong>positivedegreewithcoefficientsin<br />

λ.If r ≥ 2<br />

sothat<br />

<br />

m(P)=r χλ(P) = 0<br />

Fλ(t) = 1 − σ(ϕλ)t.<br />

Ifwereplace λby κ, ϕλby ϕ κ/λ,and ψλby ψ κ/λ,wecandefine F κ/λ(t)inasimilarway.<br />

If k = [κ : λ]and Tis<strong>the</strong>set<strong>of</strong> kthroots<strong>of</strong>unity<strong>the</strong>problemistoshowthat<br />

<br />

ζ∈T Fλ(ζt) = F κ/λ(t k ).


Chapter9 83<br />

Suppose Pisanirreduciblemonicpolynomialwithcoefficientsin λand P ′ isone<strong>of</strong>its<br />

monicirreduciblefactorsover κ.Let m = m(P)andlet rbe<strong>the</strong>greatestcommondivisor<strong>of</strong><br />

mand k.Thefieldobtainedbyadjoining<strong>the</strong>roots<strong>of</strong> Pto κhasdegree mk<br />

r over λandis<strong>the</strong><br />

sameas<strong>the</strong>fieldobtainedbyadjoining<strong>the</strong>roots<strong>of</strong> P ′ to κ. Thus m(P ′ ) = m<br />

and Psplits<br />

r<br />

into rirreduciblefactorsover κ.Weshallshowthat<br />

Thusif P ′ 1 , . . ., P ′ r<br />

whichequals<br />

χ κ/λ(P ′ ) = {χλ(P)} k<br />

r .<br />

are<strong>the</strong>factors<strong>of</strong> Pand ℓ = k<br />

r<br />

r<br />

Thenecessaryidentityfollows.<br />

i=1 {1 − χ κ/λ(P ′ i)t<br />

<br />

km(P ′<br />

i ) } = {1 − χλ(P) ℓ t ℓm } r<br />

ζ∈T {1 − χλ(P)ζ m t m }.<br />

Let νbe<strong>the</strong>fieldobtainedbyadjoiningaroot x<strong>of</strong> P ′ to κandlet µbe<strong>the</strong>fieldobtained<br />

byadjoining xto λ.If<br />

P(X) = X m − aX m−1 + bX m−2 . . .<br />

<strong>the</strong>n<br />

and<br />

Thus<br />

Since ϕ ν/λ(x)isequalto<br />

whichinturnequals<br />

Weconcludethat<br />

a = S µ/λ(x)<br />

b = ω µ/λ(x).<br />

χλ(P) = ϕλ(S µ/λ(x)) ψλ(−ω µ/λ(x)) = ϕ µ/λ(x).<br />

ϕλ(S κ/λ(S ν/κ(x))) ψλ(−ω κ/λ(S ν/κ(x)) + S κ/λ(ω ν/κ(x)))<br />

Replacing κby µweseethat ϕ ν/λ(x)equals<br />

ϕ κ/λ(S ν/κ(x)) ψ κ/λ(−ω ν/κ(x)).<br />

χ κ/λ(P ′ ) = ϕ ν/λ(x).<br />

ϕ µ/λ(S ν/µ(x)) ψ µ/λ(−ω ν/µ(x)) = ϕ µ/λ(ℓx) ψ µ/λ<br />

<br />

−ℓ<br />

(ℓ − 1)<br />

2<br />

x 2<br />

<br />

.


Chapter9 84<br />

<strong>On</strong>eeasilyshowsbyinductionthatforeveryinteger ℓ<br />

Therelation<br />

follows.<br />

{ϕ µ/λ(x)} ℓ = ϕ µ/λ(ℓx) Ψ µ/λ<br />

<br />

−ℓ<br />

χ κ/λ(P ′ ) = {χλ(P)} ℓ<br />

Taking µ = λin<strong>the</strong>identity(9.1)weseethat<br />

{ϕλ(x)} ℓ = ϕλ(ℓx) ψλ<br />

<br />

−ℓ<br />

(ℓ − 1)<br />

2<br />

(ℓ − 1)<br />

2<br />

x 2<br />

<br />

x 2<br />

<br />

. (9.1)<br />

foreveryinteger ℓ.Moreover {ϕλ(0)} 2 = ϕλ(0)sothat ϕλ(0) = 1.If<strong>the</strong>characteristic p<strong>of</strong><br />

λisoddtake ℓ = ptoseethat {ϕλ(x)} p = 1. If<strong>the</strong>characteristicis2,take ℓ = 4toseethat<br />

{ϕλ(x)} 4 = 1.Suppose ϕ ′ λisano<strong>the</strong>rfunctionon λwhichvanishesnowhereandsatisfies<br />

Then ϕ ′ λ ϕ−1<br />

λ<br />

Ofcourse<br />

Thus<br />

ϕ ′ λ (x + y) = ϕ′ λ (x) ϕ′ λ (y) ψλ(xy).<br />

isacharacterandforsome αin λ<br />

ϕ ′ λ(x) ≡ ϕλ(x) ψλ(αx).<br />

ϕλ(x)ψλ(αx) = ϕλ(x + α)ϕ −1<br />

λ (α).<br />

σ(ϕ ′ λ) = ϕ −1<br />

λ (α) σ(ϕλ).<br />

If aand baretwonon­zerocomplexnumbersand misapositiveintegerwewrite a ∼m bif,<br />

forsomeinteger r ≥ 0, a<br />

b<br />

Lemma 9.2<br />

m r<br />

= 1.<br />

If α ∈ λ × ,<strong>the</strong>multiplicativegroup<strong>of</strong> λ,let ν(α)be1or­1accordingas αisorisnota<br />

squarein λ.Suppose ψ ′ λ (x) = ψλ(αx), ϕλand ϕ ′ λ arenowherevanishing,and<br />

while<br />

ϕλ(x + y) = ϕλ(x)ϕλ(y)ψλ(xy)<br />

ϕ ′ λ(x + y) = ϕ ′ λ(x)ϕ ′ λ(y)ψ ′ λ(xy).


Chapter9 85<br />

Then<br />

Moreover<br />

σ(ϕ ′ λ ) ∼p ν(α)σ(ϕλ).<br />

σ(ϕλ) ∼2p |σ(ϕλ)|.<br />

Supposefirstthat pisodd. By<strong>the</strong>remarkspreceding<strong>the</strong>statement<strong>of</strong><strong>the</strong>lemmaitis<br />

enoughtoprove<strong>the</strong>assertionsforonechoice<strong>of</strong> ϕλand ϕ ′ <br />

λ . Forexamplewecouldtake<br />

2<br />

(x )<br />

ϕλ(x) = Ψλ andif α = β 2<br />

2wecouldtake ϕ ′ 2<br />

(βx)<br />

λ (x) = ψλ .Inthiscaseitisclear<br />

2<br />

that σ(ϕλ) = σ(ϕ ′ λ ).Howeverif αisnotasquare,wetake ϕ′ <br />

2<br />

αx<br />

λ (x) = ψλ .Then<br />

Withthischoice<strong>of</strong> ϕλ,<br />

σ(ϕλ) + σ(ϕ ′ <br />

λ ) = 2<br />

x∈λ ψλ<br />

ϕλ(x) = ψλ<br />

<br />

− x2<br />

<br />

2<br />

<br />

x<br />

<br />

= 0.<br />

2<br />

sothat σ(ϕλ) = ν(−1) σ(ϕλ).Moreoveritiswellknownandeasilyverifiedthat σ(ϕλ) = 0.<br />

Since<br />

{σ(ϕλ)} 4 = {ν(−1)} 2 |σ(ϕλ)| 4 = |σ(ϕλ)| 4<br />

wehave<br />

σ(ϕλ) ∼2p |σ(ϕλ)|.<br />

Theabsolutevalueon<strong>the</strong>rightis<strong>of</strong>course<strong>the</strong>ordinaryabsolutevalue.<br />

Suppose pis2. Againanychoice<strong>of</strong> ϕλand ϕ ′ λwilldo. Inthiscase αisnecessarilya<br />

square.Let α = β2 .Wecantake ϕ ′ λ (x) = ϕλ(βx).Then σ(ϕ ′ λ ) = σ(ϕλ).Itisenoughtoprove<br />

<strong>the</strong>secondassertionforany ψλandany ϕλ.Let φbe<strong>the</strong>primefieldandlet ψφbe<strong>the</strong>unique<br />

non­trivialadditivecharacter<strong>of</strong> φ.Take ψλ = ψλ/φ.Let ϕφ(0) = 1, ϕφ(1) = i.<strong>On</strong>everifies<br />

byinspectionthat<br />

ϕφ(x + y) = ϕφ(x)ϕφ(y)ψφ(xy).<br />

Take ϕλ = ϕ λ/φ.Since<br />

itisenoughtoverifythat<br />

Since σ(ϕφ) = −1 + i,thisisnoproblem.<br />

σ(ϕ λ/φ) = {σ(ϕφ)} [λ:φ] ,<br />

σ(ϕφ) ∼2 |σ(ϕφ)|.<br />

2


Chapter9 86<br />

If aisanon­zerocomplexnumberset<br />

A [a] = a<br />

|a| .<br />

Thefollowinglemmaexplainsourinterestin<strong>the</strong>numbers σ(ϕλ).<br />

Lemma 9.3<br />

Suppose Lisanon­archimedeanlocalfieldand χL isaquasi­character<strong>of</strong> CL with<br />

m = m(χL) = 2d + 1,where disapositiveinteger.Let ψLbeanon­trivialadditivecharacter<br />

<strong>of</strong> Landlet n = n(ψL).Let γbesuchthat γOL = P m+n<br />

L andlet βbeaunitsuchthat<br />

<br />

βx<br />

χL(1 + x) = ψL<br />

γ<br />

for xin P d+1<br />

L .Choose δsothat δOL = P d L andlet ψλbe<strong>the</strong>character<strong>of</strong> λ = OL/PLdefined<br />

by<br />

If ϕλisdefinedby<br />

<strong>the</strong>n<br />

and<br />

ψλ(x) = ψL<br />

ϕλ(x) = ψL<br />

<br />

βδx<br />

γ<br />

βδ 2 x<br />

γ<br />

<br />

.<br />

χ −1<br />

L (1 + δx)<br />

ϕλ(x + y) = ϕλ(x)ϕλ(y)ψλ(xy)<br />

∆3(χL, ψL, γ) = A [−σ(ϕλ)].<br />

In<strong>the</strong>statement<strong>of</strong>thislemmawehavenotdistinguished,in<strong>the</strong>notation,betweenan<br />

element<strong>of</strong> OLanditsimagein λ.Thisisconvenientandnottooambiguous.Itwillbedone<br />

again.Theonlyquestionablepart<strong>of</strong><strong>the</strong>lemmais<strong>the</strong>relation<br />

Since<br />

wehave<br />

χ −1<br />

L<br />

ϕλ(x + y) = ϕλ(x)ϕλ(y)ψλ(xy).<br />

(1 + δx) (1 + δy) ≡ (1 + δx + δy) (1 + δ 2 xy) (modP m L )<br />

(1 + δx) χ−1<br />

L<br />

(1 + δy) = χ−1<br />

L (1 + δx + δy) ψL<br />

<br />

− βδ2 <br />

xy<br />

.<br />

γ


Chapter9 87<br />

Therequiredrelationfollowsimmediately.<br />

Thereareafewremarkswhichweshallneedlater. Itisconvenientt<strong>of</strong>ormulate<strong>the</strong>m<br />

explicitlynow.Weretain<strong>the</strong>notation<strong>of</strong><strong>the</strong>previouslemma.<br />

Lemma 9.4<br />

If m(µL) < m(χL)<strong>the</strong>n<br />

∆3(µL χL, ΨL; γ) ∼p ∆3 (χL, ΨL; γ)<br />

andif m(µL) ≤ dwemaytake β(µLχL) = β(χL)and<strong>the</strong>n<br />

∆3(µLχL, ψL; γ) = ∆3(χL, ψL; γ).<br />

Inbothcases m(µLχL) = m(χL).Moreoverif x ∈ P2d L<br />

<br />

β(µLχL)x<br />

ψL<br />

= µL(1 + x) χL(1 + x) = χL(1 + x)<br />

γ<br />

whichinturnequals<br />

Thus<br />

andif<br />

while<br />

ψL<br />

β(χL)x<br />

γ<br />

<br />

.<br />

β(µLχL) ≡ β(χL) (modPL)<br />

ψλ(x) = ψL<br />

ψ ′ λ(x) = ψL<br />

<br />

β(χL)δ2 <br />

x<br />

γ<br />

<br />

β(µLχL)δ2 <br />

x<br />

<strong>the</strong>n ψλ = ψ ′ λ .Thefirstassertion<strong>of</strong><strong>the</strong>lemmanowfollowsfrom<strong>the</strong>previoustwolemmas.<br />

Itisclearthatwecantake β(µLχL) = β(χL)if m(µL) ≤ d.Let<strong>the</strong>commonvalue<strong>of</strong><strong>the</strong>two<br />

numbersbe β.Then<br />

<br />

isequalto<br />

ψL<br />

βδx<br />

γ<br />

ψL<br />

µ −1<br />

L<br />

<br />

βδx<br />

γ<br />

γ<br />

(1 + δx)χ−1 L (1 + δx)<br />

χ −1<br />

L (1 + δx).


Chapter9 88<br />

Weseenowthat<strong>the</strong>secondassertioniscompletelytrivial.<br />

Thereisacorollary<strong>of</strong>thislemmawhichitisconvenienttoobserve.<br />

Lemma 9.5<br />

Suppose m(χL) = 2d + εwhere disapositiveintegerand εis0or1.If m(µL) ≤ dand<br />

µLis<strong>of</strong>order r<strong>the</strong>n<br />

∆(µLχL, ψL) ∼r ∆(χL, ψL).<br />

Choose γin<strong>the</strong>usualwaysothat<br />

and<br />

Itisclearthat<br />

Ifwetake<br />

<strong>the</strong>n,clearly,<br />

∆(χL, ψL) = χL(γ) ∆1(χL, ψL; γ)<br />

∆(µLχL, ψL) = χL(γ)µL(γ) ∆1(µLχL, ψL; γ).<br />

µL(γ) ∼r 1.<br />

β(µLχL) = β(χL)<br />

∆2(µLχL, ψL; γ) ∼r ∆2(χL, ψL, γ).<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma9.5wehaveonlytoappealtoLemma9.4.<br />

Lemma 9.6<br />

Suppose Kisanunramifiedextension<strong>of</strong> Land χLisaquasi­character<strong>of</strong> CLwith<br />

m = m(χL) = 2d + 1<br />

where disapositiveinteger.Let ψLbeanon­trivialadditivecharacter<strong>of</strong> Fandlet n = n(ψL).<br />

Suppose<br />

<br />

βx<br />

χL(1 + x) = ψL<br />

̟ m+n<br />

<br />

L<br />

for xin P d+1<br />

L .Take<br />

If<br />

ϕλ(x) = ψL<br />

β(χL) = β(χ K/L) = β.<br />

d β̟Lx ̟ m+n<br />

<br />

L<br />

χ −1<br />

L (1 + ̟d Lx)


Chapter9 89<br />

andif<br />

ϕκ(x) = ψ K/L<br />

d β̟Lx ̟ m+n<br />

<br />

L<br />

χ −1<br />

K/L (1 + ̟d L x)<br />

for xin κ = 0K/PK<strong>the</strong>n ϕκ = ϕ κ/λ.Moreoverif [K : L] = ℓ<strong>the</strong>n<br />

∆3(χ K/L, ψ K/L, ̟ m+n<br />

L ) = (−1) ℓ−1 {∆3(χL, ψL, ̟ m+n<br />

L )} ℓ .<br />

<strong>On</strong>ceweprovethat ϕκ = ϕ κ/λthislemmawillfollowfromLemmas9.1and9.3. If x<br />

belongsto Klet E 2 (x)be<strong>the</strong>secondelementarysymmetricfunction<strong>of</strong> xanditsconjugates<br />

over L.If xbelongsto OK<br />

Since<br />

wehave<br />

N K/F(1 + ̟ d L x) ≡ (1 + ̟d L S K/Lx) (1 + ̟ 2d<br />

L E2 (x)) (modP m L ).<br />

E 2 (x) ≡ ω κ/λ(x) (modPF)<br />

ϕκ(x) = ϕλ(S K/Lx)ψλ(−ω κ/λ(x)) = ϕ κ/λ(x).<br />

Nowsuppose Kisaramifiedabelianextension<strong>of</strong> Land [K : L] = ℓisanoddprime.Let<br />

G = G(K/L)andsuppose G = Gtwhile Gt+1 = {1}.Suppose<br />

isgreaterthanorequalto t + 1and<br />

for xin P d+1<br />

L .Let<br />

andif xbelongsto OKset<br />

Supposealsothat<br />

ϕ ′ λ(x) = ψ K/L<br />

m = m(χL) = 2d + 1<br />

χL(1 + x) = ψL<br />

<br />

βx<br />

̟ m+n<br />

<br />

L<br />

d ′ <br />

ℓ − 1<br />

= ℓd − t<br />

2<br />

<br />

β̟d′ Kx ̟ m+n<br />

<br />

L<br />

χ −1<br />

L (1 + S K/L(̟ d′<br />

Kx) + E 2 (̟ d′<br />

Kx)).<br />

̟L = N K/L̟K.


Chapter9 90<br />

Theassumptionslisted,wemaynowstate<strong>the</strong>nextlemma.<br />

Lemma 9.7<br />

If<br />

ε = S K/L<br />

<br />

̟2d′ K<br />

̟2d <br />

L<br />

<strong>the</strong>n εisaunit.Moreover ϕ ′ λ isafunctionon λ = OL/PL + OK/PKwhichsatisfies<br />

if<br />

If<br />

<strong>the</strong>n<br />

Since<br />

<strong>the</strong>number<br />

ϕ ′ λ (x + y) = ϕ′ λ (x)ϕ′ λ (y)ψλ(εxy)<br />

ϕλ(x) = ψL<br />

ψλ(u) = ψL<br />

<br />

βx<br />

̟ d+1+n<br />

L<br />

<br />

βu<br />

̟ 1+n<br />

<br />

.<br />

L<br />

<br />

A[σ(ϕλ)] ℓ = A[σ(ϕ ′ λ )].<br />

d ′ + (ℓ − 1) (t + 1)<br />

ℓ<br />

S K/L (̟ d′<br />

Kx)<br />

χ −1<br />

L (1 + ̟d Lx)<br />

liesin Pd L .Moreover E2 (̟d′ Kx)isasum<strong>of</strong>traces<strong>of</strong>elementsin P2d′ K .Since<br />

2d ′ + (ℓ − 1) (t + 1)<br />

ℓ<br />

itliesin P 2d<br />

L .If xliesin PKitliesin P m L and<br />

liesin P d+1<br />

L because<br />

d ′ + 1 + (ℓ − 1) (t + 1)<br />

ℓ<br />

= 2d +<br />

S K/L(̟ d′<br />

Kx)<br />

= d + 1 +<br />

≥ d<br />

ℓ − 1<br />

ℓ<br />

t(ℓ − 1)<br />

2ℓ<br />

≥ 2d<br />

≥ d + 1.


Chapter9 91<br />

Thusif xbelongsto PK<br />

Since<br />

isequalto<br />

<strong>the</strong>expression<br />

ϕ ′ λ(x) = ψL<br />

β<br />

̟ m+n<br />

L<br />

SK/L (̟ d′<br />

<br />

Kx) χ −1<br />

L (1 + SK/L(̟ d′<br />

Kx)) = 1.<br />

E 2 (̟ d′<br />

K (x + y))<br />

E 2 (̟ d′<br />

Kx) + E 2 (̟ d′<br />

Ky) + S K/L(̟ d′<br />

Kx) S K/L(̟ d′<br />

Ky) − S K/L(̟ 2d′<br />

K xy),<br />

iscongruentmodulo P m L to<strong>the</strong>product<strong>of</strong><br />

and<br />

and<br />

Thus<br />

Since<br />

1 + S K/L(̟ d′<br />

K(x + y)) + E 2 (̟ d′<br />

K(x + y))<br />

1 + S K/L(̟ d′<br />

K x) + E2 (̟ d′<br />

K x)<br />

1 + S K/L(̟ d′<br />

K y) + E2 (̟ d′<br />

K y)<br />

1 − S K/L(̟ 2d′<br />

K xy).<br />

ϕ ′ λ (x + y) = ϕ′ λ (x)ϕ′ λ (y)ψλ(εxy).<br />

2d ′ + (ℓ − 1) (t + 1)<br />

ℓ<br />

≥ 2d<br />

<strong>the</strong>number εisin OL.Weconcludeinparticularthatif ybelongsto PK<strong>the</strong>n<br />

and<br />

ϕ ′ λ(x + y) = ϕ ′ λ(x).<br />

If t = 0let σbeagenerator<strong>of</strong> Gandlet ̟ 1−σ<br />

K = ν.Inthiscase 2d′ = 2dℓand<br />

̟ 2d′<br />

K<br />

̟ 2d<br />

L<br />

<br />

<br />

=<br />

τ∈G ̟1−τ<br />

K<br />

2d<br />

ε ≡ ℓν dℓ(ℓ−1) (modPL)<br />

≡ ν dℓ(ℓ−1) (modPL)


Chapter9 92<br />

isaunit.If t > 0<br />

sothat<br />

̟ 2d′<br />

K<br />

ε ≡ S K/L<br />

≡ ̟2d−t<br />

L ̟t K<br />

t ̟K ̟ t L<br />

(mod PK)<br />

(mod PL).<br />

ItisshowninparagraphV.3<strong>of</strong>Serre’sbookthat<strong>the</strong>rightside<strong>of</strong>thiscongruenceisaunit.<br />

Then<br />

Firsttake poddandlet<br />

σ(ϕλ) = −ψλ<br />

ϕλ(x) = ψλ<br />

x 2<br />

2<br />

2 −α <br />

ψλ<br />

2<br />

<br />

+ αx = ψλ<br />

2 (x + α)<br />

2<br />

2 (x + α)<br />

= −ψλ<br />

2<br />

Makinguse<strong>of</strong><strong>the</strong>calculationsin<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma9.2weseethat<br />

A[σ(ϕλ)] ℓ = νλ(−1) ℓ−1<br />

2 ψλ<br />

<strong>of</strong> νλis<strong>the</strong>non­trivialquadraticcharacter<strong>of</strong> λ × .<br />

Since<br />

iscongruentto<br />

modulo P m L <strong>the</strong>value<strong>of</strong> ϕ′ λ (x)is<br />

if<br />

Thus<br />

ψλ<br />

1 + S K/L<br />

2 −ℓα<br />

2<br />

ψλ<br />

−α 2<br />

2<br />

<br />

.<br />

2 −α <br />

ψλ<br />

2<br />

<br />

A − <br />

λ ψλ<br />

<br />

̟ d′<br />

Kx <br />

+ E 2 (̟ d′<br />

Kx) {1 + S K/L(̟ d′<br />

Kx)} {1 + E 2 (̟ d′<br />

Kx)}<br />

<br />

(SK/Ly) 2 + 2α SK/Ly − 2E2 <br />

(y)<br />

ϕ ′ λ (x) = ψλ<br />

2<br />

y = ̟d′ K<br />

̟d x.<br />

L<br />

(SK/L(y + α) 2 ) − ℓα 2<br />

2<br />

<br />

.<br />

2 x<br />

2<br />

x 2<br />

2<br />

<br />

.


Chapter9 93<br />

Replacing xby<br />

andsummingwefindthat<br />

σ(ϕ ′ λ) = ψλ<br />

−ℓα 2<br />

2<br />

x − ̟d L<br />

̟d′ α<br />

K<br />

<br />

− <br />

x ψλ<br />

εx 2<br />

Collectingthisinformationtoge<strong>the</strong>rweseethattoprove<strong>the</strong>lemmawhen<strong>the</strong>residual<br />

characteristic pisoddwemustshowthat<br />

νλ(−1) ℓ−1<br />

2 = νλ(ε).<br />

Since ν dℓ(ℓ−1) iscertainlyasquarewehavetoshowthat<br />

νλ(−1) ℓ−1<br />

2 = νλ(ℓ)<br />

when t = 0. If<strong>the</strong>field λis<strong>of</strong>evendegreeover<strong>the</strong>primefieldbothsidesare1. Ifnot,an<br />

oddpower<strong>of</strong> piscongruentto1modulo ℓand<strong>the</strong>relationfollowsfrom<strong>the</strong>law<strong>of</strong>quadratic<br />

reciprocity.If t > 0<strong>the</strong>n<br />

t ̟K ε ≡ SK/L (modPL)<br />

̟ t L<br />

andwecanappealtoparagraphV.3forapro<strong>of</strong>that<br />

ε + u p−1 ≡ 0<br />

hasasolutionin λ.Thus νλ(ε) = νλ(−1)andwehavetoshowthat<br />

νλ(−1) p−3<br />

2 = 1.<br />

2<br />

<br />

.<br />

If p ≡ 1 (mod4)<strong>the</strong>n νλ(−1) = 1andif p ≡ 3 (mod4)<strong>the</strong>exponentiseven.<br />

Beforeconsidering<strong>the</strong>case p = 2,weremarkasimpleconsequence<strong>of</strong><strong>the</strong>preceding<br />

discussion.


Chapter9 94<br />

Lemma 9.8<br />

If pisoddlet<br />

If t = 0and<br />

<strong>the</strong>n<br />

andif t > 0<br />

with<br />

Inbothcases<br />

ϕ ′ λ<br />

ϕ ′ λ(x) = ψλ<br />

ϕλ(x) = ψλ<br />

x 2<br />

2<br />

(ℓ−1)<br />

dℓ<br />

µ = ν 2<br />

<br />

x<br />

= ψλ ℓ<br />

µ<br />

ϕ ′ λ(x) = ψλ<br />

x 2<br />

<br />

+ αx .<br />

2<br />

εx 2<br />

x<br />

<br />

+ αx<br />

<br />

.<br />

<br />

(SK/L (y + α) 2 ) − ℓα2 <br />

y = ̟d′ K<br />

̟d x.<br />

L<br />

If t = 0<strong>the</strong>n y = µx.Thusif xbelongsto OL,aswemayassume,<br />

ϕ ′ λ<br />

<br />

x<br />

= ψλ<br />

µ<br />

If t > 0<strong>the</strong>n ℓ = pisoddand<br />

d ′ ℓd + (ℓ − 1) (t + 1)<br />

ℓ<br />

sothat,if x ∈ OF,<br />

sothat<br />

= 1<br />

ℓ<br />

2 2<br />

ℓ(x + α) − ℓα<br />

2<br />

2<br />

= ψλ<br />

2 x<br />

ℓ<br />

2<br />

<br />

<br />

(ℓ − 1)<br />

(ℓ − 1) (t − 1) − t =<br />

2<br />

1<br />

ℓ<br />

S K/L(y + α) 2 ≡ εx 2<br />

(mod PL).<br />

Nowtake p = 2sothat tisnecessarily0andagainlet<br />

̟ d′<br />

K<br />

̟ d L<br />

(ℓ−1)<br />

dℓ<br />

µ = ν 2<br />

≡ µ (mod PK).<br />

<br />

+ αx .<br />

<br />

<br />

(ℓ − 1)<br />

(ℓ − 1) + t ≥ 1<br />

2


Chapter9 95<br />

If xisin OLand y = x<br />

µ <strong>the</strong>n<br />

isequalto<br />

Since<br />

ψL<br />

<br />

1 + ℓ̟ d Lx +<br />

modulo P m L wehave<br />

whichequals<br />

Moreover<br />

ℓ x<br />

̟ d+1+n<br />

L<br />

ℓ(ℓ − 1)<br />

2<br />

ϕ ′ λ<br />

<br />

ϕ ′ λ<br />

χ −1<br />

L<br />

<br />

x<br />

= ϕ<br />

µ<br />

′ λ (y)<br />

<br />

1 + ℓ ̟ d ℓ(ℓ − 1)<br />

Lx + ̟<br />

2<br />

2d<br />

L x2<br />

<br />

.<br />

̟ 2d<br />

L x 2 ≡ (1 + ℓ̟ d <br />

ℓ(ℓ − 1)<br />

Lx) 1 + ̟<br />

2<br />

2d<br />

L x 2<br />

<br />

<br />

x<br />

= ϕλ(ℓ x) ψλ<br />

µ<br />

{ϕλ(x)} ℓ .<br />

−ℓ(ℓ − 1)<br />

2<br />

x 2<br />

<br />

{ϕλ(x)} 2 = ϕλ(2x) ψλ(−x 2 ) = ψλ(−x 2 ).<br />

Since<strong>the</strong>characteristicis2<strong>the</strong>reisan α = 0suchthat<br />

Then<strong>the</strong>complexconjugate<strong>of</strong> ϕλ(x)is<br />

and<br />

whichequals<br />

isequalto<br />

Consequently<br />

Since<br />

ψλ(x 2 ) = ψλ(αx).<br />

ϕλ(x)ψλ(αx)<br />

σ(ϕλ) = − <br />

− <br />

x ϕλ(x + α)<br />

x ϕλ(x)ϕλ(α)ψλ(αx)<br />

ϕλ(α) σ(ϕλ).<br />

A[σ(ϕλ)] ℓ = ϕλ(α) ℓ−1<br />

2 A[σ(ϕλ)].<br />

{ϕλ(x)} 4 = 1


Chapter9 96<br />

wehave<br />

if ℓ ≡ 1 (mod4)and<br />

if ℓ ≡ 3 (mod4).<br />

Wehavetoshowthat<br />

if ℓ ≡ 1 (mod4)andthat<br />

A[σ(ϕ ′ λ )] = A[σ(ϕλ)]<br />

A[σ(ϕ ′ λ )] = A[σ(ϕλ)] = ϕ −1<br />

λ (α) A[σ(ϕλ)]<br />

ϕλ(α) ℓ−1<br />

2 = 1<br />

ϕλ(α) ℓ+1<br />

2 = 1<br />

if ℓ ≡ 3 (mod4). Theserelationsareclearif ℓiscongruentto1or7modulo8. Ingeneralif<br />

ℓ ≡ 1 (mod 4)<br />

ϕλ(α) ℓ−1<br />

<br />

(ℓ − 1) (ℓ − 3)<br />

2 = ψλ − α<br />

8<br />

2<br />

<br />

andif ℓ ≡ 3 (mod4)<br />

ϕλ(α) ℓ+1<br />

2 = ψλ<br />

<br />

−<br />

(ℓ + 1) (ℓ − 1)<br />

α<br />

8<br />

2<br />

<br />

.<br />

Let φbe<strong>the</strong>primefieldandlet ψφbeitsnon­trivialadditivecharacter. Choose α1such<br />

that<br />

Then<br />

and α = α1.Thus<br />

ψλ(x 2 ) = ψ λ/φ<br />

ψ λ/φ(x) = ψλ (α 2 1 x).<br />

2 x<br />

= ψλ/φ α 2 1<br />

x<br />

ψλ(α 2 ) = ψ λ/φ(1).<br />

α1<br />

<br />

= ψλ (α1x)<br />

Therightsideis+1or–1accordingas f = [λ : φ]isevenorodd.But ℓdivides 2 f − 1sothat,<br />

by<strong>the</strong>secondsupplementto<strong>the</strong>law<strong>of</strong>quadraticreciprocity, fisevenif ℓiscongruentto3or<br />

5modulo8.<br />

ThereisacomplementtoLemma9.7.<br />

Lemma 9.9


Chapter9 97<br />

If m(χL) ≥ 2(t + 1)choose β(χK/L) = β(χL) = βin OL.If t + 1 < m(χL) < 2(t + 1)<br />

choose β(χL) = βand<br />

β(χK/L) = β − β1<br />

α<br />

asinLemma8.9.Then m(χ K/L) = 2d ′ + 1and<br />

isequalto<br />

ψK/L<br />

ψ K/L<br />

FromLemma8.8wehave<br />

asrequired.If d ≥ t + 1<strong>the</strong>n<br />

because ℓisodd.Moreover,<br />

Consequently<br />

<br />

β ̟d′ Kx ̟ m+n<br />

<br />

L<br />

α1<br />

<br />

β(χK/L) ̟d′ Kx ̟ m+n<br />

<br />

χ<br />

L<br />

−1<br />

K/L (1 + ̟d′ Kx) m(χ K/L) = 1 + t + ℓ(m − 1 − t) = 2<br />

d ′ ≥<br />

(ℓ + 1)<br />

2<br />

3d ′ + (ℓ − 1) (t + 1)<br />

ℓ<br />

χ −1<br />

L (1 + SK/L (̟ d′<br />

Kx) + E 2 (̟ d′<br />

Kx)).<br />

d +<br />

(ℓ − 1)<br />

2<br />

<br />

(ℓ − 1)<br />

ℓ d − t + 1<br />

2<br />

(d − t) ≥ m<br />

≥ m′ + (ℓ − 1) (t + 1)<br />

ℓ<br />

= m.<br />

N K/L(1 + ̟ d′<br />

Kx) ≡ 1 + S K/L(̟ d′<br />

Kx) + E 2 (̟ d′<br />

Kx) (modP m L )<br />

and<strong>the</strong>lemmaisvalidif m ≥ 2(t + 1).<br />

sothat<br />

If t + 1 < m < 2(t + 1)westillhave<br />

3d ′ + (ℓ − 1) (t + 1)<br />

ℓ<br />

N K/L(1 + ̟ d′<br />

Kx)<br />

≥ m


Chapter9 98<br />

iscongruentto<br />

1 + S K/L(̟ d′<br />

K x) + E2 (̟ d′<br />

K x) + N K/L(̟ d′<br />

K x)<br />

modulo P m L .Since d′ ≥ d + 1thisiscongruentto<br />

modulo P m L .Certainly<br />

Moreover,if m = t + 1 + v<br />

{1 + S K/L(̟ d′<br />

Kx) + E 2 (̟ d′<br />

Kx)} {1 + N K/L(̟ d′<br />

Kx)}<br />

χL(1 + NK/L(̟ d′<br />

Kx)) = ψL<br />

d ′ − v = d +<br />

ℓ − 3<br />

2<br />

<br />

β NK/L(̟d′ Kx) ̟ m+n<br />

<br />

.<br />

L<br />

v ≥ d ≥ s<br />

if sis<strong>the</strong>leastintegergreaterthanorequalto t<br />

2 .Thus,justasin<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma8.5,<br />

isequalto<br />

ψL<br />

<br />

β NK/L(̟d′ Kx) ̟ m+n<br />

<br />

= ψL<br />

L<br />

ψL<br />

Multiplying<strong>the</strong>inverse<strong>of</strong>thiswith<br />

weobtain<br />

Thelemmafollows.<br />

ψ K/L<br />

⎛<br />

If m = t + 1wemaystillchoose<br />

⎝ −S K/L<br />

⎛<br />

⎝ α N K/L<br />

αβ1<br />

α1 ̟d′<br />

K x<br />

̟ m+n<br />

L<br />

β1<br />

α1 ̟d′<br />

K x<br />

̟ m+n<br />

L<br />

⎞<br />

⎠ .<br />

<br />

β − αβ1<br />

d ̟<br />

α1<br />

′<br />

Kx ̟ m+n<br />

<br />

L<br />

ψ K/L<br />

<br />

β ̟d′ Kx ̟ m+n<br />

<br />

.<br />

L<br />

β(χ K/L) = β − β1<br />

α<br />

α1<br />

⎞<br />


Chapter9 99<br />

asinLemma8.9.However<strong>the</strong>relationbetween ϕλ(x)and<br />

ϕK(x) = ψ K/L<br />

<br />

β(χK/L) ̟d′ Kx ̟ m+n<br />

<br />

χ<br />

L<br />

−1<br />

K/L (1 + ̟d′ Kx)<br />

willbemorecomplicated.Here x = OK/PKis<strong>the</strong>samefieldas λ = OL/PL.Weintroduce<br />

itonlyfornotationalpurposes.<br />

Since<br />

and<br />

Because m = t + 1<strong>the</strong>number tisatleast2and<br />

<strong>the</strong>expression<br />

iscongruentto<br />

modulo P m L and<br />

isequalto<br />

d = d ′ = t<br />

2 .<br />

3d + (p − 1) (t + 1)<br />

p<br />

d + (p − 1) (t + 1)<br />

p<br />

N K/L(1 + ̟ d K x)<br />

≥ t + 1<br />

≥ d + 1<br />

{1 + S K/L(̟ d Kx) + E 2 (̟ d Kx)} {1 + ̟ d L N K/Lx}<br />

ΨL<br />

AccordingtoNewton’sformulae<br />

Thus<br />

χL(1 + S K/L(̟ d Kx) + E 2 (̟ d Kx))<br />

<br />

β SK/L(̟d Kx) + β E2 (̟d Kx) <br />

.<br />

̟ m+n<br />

F<br />

S K/L(̟ 2d<br />

K x 2 ) − S K/L(̟ d Kx) 2 + 2E 2 (̟ d Kx) = 0.<br />

E 2 (̟ d Kx) ≡ − 1<br />

2 S K/L(̟ 2d<br />

K x 2 ) (mod P m L ).<br />

Observethat pisequalto ℓand<strong>the</strong>refore,in<strong>the</strong>presentcircumstances,odd.


Chapter9 100<br />

with<br />

Certainly<br />

Let µLbeacharacterin S(K/L)asinLemma8.9(c)andlet<br />

ψL<br />

<br />

αx<br />

̟ d+1+n<br />

L<br />

<br />

µ −1<br />

L (1 + ̟d Lx) = ψλ<br />

ρ = α<br />

β .<br />

µL(NK/L(1 + ̟ d Kx)) = 1<br />

if xbelongsto OK.Replacing xby β1<br />

α1 xweseethat<br />

ψL<br />

isequalto<br />

if<br />

<br />

1<br />

̟ m+n<br />

<br />

β1<br />

αSK/L ̟<br />

α1<br />

L<br />

d <br />

Kx − α<br />

2 SK/L z = 1<br />

̟ d L<br />

whichiscongruentto<br />

modulo PL.<br />

equal<br />

Let<br />

If xbelongsto OK<br />

χ −1<br />

L<br />

<br />

β1<br />

SK/L α1<br />

ψλ<br />

<br />

ρ z2<br />

2<br />

̟ d <br />

Kx − 1<br />

2 SK/L ϕλ(x) = ψL<br />

β 2 1<br />

α 2 1<br />

<br />

+ τ z<br />

β 2 1<br />

α 2 1<br />

β<br />

α NK/Lx ≡ β<br />

α xp<br />

<br />

ψλ<br />

1 + ̟ d L N K/Lx = ψλ<br />

β x<br />

̟ d+1+n<br />

L<br />

x 2<br />

2<br />

x 2p<br />

2<br />

<br />

<br />

+ σ x .<br />

<br />

ρ x2<br />

2<br />

<br />

+ τ x<br />

̟ 2d<br />

K x 2<br />

<br />

<br />

+ NK/L β1 ̟ d Kx <br />

̟ 2d<br />

K x 2<br />

<br />

β1<br />

+ NK/L ̟<br />

α1<br />

d <br />

Kx<br />

χ −1<br />

L (1 + ̟d L x)<br />

+ σ xp<br />

<br />

ψL<br />

<br />

−β NK/Lx<br />

.<br />

̟ d+1+n<br />

L


Chapter9 101<br />

Wenowput<strong>the</strong>sefactstoge<strong>the</strong>rt<strong>of</strong>indasuitableexpressionfor ϕκ(x).Wemayaswell<br />

take xin OL.Then ϕκ(x)is<strong>the</strong>product<strong>of</strong><br />

<br />

β ̟<br />

ψK/L d′<br />

Kx ̟ m+n<br />

<br />

L<br />

and<br />

and<br />

and<br />

if<br />

ψL<br />

ψ K/L<br />

<br />

−<br />

<br />

− β1α<br />

α1<br />

β<br />

̟ m+n<br />

L<br />

̟d Kx ̟ m+n<br />

<br />

L<br />

χ −1<br />

L (1 + ̟d L N K/Lx)<br />

<br />

SK/L(̟ d Kx) − 1<br />

2 SK/L(̟ 2d<br />

K x 2 <br />

) .<br />

Thesecond<strong>of</strong><strong>the</strong>sethreeexpressionsisequalto<strong>the</strong>product<strong>of</strong><br />

<br />

2p x −1 x2p<br />

ψλ + σ xp ψλ −ρ<br />

2 2 − ρ−1τ x p<br />

<br />

ψ K/L<br />

<br />

− αβ2 1 ̟2d<br />

K x2<br />

2α2 1 ̟m+n<br />

L<br />

ε = S K/L<br />

Theproduct<strong>of</strong><strong>the</strong>firstandthirdisequalto<br />

2 εx<br />

ψλ<br />

<br />

= ψλ<br />

2d ̟K ̟2d <br />

.<br />

L<br />

2<br />

<br />

.<br />

<br />

− ερβ2 1<br />

2α 2 1<br />

x 2<br />

<br />

AsproveninparagraphV.3<strong>of</strong>Serre’sbook<strong>the</strong>elements<strong>of</strong> ULcongruentto<br />

modulo P t+1<br />

L areallnorms,sothat<br />

Inparticular<br />

ψλ<br />

1 + (εx + x p ) ̟ t L<br />

ψλ(ρ x p ) = ψλ(−ρεx).<br />

<br />

− ερβ2 1<br />

2α2 x<br />

1<br />

2<br />

<br />

= ψλ<br />

<br />

ρ<br />

−1 x2p<br />

∗ (1998)Themanuscript<strong>of</strong>Chapter9endswiththisformula.<br />

2<br />

<br />

. ∗


Chapter11 102<br />

Chapter Eleven.<br />

<strong>Artin</strong>–Schreier <strong>Equation</strong>s<br />

The<strong>the</strong>ory<strong>of</strong><strong>Artin</strong>–SchreierequationsiscentraltoDwork’spro<strong>of</strong><strong>of</strong><strong>the</strong>secondmain<br />

lemma. Wefirstreview<strong>the</strong>basic<strong>the</strong>ory,whichwetakefromMackenzieandWhaples[11],<br />

and<strong>the</strong>nreviewDwork’sra<strong>the</strong>ramazingcalculations.ThesewetakefromLakkis[9].<br />

WestartwithanexercisefromSerre’sbook[12].Suppose Fisanon­archimedeanlocal<br />

fieldand K/FisGalois.Let pbe<strong>the</strong>residualcharacteristic.With<strong>the</strong>convention (0) = P ∞ F<br />

welet<br />

p OF = P e F.<br />

Suppose G = G(K/F)and σ ∈ Giwith i ≥ 1.Let<br />

with ain P i K .Let<br />

̟ σ K = ̟K(1 + a)<br />

ϕ(x) = x σ − x.<br />

ϕisan F­linearoperatoron K.If x = α̟ j<br />

Kbelongsto Pj<br />

K<strong>the</strong>n iscongruentto<br />

ϕ(x) = x σ − x = (α σ − α) ̟ jσ<br />

K<br />

α̟ j<br />

K<br />

modulo P i+j+1<br />

K .Thisinturniscongruentto<br />

modulo P i+j+1<br />

K .<br />

If*<br />

<strong>the</strong>n,asanoperator,<br />

+ α(̟jσ<br />

K<br />

− ̟K)<br />

<br />

̟ j(σ−1)<br />

<br />

K − 1 = α̟ j<br />

K {(1 + a)j − 1}<br />

(α̟ j<br />

K ) (ja) = jax<br />

ψ(x) = x σp<br />

− 1<br />

ψ = (1 + ϕ) p − 1 = p<br />

k=1<br />

<br />

p<br />

<br />

ϕ<br />

k<br />

k .<br />

*Weseemtobedealingwithyetano<strong>the</strong>ruse<strong>of</strong><strong>the</strong>symbol ψ!


Chapter11 103<br />

If xbelongsto P j<br />

K <strong>the</strong>n<br />

and ψ(x)iscongruentto<br />

orto<br />

modulo P i+j+e′ +1<br />

K<br />

ϕ k (x) ≡ j(j + i) . . .(j + (k − 1)i)a k x (modP j+ki+1<br />

K )<br />

if p OK = P e′<br />

K .<br />

Wededuce<strong>the</strong>followingcongruences:<br />

(i)If (p − 1)i > e ′ <strong>the</strong>n<br />

(ii)If (p − 1)i = e ′ <strong>the</strong>n<br />

(iii)If (p − 1)i < e ′ <strong>the</strong>n<br />

pjax + j(j + i) . . .(j + (p − 1)i)a p x<br />

pjax + j(j p−1 − i p−1 )a p x<br />

ψ(x) ≡ pjax (mod P i+j+e′ +1<br />

K ).<br />

ψ(x) ≡ pjax + j(1 − i p−1 )a p x (modP i+j+e′ +1<br />

K ).<br />

ψ(x) ≡ j(1 − i p−1 )a p x (mod P pi+j+1<br />

K ).<br />

Observethatif (j, p) = 1and σbelongsto Gi,with i ≥ 1,<strong>the</strong>n<br />

ϕ(x) ≡ 0 (modP i+j+1<br />

K )<br />

forall xin P j<br />

K ifandonlyif σbelongsto Gi+1.Itfollowsimmediatelythatif σbelongsto G1<br />

and i ≥ 1<strong>the</strong>n<br />

ϕ(x) ≡ 0 (modP i+j<br />

K )<br />

forall xin P j<br />

Konlyif σbelongsto Gi.<br />

If σisreplacedby σP<strong>the</strong>n ϕisreplacedby ψ.If k > e′<br />

p−1 and Gk = {1}<strong>the</strong>n,forsome<br />

i ≥ k, Gi = {1}and Gi+1 = {1}.Taking (j, p) = 1weinferfrom(i)thatif σbelongsto Gi<br />

butnotto Gi+1<strong>the</strong>n σ p isin Gi+e ′butnotin Gi+e ′ +1.Thisisimpossible.Thus Gk = {1}if


Chapter11 104<br />

k > e′<br />

p−1 .If G1 = {1}<strong>the</strong>n pdivides e ′ sothatif (p − 1)i = e ′ <strong>the</strong>number iisalsodivisibleby<br />

p.Thecongruence(ii)reducesto<br />

ψ(x) ≡ j (pa + a p ) (modP i+j+e′ +1<br />

K ).<br />

Thusif σbelongsto Giits pthpower σ p liesin Gi+eandis<strong>the</strong>refore1.Consequently<br />

Letting a = α̟ i K and p = β̟e K wefindthat<br />

pa + a p ≡ 0 (modP pi+1<br />

K ).<br />

α p + βα ≡ 0 (mod PK).<br />

Sincethiscongruencehasonly proots<strong>the</strong>image<strong>of</strong> Θiliesinasubset<strong>of</strong> Ui K /Ui+1<br />

K<br />

elementsand Giisei<strong>the</strong>r {1}orcyclic<strong>of</strong>order p.<br />

with p<br />

If (p − 1) < e ′ and (i, p) = 1<strong>the</strong>congruence(iii)impliesthat σ p belongsto Gpi+1if σ<br />

belongsto Gi.Howeverif (p −1)i < e ′ and pdivides iitshowsthat σ p belongsto Gpibutnot<br />

to Gpi+1if σbelongsto Gibutnotto Gi+1.Thus σ −→ σ p definesaninjection<strong>of</strong> Gi/Gi+1into<br />

Gpi/Gpi+1.If Gi/Gi+1isnottrivialnei<strong>the</strong>ris Gpi/Gpi+1and (p − 1)pi ≤ e ′ .If (p − 1)pi < e ′<br />

wecanrepeat<strong>the</strong>process.Thus,forsomepositiveinteger h, (p − 1)p h i = e ′ and G p h iisnot<br />

trivial.Itis<strong>the</strong>ncyclic<strong>of</strong>order p.AccordingtoPropositionIV.10<strong>of</strong>Serre’sbookthose k ≥ 1<br />

forwhich Gk/Gk+1 = {1}areallcongruentmodulo p.Inparticularif Gk/Gk+1isnottrivial<br />

forsome k ≥ 1divisibleby pitisnottrivialonlywhen kisdivisibleby p. Thepreceding<br />

discussionshowsthatif iis<strong>the</strong>smallestvalue<strong>of</strong> k ≥ 1forwhich Gk/Gk+1isnon­trivial<strong>the</strong>n<br />

any σin Gibutnotin Gi+1generates Gi = G1.Ino<strong>the</strong>rwords:<br />

Lemma 11.1<br />

If G1isnotcyclic<strong>the</strong>n (i, p) = 1if i ≥ 1and Gi/Gi+1 = {1}.<br />

Lemma 11.2<br />

Suppose K/Liscyclic<strong>of</strong>primedegreeand G = G(K/L)isequalto GLwith t ≥ 1and<br />

(t, p) = 1.Then<strong>the</strong>reisa∆in Kandan ain Lsuchthat aOL = P −t<br />

L and<br />

∆ p − ∆ = a.<br />

Weobservefirst<strong>of</strong>allthat [K : L]mustbe pandthatif pOK = P e′<br />

K <strong>the</strong>n (p − 1)t < e′ .If<br />

xbelongsto K<strong>the</strong>symbol O(x)willstandforanelementin xOKand<strong>the</strong>symbol o(x)will<br />

standforanelementin xPK.If<br />

x = p−1<br />

i=0 ai ̟ i K


Chapter11 105<br />

with aiin F<strong>the</strong>n<br />

Moreoverif σisagenerator<strong>of</strong> G<br />

andif ̟ σ−1<br />

K = (1 + a̟t K )<br />

for 1 ≤ i < p.Thus<br />

|x| = max<br />

0≤i


Chapter11 106<br />

Toprove<strong>the</strong>lemmaweconstructasequence Λ0, Λ1, Λ2, . . .andasequence Θ0, Θ1, . . .<br />

with<strong>the</strong>followingproperties:<br />

(i) vK(Λn) = −tforall n ≥ 0.<br />

(ii)If σisagivengenerator<strong>of</strong> Gand ζisagiven (p − 1)throot<strong>of</strong>unity<br />

(iii)<br />

(iv)<br />

(v)<br />

and<br />

Λ σ n − Λn = ζ + o(1).<br />

p(Λ σ n ) − p(Λn) = Θ σ n<br />

− Θn<br />

|Θ σ n − Θn| = |̟ t K| |Θn|.<br />

Λn+1 = Λn + Θn.<br />

p(Λ σ n+1 ) − p(Λn+1) = o(p(Λ σ n ) − p(Λn)).<br />

Itwillfollowfrom(iii)and(v)that {Θn}isconvergingto0.Then(iv)impliesthat {Λn}<br />

hasalimit ∆. (i)impliesthat vK(∆) = −tand(v)impliesthat ∆ p − ∆ = abelongsto F.<br />

From(ii)<br />

∆ σ − ∆ = ζ + o(1).<br />

if<br />

Toconstruct Λ0let αbelongto U i K andconsider<br />

ασ ̟<br />

σ t<br />

K<br />

Wecanchoose αsothat<br />

Thenweset<br />

− α<br />

̟ t K<br />

= ασ − α<br />

̟σ t<br />

K<br />

+ α<br />

̟ t K<br />

̟ σ K = ̟K(1 + a̟ t K).<br />

−taα = ζ + o(1).<br />

Λ0 = α<br />

̟t .<br />

K<br />

<br />

̟ t(1−σ)<br />

<br />

K − 1 = −taα + o(1)<br />

Weobserveinpassingthatconditions(i)and(ii)determine Λnmodulo P −t+1<br />

K .


Chapter11 107<br />

Suppose Λ0, . . ., Λnhavebeendefined.Then<br />

whichequals<br />

Choose Θnsothat<br />

and<br />

Then vK(Θn) > −tandif<br />

vK(Λn+1) = −t.Moreover<br />

and<br />

with x = o(Θn).Then<br />

Also<br />

p(Λ σ n ) = p(Λn) + p(ζ + o(1)) + o(1)<br />

p(Λn) + p(ζ) + o(1) = p(Λn) + o(1).<br />

Θ σ n − Θn = p(Λ σ n ) − p(Λn)<br />

|Θ σ n − Θn| = |̟ t K | |Θn|.<br />

Λn+1 = Λn + Θn<br />

Since vK(Θ σ n − Θn)ispositive<strong>the</strong>rightsideis<br />

Thus<br />

whichequals<br />

is<br />

Λ σ n+1 − Λn+1 = Λ σ n − Λn + o(1) = ζ + o(1).<br />

p(Λn+1) = p(Λn) + p(Θn) + x<br />

x σ − x = o(Θ σ n − Θn) = o(p(Λ σ n ) − p(Λn)).<br />

p(Θ σ n) − p(Θn) = p(Θ σ n − Θn) + o(Θ σ n − Θn).<br />

−(Θ σ n − Θn) + o(Θ σ n − Θn).<br />

p(Λ σ n+1 ) − p(Λn+1)<br />

p(Λ σ n ) − p(Λn) − (Θ σ n − Θn) + o(p(Λ σ n ) − p(Λn))<br />

o(p(Λ σ n ) − p(Λn)).


Chapter11 108<br />

Lemma 11.3<br />

Supposer ∆1belongsto K, abelongsto L, vL(a) = −tand<br />

with r ≥ 1.Define ∆ninductivelyby<br />

Then<br />

if n ≥ 2andif r ≥ (e ′ − (p − 1)t)<br />

Moreover<br />

existsand ∆ p − ∆ = a.<br />

∆ p<br />

1 − ∆1 = a + O(̟ r K )<br />

∆n+1 = ∆ p n − a.<br />

∆n+1 − ∆n = o(∆n − ∆n−1)<br />

∆n+1 − ∆n = O(̟ r+(n−1)(e′ −(p−1)t)<br />

K<br />

).<br />

lim<br />

n→∞ ∆n = ∆<br />

Thelastassertionisaconsequence<strong>of</strong><strong>the</strong>first.Itisclearthat<br />

Suppose n ≥ 2,and<br />

Then<br />

isequalto<br />

∆2 − ∆1 = O(̟ r K ).<br />

∆n − ∆n−1 = x = o(1).<br />

∆n+1 − ∆n = ∆ p n − ∆ p<br />

n−1 = (∆n−1 + x) p − ∆n−1<br />

p−1<br />

k=1<br />

<br />

p<br />

<br />

k<br />

whichis o(x)because e ′ − (p − 1)t > 0.If<br />

and r ≥ e ′ − (p − 1)titis<br />

∆ k n−1 xp−k<br />

<br />

+ x p<br />

x = O(̟ r+(n−2)(e′ −(p−1)t)<br />

K<br />

)<br />

O(̟ r+(n−1)(e′ −(p−1)t)<br />

K<br />

).


Chapter11 109<br />

Thelemmahasacouple<strong>of</strong>corollarieswhichshouldberemarked.<br />

Lemma 11.4<br />

If aisin L, vL(a) = −t, ∆p − ∆ = a,and ξisa(p − 1)throot<strong>of</strong>unity<strong>the</strong>reisanumber<br />

∆ξsuchthat<br />

∆ξ = ∆ + ξ + O(̟ e′ −(p−1)t<br />

K )<br />

and<br />

∆ p<br />

ξ − ∆ξ = a.<br />

Relation(11.1)showsthat ∆ + ξsatisfies<strong>the</strong>conditions<strong>of</strong><strong>the</strong>previouslemmawith<br />

r = e ′ − (p − 1)t.<br />

Lemma 11.5<br />

Suppose ∆belongsto K, bbelongsto L, vL(b) = −tand<br />

Thenforany uin U t+1<br />

L <strong>the</strong>equation<br />

hasasolutionin K.<br />

∆ p − ∆ = b.<br />

Λ p − Λ = bu<br />

Take,inLemma11.3, a = buand ∆1 = ∆.Lemma11.5showsthatif Sis<strong>the</strong>set<strong>of</strong>allin<br />

Lwith vL(a) = −tforwhich<strong>the</strong>equation<br />

hasasolutionin K<strong>the</strong>n S = SU t+1<br />

L .<br />

Lemma 11.6<br />

∆ p − ∆ = a<br />

If ℓis<strong>the</strong>integralpart<strong>of</strong> t<br />

<strong>the</strong>number<strong>of</strong>cosets<strong>of</strong> Ut+1<br />

p L in Sis<br />

p − 1<br />

p<br />

[OL : PL] 1+ℓ .<br />

Fixagenerator σ<strong>of</strong> G = G(K/L).If abelongsto S, ∆ p − ∆ = a,and ξisa(p − 1)th<br />

root<strong>of</strong>unity<br />

(ξ∆) p − ξ∆ = ξ a.


Chapter11 110<br />

ByLemma11.4<strong>the</strong>reisa(p − 1)throot<strong>of</strong>unity ζsuchthat<br />

Then<br />

∆ σ = ∆ + ζ + o(1).<br />

(ξ∆) σ = ξ∆ + ξζ + o(1).<br />

Thusif S ′ is<strong>the</strong>set<strong>of</strong> ain Lwith vL(a) = −tforwhich<br />

with<br />

a = ∆ p − ∆<br />

∆ σ = ∆ + 1 + o(1)<br />

<strong>the</strong>number<strong>of</strong>cosetsif U t+1<br />

L in Sis p − 1times<strong>the</strong>number<strong>of</strong>cosets<strong>of</strong> U t+1<br />

L in S ′ .<br />

Choose ∆0,with vK(∆0) = −t,forwhich ∆ p<br />

0 − ∆0 = a0isin Fand<br />

If vK(∆) = −t, ∆ p − ∆isin F,and<br />

<strong>the</strong>n,accordingtoanearlierremark,<br />

with Ω0 = o(∆0).<br />

Since<br />

wehave<br />

Thus<br />

∆ σ 0 = ∆0 + 1 + o(1).<br />

∆ σ = ∆ + 1 + o(1)<br />

∆ = ∆0 + Ω0<br />

Chooseany Ω0 = o(∆0)andset Λ0 = ∆0 + Ω0.Accordingto<strong>the</strong>relation(A)<br />

p−1<br />

σ p<br />

Ω0 − Ωp0<br />

=<br />

i=1<br />

p(Λ0) = p(∆0) + p(Ω0) + o(Ω0).<br />

Ω σ 0 − Ω0 = O(̟ t K Ω0) = o(1)<br />

<br />

p<br />

<br />

i<br />

Ω p−i<br />

0 (Ω σ 0 − Ω0) i = o(Ω σ 0 − Ω0).<br />

p(Λ0) σ − p(Λ0) = Ω σ 0 − Ω0 + o(̟ t KΩ0)


Chapter11 111<br />

and p(Λ0)isin Lonlyif<br />

Ω σ 0 − Ω0 = o(̟ t K Ω0),<br />

thatis,onlyif Ω0 = α0 + o(Ω0)with α0in L.<strong>On</strong><strong>the</strong>o<strong>the</strong>rhandif<br />

Ω σ 0 − Ω0 = o(̟ t K Ω0)<br />

andweconstruct<strong>the</strong>sequence Λ0, Λ1, Λ2, . . .asbeforeandlet<br />

<strong>the</strong>n<br />

∆ = lim<br />

n→∞ Λn<br />

∆ = Λ0 + o(Ω0).<br />

Weconcludethat<strong>the</strong>number<strong>of</strong>cosetsin Ps K /Ps+1<br />

K , s > −t,containingan Ω0suchthat<br />

(∆0 + Ω0) p − (∆0 + Ω0)<br />

isin Lis1if pdoesnotdivide sandis [OL : PL]ifitdoes.<br />

Choose ∆sothat<br />

∆ p − ∆ = a<br />

isin S ′ .If Ωbelongsto Ps K , s > −t,butnotto Ps+1<br />

K and<br />

(∆ + Ω) p − ∆ − Ω = b<br />

isalsoin S ′ <strong>the</strong>n aand bbelongto<strong>the</strong>samecoset<strong>of</strong> U t+1<br />

L ifandonlyif<br />

If s > 0<br />

butif s ≤ 0<br />

and<br />

ifandonlyif s = 0and<br />

b = a + o(1).<br />

p(∆ + Ω) = p(∆) + o(1)<br />

p(∆ + Ω) = p(∆) + Ω p − Ω + o(Ω)<br />

Ω p − Ω + o(Ω) = o(1)<br />

Ω = ξ + o(1)<br />

where ξissome (p − 1)throot<strong>of</strong>unity.Thelemmafollows.


Chapter11 112<br />

let<br />

If x = {x1, . . ., xn}let E i (x)be<strong>the</strong> i<strong>the</strong>lementarysymmetricfunction<strong>of</strong> x1, . . ., xnand<br />

If Zisanindeterminateand<br />

Q(Z) = n<br />

S i (x) = n<br />

<strong>the</strong>n ∞<br />

k=1 xi k.<br />

i=0 (−1)i E i (x)Z i = n<br />

i=1 Si (x)Z i<br />

isclearly −Ztimes<strong>the</strong>logarithmicderivative<strong>of</strong> Q(Z).Thus<br />

∞<br />

i=1 Si (x) Z i<br />

i=1<br />

(1 − xiZ)<br />

n<br />

i=0 (−1)iE i (x)Z i<br />

<br />

= − n<br />

i=0 (−1)i iE i (x)Z i .<br />

ThisidentitywhichwerefertoasNewton’sidentityisequivalentto<strong>the</strong>formulae<strong>of</strong>Newton.<br />

Itimpliesinparticularthat<br />

i−1<br />

j=0 (−1)j S i−j (x) E j (x) = (−1) i+1 iE i (x) (11.2)<br />

if 1 ≤ i ≤ n.WemaydivideNewton’sidentityby Q(Z)and<strong>the</strong>nexpand<strong>the</strong>right­handside<br />

toobtainexpressionsfor<strong>the</strong> S i (x)aspolynominalsin E 1 (x), . . ., E n (x).Thecoefficientsare<br />

necessarilyintegers.Tocalculate<strong>the</strong>mwesupposethat x1, . . ., xnlieinafield<strong>of</strong>characteristic<br />

zero.Let<br />

Q(Z) = 1 + P(Z).<br />

Then<br />

log Q(Z) = − ∞<br />

k=1<br />

(−1) k<br />

Thecoefficient<strong>of</strong> Z i−1 in<strong>the</strong>derivative<strong>of</strong><strong>the</strong>rightsideis<br />

− <br />

k<br />

<br />

α1+...+αn=k<br />

α1+2α2+...+nαn=i<br />

Thisexpressionis<strong>the</strong>reforeequalto −S i (x).<br />

k<br />

i(k − 1)!<br />

α1! . . .αn!<br />

(P(Z)) k .<br />

n<br />

j=1 {Ej (x)} αj .<br />

Suppose K/Lisaramifiedcyclicextension<strong>of</strong>degree pand G = G(K/L).Let G = Gt<br />

and Gt+1 = {1}.Suppose u ≤ t, Λisin K,and<br />

ΛOK = P −u<br />

K .


Chapter11 113<br />

Wetake {x1, . . ., xn}tobe Λanditsconjugatesunder G.Inthiscasewewrite<br />

and<br />

E i (x) = E i K/L (Λ)<br />

S i (x) = S i K/L (Λ).<br />

If 1 ≤ i ≤ p − 1and γiisanyintegerlessthanorequalto<br />

wehave<br />

Wemaytake<br />

−iu + (p − 1) (t + 1)<br />

p<br />

E i K/L (Λ) ≡ 0 (mod Pγi<br />

L ).<br />

γi ≥ − iu<br />

p<br />

(p − 1)t<br />

+ .<br />

p<br />

If iu + tisnotdivisibleby pthisinequalitymaybesupposedstrict.<br />

Suppose α1, . . ., αparenon­negativeintegers,<br />

p<br />

and p<br />

If<br />

γ =<br />

p−1<br />

i=1 αi = k<br />

i=1 iαi = ℓ.<br />

i=1 γiαi<br />

<br />

−uαp.<br />

Then p<br />

i=1 {Ei (Λ)} αi γ<br />

≡ O (̟K ). (11.3)<br />

Wehave<br />

ℓ u<br />

γ ≥ −<br />

p<br />

(p − 1)<br />

+ kt −<br />

p<br />

(p − 1)<br />

αpt.<br />

p<br />

Theinequalityisstrictif αiisnon­zer<strong>of</strong>orsome isuchthat iu + tisnotdivisibleby p.<br />

Werecordnowsomeinequalitiesthat γsatisfiesinvariousspecialcases. Theywillbe<br />

neededlater.Weobservefirst<strong>of</strong>allthat,if 1 ≤ i < p, γiisnon­negativeandispositiveunless<br />

pdivides iu + t.


Chapter11 114<br />

(i)If ℓ = pand k = 2<strong>the</strong>n<br />

1 + u + γ ≥ 1 + t.<br />

Inthiscase αp = 0and<strong>the</strong>leftsideisatleast<br />

If pisodd<strong>the</strong>inequalityisstrict.<br />

(ii)If ℓ = pand k = 2<strong>the</strong>n<br />

1 +<br />

2(p − 1)<br />

p<br />

γ ≥ 0.<br />

t ≥ 1 + t.<br />

Moreover<strong>the</strong>inequalityisstrictif pisodd.Thisstatementis<strong>of</strong>courseweakerthanthat<br />

<strong>of</strong>(i).<br />

(iii)If ℓ = p, k ≥ 3,and pisodd,<strong>the</strong>n<br />

αpisagain0.Theleftsideisatleast<br />

−u +<br />

3(p − 1)<br />

p<br />

t = u +<br />

γ ≥ u +<br />

t − u<br />

p<br />

t − u<br />

p<br />

+ 1<br />

p<br />

{(3p − 4)t − (2p − 1)u}.<br />

Thefinaltermisnon­negative. Theinequalityisstrictif u = t. If u = tand pdoesnot<br />

divide uitisagainstrictfor<strong>the</strong>n αi = 0forsome i < p − 1andforsuchan i<strong>the</strong>number<br />

iu + tisnotdivisibleby p.<br />

(iv)If k ≤ p<strong>the</strong>n<br />

(p − 1)u + γ ≥ u +<br />

t − u<br />

p<br />

exceptwhen αp = kor αp = p − 1.Wehavetoshowthat<br />

(p − 2)u + γ +<br />

Theleftsideisatleast<br />

<br />

p − 2 − ℓ<br />

<br />

1 p − 1<br />

+ u +<br />

p p p<br />

u − t<br />

p<br />

≥ 0.<br />

p−1<br />

i=1 αi<br />

<br />

− 1<br />

<br />

t.<br />

p


Chapter11 115<br />

If αp = k<strong>the</strong>coefficient<strong>of</strong> tispositiveandweneedonlyshowthatitisatleastasgreat<br />

as<strong>the</strong>negative<strong>of</strong><strong>the</strong>coefficient<strong>of</strong> uorino<strong>the</strong>rwordsthat<br />

(p − 1)<br />

p−1<br />

i=1 αi<br />

Thisfollowsfrom<strong>the</strong>assumptionthat αp ≤ p − 2.<br />

(v) If k ≤ p − 2and αp = k<strong>the</strong>n<br />

Inthiscase<br />

(p − 1)u + γ ≥ u.<br />

γ ≥ −ku.<br />

<br />

+ (p − 2)p ≥ ℓ.<br />

Therearecircumstancesinwhich<strong>the</strong>estimatesfor γiand<strong>the</strong>reforethosefor γcanbe<br />

substantiallyimproved.Wewilldiscuss<strong>the</strong>mshortly.<br />

Supposenowthat K/FisatotallyramifiedGaloisextensionand G = G(K/F)is<strong>the</strong><br />

directproduct<strong>of</strong>twocyclicgroups<strong>of</strong>order p. ByLemma11.1<strong>the</strong>sequence<strong>of</strong>ramification<br />

groupsis<strong>of</strong><strong>the</strong>form<br />

G = G−1 = G0 = G1 = . . . = Gu = Gu+1 = . . . = Gt = Gt+1 = {1}<br />

with (u, p) = 1and u ≡ t (modp)or<strong>of</strong><strong>the</strong>form<br />

G = G−1 = G0 = G1 = . . . = Gt = Gt+1 = {1}<br />

with (t, p) = 1.In<strong>the</strong>secondcasewetake u = t.In<strong>the</strong>firstcaselet L1be<strong>the</strong>fixedfield<strong>of</strong> Gt<br />

andin<strong>the</strong>secondlet L1beanysubfield<strong>of</strong> K<strong>of</strong>degree pover F.Let L2beanysubfield<strong>of</strong> K<br />

differentfrom L1whichisalso<strong>of</strong>degree pover F.Let G i = G(K/Li)andlet<br />

G i = G i si = Gi si+1 = {1}.<br />

Then s1 = tand s2 = u.AccordingtoPropositionIV.4<strong>of</strong>Serre’sbook<br />

and<br />

and<br />

δ K/F = (p 2 − p) (u + 1) + (p − 1) (t + 1)<br />

δK/L1 = (p − 1) (t + 1)<br />

δK/L2 = (p − 1) (u + 1).


Chapter11 116<br />

Thus<br />

and<br />

If G i = G(Li/F)and<br />

<strong>the</strong>n t1 = uand<br />

Lemma 11.7<br />

δL1/F = 1<br />

p (δK/F − δK/L1 ) = (p − 1) (u + 1)<br />

δL2/F = 1<br />

p (δ (p − 1)<br />

K/F − δK/L2 ) =<br />

p<br />

G i = G i<br />

ti<br />

t2 = u +<br />

Suppose ∆belongsto K, vK(∆) = −u,and<br />

belongsto L2.If Ybelongsto L2<strong>the</strong>n<br />

and<br />

for 1 ≤ i ≤ p − 1.<br />

= Giti+1<br />

= {1}<br />

t − u<br />

p .<br />

∆ p − ∆ = a<br />

((p − 1) (u + 1) + t + 1).<br />

vL1 (SK/L1 (Y ∆i )) ≥ (p − 1)t2 − it1 + vL2 (Y )<br />

vL1 (Ei K/L1 (Y ∆)) ≥ (p − 1)t2 + i(vL2 (Y ) − t1)<br />

Weshowfirstthatif θbelongsto L1and<br />

with Yiin L2<strong>the</strong>n<br />

for 0 ≤ i ≤ p − 1.Since t1 = uand<br />

θ = p−1<br />

i=0<br />

Yi∆ i<br />

vL2 (Yi) ≥ it1 + vL1 (θ)<br />

vK(θ) = min<br />

0≤i≤p−1 {vK(Yi) − iu}<br />

<strong>the</strong>inequalityisclearfor i = 0. Toproveitingeneral,weuseinductionone i. Suppose<br />

0 < j ≤ p − 1and<strong>the</strong>inequalityisvalidfor i < j.


Chapter11 117<br />

Let<br />

pOF = P e F .<br />

Applying<strong>the</strong>exerciseat<strong>the</strong>beginning<strong>of</strong><strong>the</strong>paragraphto<strong>the</strong>extension L2/Fweseethat<br />

pe ≥ (p − 1)t2 = (p − 1)<br />

<br />

u +<br />

<br />

t − u<br />

.<br />

p<br />

If ξisany (p − 1)throot<strong>of</strong>unity<strong>the</strong>n,byLemmas11.3and11.4,<strong>the</strong>reisaσin G 2 suchthat<br />

Wemaywrite<br />

∆ σ = ∆ + ξ + O(̟ p2e−(p−1)u K ).<br />

θ σ − θ = p−1<br />

asalinearcombination p−1<br />

withcoefficientsfrom L2.Since<br />

i=1 Yi(∆ iσ − ∆ i )<br />

i=0<br />

Xi∆ i<br />

vL2 (θσ − θ) ≥ vL1 (θ) + t1<br />

wemayapply<strong>the</strong>inductionassumptiontoseethat<br />

<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand<br />

sothat θ σ − θisequalto<br />

with<br />

Thusif<br />

vL2 (Xj−1) ≥ (j − 1))t1 + vL1 (θσ − θ) ≥ jt1 + vL1 (θ).<br />

∆ iσ − ∆ i = (∆ + ξ) i − ∆ i + O(̟ p2e−(p−1)u−(i−1)u K<br />

)<br />

p−1<br />

i=1 Yi<br />

i−1<br />

k=0<br />

<br />

i<br />

∆<br />

k<br />

k ξ i−k + η<br />

η = O(θ̟ p2e−(p−2)u K ).<br />

η = p−1<br />

i<br />

Zi∆<br />

i=0


Chapter11 118<br />

with<strong>the</strong> Ziin L2wehave<br />

But<br />

whichequals<br />

Since<br />

wehave<br />

vK(Zj−1) ≥ (j − 1)u + vK(Θ) + p 2 e − (p − 2)u.<br />

p 2 e − (p − 2)u + (j − 1)u ≥ p(p − 1)u − (p − 2)u + (j − 1)u<br />

((p − 1) 2 + j)u ≥ pju.<br />

<br />

p−1<br />

Xj−1 =<br />

i=j Yi<br />

vL2<br />

p−1<br />

i=j Yi<br />

<br />

i<br />

j<br />

<br />

i<br />

j<br />

ξ i−j<br />

<br />

+ Zj−1<br />

ξ i−j<br />

<br />

≥ ju + vL1 (θ)<br />

forall ξ.Weobtain<strong>the</strong>requiredestimatefor vL2 (Yj)bysummingover ξ.<br />

Wenowshowthat<br />

vL1 (SK/L1 (Y ∆i )) ≥ (p − 1)t2 − it1 + vL2 (Y )<br />

for Y in L2and 1 ≤ i ≤ p − 1.Allweneeddoisshowthatforany θin<strong>the</strong>inversedifferent<br />

<strong>of</strong> L1/F<br />

orthatif θisin L1and<br />

<strong>the</strong>n<br />

isin OF.<br />

Let<br />

S L1/F(θ̟ −vL 2 (Y )+it1−(p−1)t2<br />

L1<br />

with Yjin L2for 0 ≤ j ≤ p − 1.Then<br />

S K/L1 (Y ∆i )) ∈ OF<br />

vL1 (θ) ≥ −(p − 1) (t1 + 1) + it1 − (p − 1)t2 − vL2 (Y )<br />

θ Y ∆ i = p−1−i<br />

S L1/F(θ S K/L1 (Y ∆i )) = S K/L(θ Y ∆ i ) (11.4)<br />

j=0<br />

θ = p−1<br />

j=0<br />

Yj∆ j<br />

Y Yj∆ j+i + (a + ∆) p−1<br />

j=p−i Y Yj∆ j+i−p .


Chapter11 119<br />

Since<br />

wehave<br />

for 1 ≤ i < p − 1and<br />

Therelations(11.2)implythat<br />

for 1 ≤ i < p − 1andthat<br />

Thus(11.4)isequalto<br />

if i < p − 1andto<strong>the</strong>sum<strong>of</strong>thisand<br />

if i = p − 1.<br />

Weknowthat<br />

foreach j.Thus<br />

∆ p − ∆ = a<br />

E i (∆) = 0<br />

K/L2<br />

E p−1<br />

K/L2 (∆) = (−1)p .<br />

S K/L2 (∆i ) = 0<br />

S K/L2 (∆p−1 ) = p − 1.<br />

(p − 1) S L2/F(Y Yp−1−i) + S L2/F(paY Yp−i)<br />

S L2/F(Y Yp−1)<br />

vL2 (Yj) ≥ jt1 + vL1 (θ)<br />

vL2 (Y Yp−1−i) ≥ (p − 1 − i)t1 − (p − 1) (t1 + 1) + it1 − (p − 1)t2<br />

whichisatleast −(p − 1) (t2 + 1).Sois<br />

If i = p − 1<br />

vL2 (paY Yp−1) ≥ (p − 1)t2 − t1 − (p − 1) (t1 + 1) + it1 + (p − i)t1 − (p − 1)t2.<br />

vL2 (Y Yp−1) ≥ (p − 1)t1 − (p − 1) (t1 + 1) + (p − 1)t1 − (p − 1)t2<br />

isalsoatleast −(p − 1) (t2 + 1).Allweneeddonowisobservethat<br />

S L2/F(P<br />

−(p−1) (t2+1)<br />

L2<br />

) ⊆ OF.


Chapter11 120<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmawehavetoshowthat<br />

vL1 (Ei K/L1 (Y ∆)) ≥ (p − 1)t2 + i(vL2 (Y ) − t1)<br />

for 1 ≤ i ≤ p − 1. Thishasbeendonefor i = 1;soweproceedbyinduction.Applying<strong>the</strong><br />

relations(11.2)weseethat<br />

(−1) i+1 iE i i−1<br />

(Y ∆) = K/L1 j=0 (−1)j S i−j<br />

(Y ∆) Ej (Y ∆).<br />

K/L1 K/L1<br />

Accordingto<strong>the</strong>inductionassumptionand<strong>the</strong>firstpart<strong>of</strong><strong>the</strong>lemma,with Y replacedby<br />

Y i−j ,atypicaltermin<strong>the</strong>sumon<strong>the</strong>rightis O(̟ v L1 )with<br />

if j > 0and<br />

v = (p − 1)t2 − (i − j)t1 + (i − j)vL2 (Y ) + (p − 1)t2 + j(vL2 (Y ) − t1)<br />

if j = 0.Thelemmafollows.<br />

v = (p − 1)t2 − it1 + ivL2 (Y )<br />

Weapply<strong>the</strong>secondestimatewith Y = 1toimprove,when Λ = ∆, L = L1,andcertain<br />

auxiliaryconditionsaresatisfied,ourestimateson<strong>the</strong>number γappearingin(11.3).<br />

(vi)Suppose pisoddand<br />

If k ≥ ν + 2and αp ≤ k − 2<strong>the</strong>n<br />

If k ≥ ν + 2and αp ≤ k − 1<strong>the</strong>n<br />

andif k ≥ ν + 1and αp ≤ k − 1<br />

In<strong>the</strong>presentcircumstances<br />

ℓ = (p − 1)ν + j + 1.<br />

jt1 + γ ≥ pt2.<br />

jt1 + γ ≥ (p − 1)t2 + t1<br />

jt1 + γ ≥ (p − 1)t2 − t1.<br />

γi ≥ (p − 1)t2 − it1


Chapter11 121<br />

for 1 ≤ i ≤ p − 1.Thus<br />

whichequals<br />

or<br />

If αp ≤ k − 2,thisisatleast<br />

jt1 + γ ≥ jt1 + p−1<br />

i=1 αi((p − 1)t2 − it1) − αpt1<br />

jt1 + (p − 1)kt2 − ℓt1 − (p − 1)αp(t2 − t1)<br />

(p − 1)kt2 − (p − 1)νt1 − t1 − (p − 1)αp(t2 − t1).<br />

2(p − 1)t2 + (p − 1) (k − 2 − ν)t1 − t1<br />

whichinturnisatleast pt2if p ≥ 3and k ≥ ν + 2.If αp ≤ k − 1<br />

Therequiredinequalitiesfollow.<br />

γ ≥ (p − 1)t2 + (p − 1) (k − 1 − ν)t1 − t1.<br />

Weshalluseall<strong>the</strong>seestimatesfor γin<strong>the</strong>nextsequence<strong>of</strong>lemmas.<br />

Lemma 11.8<br />

If ∆isasinLemma11.7and pisodd<strong>the</strong>n<br />

SL1/FNK/L1∆ ≡ SL2/FNK/L2∆ (mod P1+t2<br />

F ).<br />

Theassertion<strong>of</strong><strong>the</strong>lemmamaybereformulatedas<br />

Noticethat<br />

SK/L2NK/L1∆ ≡ SK/L1NK/L2∆ (modP1+pt2 ). L1<br />

pt2 = t + (p − 1)u.<br />

EarlierweappliedNewton’sidentitytoexpress S p<br />

K/L1 (∆)interms<strong>of</strong><strong>the</strong>elementarysymmetric<strong>functions</strong><strong>of</strong><br />

∆anditsconjugates.Since<br />

pe ≥ (p − 1)t2<br />

wecanapply<strong>the</strong>estimates(iii)for γtoseethat<br />

S p<br />

K/L1 (∆)


Chapter11 122<br />

iscongruentto<br />

Since<br />

wehave<br />

p<br />

pNK/L1∆ +<br />

2<br />

p−1<br />

j=1 Ej<br />

K/L1<br />

(∆) Ep−j<br />

K/L1 (∆) + {S K/L1 (∆)}p . (11.5)<br />

∆ p − ∆ = a<br />

SK/L1 (∆) = Sp<br />

K/L1 (∆) − SL2/F(a). AccordingtoLemma11.7<strong>the</strong>leftsidebelongsto P (p−1)t2−t1<br />

.Inparticularitbelongsto PL1 L1<br />

.<br />

Weneedtoknowthatitbelongsto P 1+t2.<br />

Thisisclearif p > 3or t2 > t1. Toproveitin<br />

L1<br />

generalwefirstobservethatalltermsbut<strong>the</strong>lastin(11.5)arecongruentto0modulo P 1+t2.<br />

L1<br />

Themiddletermsaretakencare<strong>of</strong>by<strong>the</strong>estimates(ii)for γ.Totakecare<strong>of</strong><strong>the</strong>firstwehave<br />

toshowthat<br />

pe − u ≥ 1 + t2.<br />

Weknowthat pe ≥ (p − 1)t2andthatif t = u<strong>the</strong>inequalityisstrict.Weneedonlyshowthat<br />

(p − 1)t2 − u ≥ t2<br />

withastrictinequalityif t = u.Thisisclearsince t2 ≥ uand t2 > uif t = u.Thus<br />

Wenowneedonlyshowthat<br />

SK/L1∆ ≡ (SK/L1∆)p − SL2/F(a) (mod P 1+t2).<br />

L1<br />

S L2/F(a) ≡ 0 (modP 1+t2<br />

L1 ).<br />

Theleftsidebelongsto P pb<br />

if bisanyintegerlessthanorequalto<br />

L1<br />

Wemaytake<br />

−u + (p − 1)(t2 + 1)<br />

.<br />

p<br />

b ≥<br />

−u + (p − 1)t2<br />

p<br />

whichisgreaterthanorequalto 1+t2<br />

p exceptwhen p = 3and t = u.Inthiscase,whichis<strong>the</strong><br />

onetoworryabout, t2 = uisprimeto pand<br />

−u + (p − 1)(t2 + 1)<br />

p<br />

= u + 2<br />

3


Chapter11 123<br />

hasintegralpartatleast u+1<br />

3 .<br />

Weapply(11.5)againtoseethat<br />

iscongruentto<br />

SK/L1NK/L2∆ = SK/L1a = Sp (∆) − SK/L1 (∆)<br />

K/L1<br />

−SK/L1∆ + p N p<br />

K/L1∆ +<br />

2<br />

Wehavestilltoconsider<br />

p−2<br />

S K/L2 N K/L1<br />

j=2 Ej<br />

K/L1<br />

(∆) Ep−j<br />

K/L1 (∆).<br />

∆. (11.6)<br />

Therearesomegeneralremarkstobemadefirst.Suppose Λbelongsto Kand<br />

If xand zalsobelongto Kand<br />

and<br />

<strong>the</strong>n<br />

Itisenoughtoshowthat<br />

vK(Λ) = −u.<br />

xΛ j ∈ OK<br />

z ∈ P 1+t+(p2 −1)u<br />

K<br />

N K/L1 (x(Λ + z)j+1 ) ≡ N K/L1 (xΛj+1 ) (modP 1+pt2<br />

L1 ).<br />

N K/L1<br />

<br />

1 + z<br />

j+1 Λ<br />

≡ 1 (mod P 1+t+pu<br />

). L1<br />

ThisfollowsfromLemmaV.5<strong>of</strong>Serre’sbookand<strong>the</strong>relations<br />

and<br />

1 + t + p 2 u ≥ 1 + t + pu<br />

1 + t + p 2 u + (p − 1) (t + 1)<br />

p<br />

= 1 + t + pu.<br />

AccordingtoLemmas11.3and11.4<strong>the</strong>reisforeach σ = 1in G2a (p − 1)throot<strong>of</strong>unity<br />

ξ = ξ(σ)suchthat<br />

∆ σ = (∆ + ξ) p − a + O (̟ 2(p2e−(p−1)u) K ).


Chapter11 124<br />

Wehave<br />

whichequals<br />

p 2 e − (p − 1)u ≥ (p − 1) {(p − 1)u + t} − (p − 1)u<br />

(p − 1)t + (p − 2) (p − 1)u ≥ t + p(p − 2)u.<br />

If t = u<strong>the</strong>first<strong>of</strong><strong>the</strong>seinequalitiesisstrictandif t > u<strong>the</strong>lastis.Thus<br />

and<br />

p 2 e − (p − 1)u ≥ 1 + t + p(p − 2)u<br />

2(p 2 e − (p − 1)u) ≥ {1 + t + (p 2 − 1)u} + {1 + t + ((p − 1) 2 − 2p)u}.<br />

Thesecondtermispositiveunless p = 3.<br />

Theexpression<br />

isequalto<br />

But<br />

and<br />

<br />

p<br />

<br />

=<br />

i<br />

p(p − 1) . . .(p − i + 1)<br />

(∆ + ξ) p − a<br />

∆ + ξ + p−1<br />

i=1<br />

i!<br />

<br />

p<br />

<br />

i<br />

ξ i ∆ p−i .<br />

i+1 p<br />

≡ (−1)<br />

i<br />

2p 2 e − (p − 1)u ≥ 2(p 2 e − (p − 1)u)<br />

(modp 2 )<br />

whichis,aswehavejustseen,atleast 1 + t + (p 2 − 1)u.Thusif p > 3<br />

if<br />

∆ σ ≡ (∆ + ξ) (1 − Z(ξ)) (modP 1+t+(p2−1)u K )<br />

Z(ξ) = p∆p−1<br />

1 + ξ/∆<br />

Expanding<strong>the</strong>denominatorweobtain<br />

If i ≥ p − 1<br />

p−1<br />

i=1<br />

∞<br />

p−1<br />

Z(ξ) = p∆<br />

i=1 ai<br />

p−1<br />

i<br />

ai = (−1)<br />

j=1<br />

1<br />

j<br />

(−1) i<br />

i<br />

i ξ<br />

.<br />

∆<br />

i ξ<br />

.<br />

∆<br />

≡ 0 (mod p).


Chapter11 125<br />

Clearly<br />

If p = 3<br />

Z(ξ) = O(p∆ p−2 ) = O(̟ p2e−(p−2)u K ).<br />

3(p 2 e − (p − 1)u) ≥ {1 + t + (p 2 − 1)u} + {2(1 + t) + (2p 2 − 6p + 1)u}.<br />

Thesecondtermisatleast 3uandinparticular,ispositive.Lemmas11.3and11.4showthat<br />

Therightsideequals<br />

∆ σ ≡ ((∆ + ξ) 3 − a) 3 − a (mod P 1+t+(p2−1)u K ).<br />

(∆ + ξ + 3ξ∆ 2 + 3ξ 2 ∆) 3 − a.<br />

Expanding<strong>the</strong>cubeandignoringalltermsin P 1+t+(p2−1)u K<br />

∆ + ξ + 3∆ 3<br />

<br />

ξ ξ2<br />

+<br />

∆ ∆2 <br />

whichwewriteas<br />

with<br />

and<br />

Since<br />

∞<br />

2<br />

Z(ξ) = 3∆<br />

i=1 ai<br />

(∆ + ξ) (1 − Z(ξ))<br />

+ 9∆ 4 ξ<br />

i ξ ∞<br />

4<br />

+ 9∆<br />

∆<br />

i=1<br />

weobtain<br />

i −ξ<br />

.<br />

∆<br />

2(p 2 e − (p − 2)u) ≥ 2(p 2 e − (p − 1)u) + 2u ≥ 1 + t + p 2 u<br />

p 2 e − (p − 2)u ≥ 1 + t + (p − 1) 2 u ≥ 1 + t + pu<br />

forallodd p,lemmaV.5<strong>of</strong>Serre’sbookshowsthat<br />

N K/L1 (x(∆ + ξ)j+1 (1 − Z(ξ)) j+1 ) ≡ {N K/L1 (x(∆ + ξ)j+1 )} {1 − S K/L1 Z(ξ)}j+1<br />

modulo P 1+t+(p−1)u<br />

L1<br />

if x∆ j liesin OK.<br />

Theexpression(11.6)isequalto<br />

<br />

NK/L1∆ + σ∈G 2<br />

σ=1<br />

N K/L1 ∆σ .


Chapter11 126<br />

Theprecedingremarksshowthat,if p > 3,thisiscongruentto<br />

modulo P 1+t+(p−1)u<br />

.Since<br />

L1<br />

wehave<br />

<br />

NK/L1∆ +<br />

ξ NK/L1 (∆ + ξ) {1 − SK/L1Z(ξ)} 2p 2 e + u + (p − 1)t<br />

p<br />

if i ≥ pandwemayreplace S K/L1 Z(ξ)by<br />

if p > 3.Ofcourse<br />

P 1+pt2<br />

L1<br />

and<br />

and<br />

Since<br />

≥ 2(p − 1)<br />

<br />

u +<br />

<br />

t − u<br />

tu > t + pu<br />

p<br />

N K/L1 (∆ + ξ) S K/L1 (aip ∆ p−1−i ξ i ) ∈ P 1+pt2<br />

L1<br />

p−1<br />

i=1 pξi S K/L1 (ai∆ p−1−i )<br />

p<br />

NK/L1 (∆ + ξ) =<br />

i=0 ξ1−i E i K/L1 (∆).<br />

Putting<strong>the</strong>seobservationstoge<strong>the</strong>rweseethat,if p > 3,(11.6)iscongruentmodulo<br />

to<strong>the</strong>sum<strong>of</strong><br />

NK/L1∆ + (p − 1) {SK/L1∆ + NK/L1∆} −p(p − 1) p−1<br />

i=1 ai S K/L1 (∆p−1−i ) E 1+i<br />

K/L1 (∆)<br />

−p(p − 1) {pap−1 S K/L1 (∆) + ap−2 S K/L1 (∆)}.<br />

pSK/L1 (∆) ∈ P1+pt2<br />

L1<br />

<strong>the</strong>lastexpressionmaybeignoredasmay<strong>the</strong>termin<strong>the</strong>secondcorrespondingto i = p − 2.<br />

Since<br />

ap−1 = p−1<br />

j=1<br />

1<br />

≡ 0 (modp)<br />

j<br />

and<br />

and<br />

S K/L1 (∆0 ) = p<br />

3p 2 e − t2 ≥ 1 + pt2


Chapter11 127<br />

<strong>the</strong>sumin<strong>the</strong>secondexpressionneedonlybetakenfrom1to p−3.Therelation(11.2)implies<br />

that<br />

K/L1 (∆) ≡ (−1)ip(p − 1 − i) E p−1−i<br />

(∆) E1+i<br />

K/L1 (∆)<br />

pS p−1−i<br />

(∆) E1+i<br />

K/L1<br />

K/L1<br />

modulo P 1+pt2<br />

.Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma11.8,for p > 3,weneedonlyshowthat<br />

L1<br />

iai−1 + (p − i) ap−i−1 ≡ (−1) i<br />

for p − 2 ≥ p − i ≥ i ≥ 2.Thisamountstoshowingthat<br />

i i−1<br />

j=1<br />

1<br />

j<br />

+ (p − i) p−i−1<br />

j=1<br />

1<br />

j<br />

(modp)<br />

≡ −1 (modp).<br />

Wemayreplace<strong>the</strong> p − iinfront<strong>of</strong><strong>the</strong>secondsumby −i.Making<strong>the</strong>obviouscancellations<br />

weobtain<br />

−i p−i−1 1 p−i<br />

≡ −1 − i<br />

j=i j j=i<br />

1<br />

j .<br />

If 1<br />

j occursin<strong>the</strong>sumon<strong>the</strong>rightsodoes<br />

1<br />

p−j .<br />

Thepro<strong>of</strong>for p = 3canproceedinexactly<strong>the</strong>samewayprovidedweshowthat<br />

liesin P 1+3t2<br />

L1<br />

for i ≥ 1.Since<br />

andone<strong>of</strong><strong>the</strong>inequalitiesisstrict<br />

Theexpression<br />

9 {N K/L1 (∆ + ξ)} {S K/L1 (ξi ∆ 4−i )} (11.7)<br />

2p 2 e − u ≥ 2(p − 1)t2 − u ≥ 3t2<br />

9NK/L1 (∆ + ξ) ∈ P1+3t2.<br />

L1<br />

ξ i S K/L1 (∆4−i )<br />

isclearlyintegralfor i ≥ 4.By,forexample,Lemma11.7itisalsointegralif iis2or3.Thus<br />

i = 1is<strong>the</strong>onlycasetocauseaproblem.If i = 1wesumover ξtoseethat(11.7)equals<br />

18{E 2 K/L1 (∆) S K/L1 (∆3 ) + S K/L1 (∆3 )}.<br />

Thetermsappearingin<strong>the</strong>expressioninbracketshavebeenshowntoliein OL1 .


Chapter11 128<br />

Thereisonemorelemmatobeprovedbeforewecometo<strong>the</strong>basicfact<strong>of</strong>thisparagraph.<br />

If xisin Kweset<br />

and<br />

g(x) = S L1/F(N K/L1 ∆ S K/L1 (x)) − S L2/F(N K/L2 ∆ S K/L2 (x))<br />

h(x) = S L1/F(N K/L1 (x∆)) − S L2/F(N K/L2 (x∆)).<br />

In<strong>the</strong>followinglemma pissupposedodd.<br />

Lemma 11.9<br />

(a)Suppose xisin L2, 0 ≤ j ≤ p − 1,and x∆jliesin P 1+t2−t1<br />

K .If j = p − 2<strong>the</strong>n<br />

g(x∆ j ) ≡ 0 (modP 1+t2<br />

F )<br />

butif j = p − 2,<strong>the</strong>reisan ωin L2suchthat<br />

and<br />

ωx ≡ −x E p−1<br />

(∆) (mod P1+pt2<br />

K/L1 K )<br />

g(x∆ j ) ≡ −{S L2/Fx − S L2/F(xω)} (mod P 1+t2<br />

F ).<br />

(b)Suppose xisin L2, 0 ≤ j ≤ p − 1,and x∆ j liesin PK.If j = p − 2<br />

butif j = p − 2<br />

modulo P 1+pt2<br />

. L1<br />

Thecongruencesmodulo P 1+t2<br />

F<br />

Westartwithpart(a).If xbelongsto OL2 <strong>the</strong>n<br />

h(x∆ j ) ≡ 0 (modP 1+t2<br />

F )<br />

h(x∆ j ) ≡ (p − 1) (1 − {E p−1<br />

K/L1 (∆)}p )N K/L1 x<br />

are<strong>of</strong>courseequivalenttocongruencesmodulo P 1+pt2<br />

. L1<br />

g(x) = SK/L1 (xSK/L2 (NK/L1∆) − pxa).<br />

Because<strong>of</strong><strong>the</strong>previouslemmathisiscongruentto<br />

S K/L1 (xS L2/Fa − pxa) = S L2/F xS L2/Fa − pS L2/F(xa)


Chapter11 129<br />

modulo P 1+t2<br />

F .Wesawbeforethat<br />

Thesameargumentshowsthat<br />

S L2/Fa ∈ P 1+t2<br />

L1 .<br />

SL2/F(xa) ∈ P 1+t2.<br />

L1<br />

pbelongsto P (p−1)t2<br />

.Since<strong>the</strong>integralpart<strong>of</strong><br />

L1<br />

isatleast<br />

(p − 1) (t2 + 1)<br />

p<br />

(p − 1)t2<br />

,<br />

p<br />

sodoes S L2/Fx.Thistakescare<strong>of</strong><strong>the</strong>case j = 0.<br />

If 1 ≤ j = p − 1<strong>the</strong>n g(x∆ j )isequalto<br />

S L2/F(xS K/L2 (∆j N K/L1 ∆)) − (p − 1)δ S L2/F(xa)<br />

where δ = 0if j = p − 1and δ = 1if j = p − 1.Consider<br />

Itliesin L2andisequalto<br />

Zj = x S K/L2 (∆j N K/L1 ∆).<br />

x∆ j <br />

NK/L1∆ + σ∈G 2 x∆<br />

σ=1<br />

σ j NK/L1∆σ .<br />

Weobservefirst<strong>of</strong>allthatif Λisin K, vK(Λ) = −u, xisin L2, xΛjliesin P 1+t2−t1,<br />

and zliesin P<br />

(p−1) (pt2−t1)<br />

K<br />

<strong>the</strong>n<br />

x(Λ + z) j N K/L1 (Λ + z) ≡ xΛj N K/L1<br />

Λ (mod P1+pt2<br />

K )<br />

provided pisgreaterthan3.Toestablishthiscongruenceweshowthat<br />

<br />

1 + z<br />

j Λ<br />

N K/L1<br />

<br />

1 + z<br />

<br />

Λ<br />

≡ 1 (modP (p−1)t2+(p+1)t1<br />

K ).<br />

K


Chapter11 130<br />

Toshowthis,onehasonlytoobservethat z<br />

Λ<br />

that<br />

whichequals<br />

if p > 3.<br />

andallitsconjugatesliein P(p−1)pt2−(p−2)t1<br />

K<br />

(p − 1)pt2 − (p − 2)t1 ≥ (p − 1)t2 + ((p − 1) 2 − (p − 2))t1<br />

(p − 1)t2 + ((p − 1) (p − 2) + 1)t1 ≥ (p − 1)t2 + (p + 1)t1<br />

Supposefornowthat p > 3.Since<br />

Lemma11.4impliesthat Zjiscongruentto<br />

p 2 e − (p − 1)u ≥ (p − 1) (pt2 − t1).<br />

x∆ j <br />

NK/L1∆ +<br />

ξ x(∆ + ξ)j NK/L1 (∆ + ξ)<br />

modulo P 1+pt2<br />

K<br />

<br />

NK/L1 (∆ + ξ) = ξ 1 + 1<br />

ξ N p−1<br />

K/L1∆ +<br />

i=1 ξ−iE i K/L1 (∆)<br />

<br />

.<br />

AccordingtoLemma11.7thisiscongruentto<br />

ξ + NK/L1∆ + ξ Ep−1<br />

K/L1 (∆)<br />

modulo P pt2<br />

K .Thusif x∆jbelongsto P 1+t2−t1<br />

K<br />

Zj ≡ x∆ j <br />

NK/L1∆ +<br />

ξ x(∆ + ξ)j (ξ + NK/L1∆ + ξ Ep−1<br />

K/L1 (∆))<br />

modulo P 1+pt2<br />

K .Weexpand (∆ + ξ) jandsumover ξtoobtain<br />

if j < p − 2.If j = p − 2weobtain<br />

and<br />

px∆ j NK/L1∆ (11.8)<br />

px∆ j NK/L1∆ + (p − 1)x (1 + Ep−1<br />

K/L1 (∆))


Chapter11 131<br />

andif j = p − 1weobtain<br />

px∆ j NK/L1∆ + (p − 1)x {NK/L1∆ + (p − 1)∆ + (p − 1)∆ Ep−1<br />

K/L1 (∆)}.<br />

Theexpression(11.8)liesin<br />

provided x∆ j liesin PK.<br />

Since<br />

and<br />

wehave<br />

P 1+p2 e−pt1<br />

K<br />

p 2 e − pt1 ≥ p(p − 1)t2 − pt1 ≥ pt2.<br />

L2 ∩ P 1+pt2<br />

K<br />

if 1 ≤ j < p − 2and x∆jliesin P 1+t2−t1<br />

K .<br />

Since<br />

liesin OL1 ,<br />

with<br />

if j = p − 2.Wemaytake ωin L2and<strong>the</strong>n<br />

and<br />

If j = p − 1<strong>the</strong>n<br />

= P 1+t2<br />

L1<br />

S L2/F(P 1+t2<br />

L2 ) ⊆ P 1+t2<br />

F ,<br />

g(x∆ j ) ≡ 0 (modP 1+t2<br />

F )<br />

E p−1<br />

K/L1 (∆)<br />

Zj = (ω − 1)x<br />

ω x = Zj + x ≡ −x E p−1<br />

(∆) (mod P1+pt2<br />

K/L1 K )<br />

g(x∆ j ) ≡ −{S L2/Fx − S L2/F(xω)} (modP 1+t2<br />

F ).<br />

g(x∆ j ) = S L2/F (Zj − (p − 1)xa)<br />

Zj − (p − 1)xa


Chapter11 132<br />

iscongruentto<br />

modulo P 1+pt2<br />

K .Theproduct<br />

liesin P 1+pt2<br />

K<br />

and<br />

Itiseasilyseenthat<br />

isequalto<br />

(p − 1)x {NK/L1∆ + p∆ + (p − 1)∆ Ep−1<br />

K/L1 (∆) − ∆p }<br />

{(p − 1)x} {p∆}<br />

(p − 1) E p−1<br />

(∆) ≡ −Ep−1 (∆) (modP1+pt2<br />

K/L1 K/L1 K ).<br />

∆ p + ∆ E p−1<br />

K/L1 (∆) − N K/L1 ∆<br />

− p−2<br />

i=1 (−1)i ∆ p−i E i K/L1 (∆).<br />

Recallingthat x∆p−1issupposedtoliein PKweappealtoLemma11.7toseethat<strong>the</strong>product<br />

<strong>of</strong>thisexpressionwith xliesin P 1+pt2<br />

K .Thus<br />

with<br />

If<br />

<strong>the</strong>n<br />

If p = 3and ξ = ξ(σ)<strong>the</strong>n<br />

Ifwecanshowthat<br />

itwillfollowthat<br />

g(x∆ j ) ≡ 0 (modP 1+t2<br />

F ).<br />

∆ σ = ∆ + ξ + 3ξ∆ 2 + 3ξ 2 ∆ + z<br />

z = O(̟ 2(p2e−(p−1)u) K ).<br />

∆σ = ∆ + ξ + 3ξ∆ 2<br />

∆ σ = ∆σ + 3ξ 2 ∆ + z.<br />

3ξ 2 ∆ + z = O(̟ (p−1)t2+pt1<br />

K )<br />

x∆ σ j N K/L1 ∆σ ≡ x∆ j σ N K/L1 ∆σ (modP 1+pt2<br />

K ) (11.9)


Chapter11 133<br />

if x∆ j liesin P 1+t2−t1<br />

K<br />

and<br />

because (p − 1) 2 ≥ p.Moreover<br />

whichisatleast<br />

and<br />

3ξ 2 ∆ = O(̟ p2e−t1 K )<br />

p 2 e − t1 ≥ p(p − 1)t2 − t1 ≥ (p − 1)t2 + pt1<br />

2(p 2 e − (p − 1)u) ≥ 2(p(p − 1)t2 − (p − 1)t1)<br />

(p − 1)t2 + ((2p − 1) (p − 1) − 2(p − 1))t1<br />

(2p − 1) (p − 1) − 2(p − 1) = (2p − 3) (p − 1) ≥ p.<br />

Wewanttoreplace N K/L1 ∆σby<br />

NK/L1 (∆ + ξ)<br />

in<strong>the</strong>rightside<strong>of</strong>(11.9).Todothiswehavetoshowthat<br />

Since<br />

and<br />

N K/L1<br />

wehaveonlytoverifythat<br />

andthat<strong>the</strong>integralpart<strong>of</strong><br />

isatleast<br />

<br />

∆σ<br />

∆ + ξ<br />

∆σ<br />

≡ 1 (mod P (p−1)t2+(p+1)t1<br />

K ).<br />

∆ + ξ = 1 + O(̟p2 e−t1<br />

K )<br />

p 2 e − t1 ≥ p(p − 1)t2 − t1,<br />

p{p(p − 1)t2 − t1} ≥ (p − 1)t2 + (p + 1)t1<br />

p(p − 1)t2 − t1 + (p − 1) (t + 1)<br />

p<br />

(p − 1)t2 + (p + 1)t1<br />

.<br />

p<br />

(11.10)<br />

(11.11)


Chapter11 134<br />

Theinequality(11.10)isclear.Since t ≥ t1<strong>the</strong>integralpart<strong>of</strong>(11.11)isatleast<br />

and<br />

p(p − 1)t2 + (p − 2)t1<br />

p<br />

≥ (p − 1)t2 + ((p − 1) 2 + (p − 2))t1<br />

p<br />

(p − 1) 2 + (p − 2) ≥ p + 1.<br />

Justaswhen p > 3wemayreplace NK/L1 (∆ + ξ)in(11.9)by<br />

Thus Zjiscongruentto<br />

modulo P 1+pt2<br />

K<br />

equalto<br />

ξ + NK/L1∆ + ξ Ep−1<br />

K/L1 (∆).<br />

x∆ j <br />

NK/L1∆ +<br />

ξ x(∆ + ξ + 3ξ∆2 ) j (ξ + NK/L1∆ + ξ E2 K/L1 (∆))<br />

andif j = 2itisequalto<br />

if p = 3, jis1or2,and x∆jbelongsto P 1+t2−t1<br />

K .If j = 1thisexpressionis<br />

px∆ j NK/L1∆ + 2x(1 + 3∆2 ) (1 + E 2 (∆)) (11.12)<br />

K/L1<br />

px∆ j NK/L1∆ + 2x{2(1 + 3∆2 )∆(1 + E 2 K/L1 (∆)) + (1 + 3∆2 ) 2 NK/L1∆}. (11.13)<br />

Theterm<br />

px∆ j N K/L1 ∆<br />

canbeignoredasbeforebecauseitliesin P 1+pt2<br />

K .Also<br />

because x∆ j liesin P 1+t2−t1<br />

K<br />

and<br />

3x∆ j+1 = O(̟ 1+p2e+t2−2t1 K )<br />

p 2 e + t2 − 2t1 ≥ p(p − 1)t2 − t1 ≥ pt2.<br />

Wemayalsoreplace<strong>the</strong>factor2in(11.12)by1.Thus(11.12)iscongruentto<br />

−x(1 + E 2 K/L1 (∆))


Chapter11 135<br />

modulo P 1+pt2<br />

K . Atthispointwemayargueaswedidfor p > 3. Tosimplify(11.13),we<br />

observethat<br />

9∆ 4 NK/L1∆ = O(̟2p2 e−7t1<br />

K )<br />

andthat<br />

Moreover<br />

if x∆ 2 belongsto PKand<br />

Thus(11.13)iscongruentto<br />

2p 2 e − 7t1 ≥ 12t2 − 7t1 ≥ 3t2.<br />

3x∆ 2 NK/L1∆ = O(̟1+p2 e−3t1<br />

K )<br />

p 2 e − 3t1 ≥ 6t2 − 3t1 ≥ 3t2.<br />

2x{2∆(1 + E 2 K/L1 (∆)) + N K/L1 ∆}<br />

modulo P 1+3t2<br />

K .Wemayagainargueaswedidfor p > 3.<br />

Weturnto<strong>the</strong>secondpart<strong>of</strong><strong>the</strong>lemma.Weobservefirstthatif xbelongsto L2, ybelongs<br />

to K,and<br />

xy ∈ PK<br />

<strong>the</strong>n<br />

Theleftsideis<br />

h(xy) ≡ h(y) NK/L1 (x) (mod P1+t2<br />

F ).<br />

S L1/F(N K/L1 xN K/L1 y∆) − S L2/F(x p N K/L2 y∆).<br />

Since NK/L2 x = NL2/Fxliesin Fthisequals<br />

{N K/L1 x}h(y) + S L2/F {N K/L2 (y∆) (N L2/Fx − x p )}.<br />

Thesecondtermis<strong>the</strong>tracefrom L2to F<strong>of</strong><br />

{NK/L2 (xy∆)}<br />

<br />

NL2/Fx − xp NK/L2x <br />

if,aswemayaswellassume, x = 0.Allweneeddoisshowthatthisexpressionliesin P 1+t2<br />

L2<br />

for<strong>the</strong>nitstracewillliein P 1+t2<br />

F .Thefirstfactorliesin P 1−t2.Thesecondfactorisequalto<br />

<br />

<br />

σ∈G 2 x σ−1<br />

<br />

− 1.<br />

L2


Chapter11 136<br />

Since p ≥ 3itwillbesufficienttoshowthat<strong>the</strong>image<strong>of</strong><strong>the</strong>homomorphism<br />

x −→ ϕ(x) = <br />

σ∈G 2 x σ−1<br />

<strong>of</strong> CL2into UL2iscontainedin U(p−1)t2.<br />

Let ρbeagenerator<strong>of</strong> G L2<br />

2 andlet P(X)be<strong>the</strong><br />

polynomial<br />

<strong>the</strong>n<br />

Let<br />

p−1<br />

i=1 (Xi − 1) = p−1<br />

If 1 ≤ i ≤ p − 1<strong>the</strong> ithcoefficient<strong>of</strong> Q(X)is<br />

ϕ(x) = x P(ρ) .<br />

Q(X) = (X − 1) p−1 .<br />

p−1−i (p − 1) . . .(p − i)<br />

(−1)<br />

i!<br />

Sinceboth P(X)and Q(X)aredivisibleby X − 1<br />

i=0 Xi − p<br />

≡ 1 (modp).<br />

P(X) = Q(X) + p(X − 1)R(X)<br />

where R(X)isapolynomialwithintegralcoefficients.Forall zin CL2 ,<br />

with w = O(̟ t2<br />

L2 ).Then<br />

and<br />

If a ≥ 1and<br />

<strong>the</strong>n<br />

z ρ−1 = 1 + w<br />

z p(ρ−1) = (1 + w) p ≡ 1 + w p ≡ 1 (modP pt2<br />

L2 )<br />

(1 + w) p−1 =<br />

z p(ρ−1)R(ρ) ∈ U pt2<br />

L2 .<br />

w ∈ P a L2<br />

1 + wp<br />

1 + w = 1 + wp − w<br />

1 + w<br />

≡ 1 (modPa+t2<br />

L2 ).<br />

<strong>On</strong>e<strong>the</strong>nshowseasilybyinductionthat,forall zin CL2andall n ≥ 1,<br />

z (ρ−1)n<br />

∈ U nt2<br />

L2 .


Chapter11 137<br />

If xliesin PKwemaytake y = 1.ApplyingLemma11.8weseethat<br />

h(x) ≡ N L2/F xh(1) ≡ 0 (mod P 1+t2<br />

F ).<br />

If 1 ≤ j ≤ p − 1, xliesin L2,and x∆ j liesin PK,<br />

with<br />

and<br />

Theexpression Pjiscongruentto<br />

N L2/Fx{N K/L1 ∆j+1 + <br />

h(x∆ j ) ≡ Pj − Qj (mod P 1+t2<br />

F )<br />

Pj = N L2/F xS L1/F(N K/L1 ∆j+1 )<br />

Qj = N L2/FxS L2/F(N K/L2 ∆j+1 ).<br />

ξ N K/L1 (∆ + ξ)j+1 {1 − S K/L1 Z(ξ)}j+1 } (11.14)<br />

modulo P 1+pt2.Sinceweareworkingmodulo<br />

P L1<br />

1+pt2<br />

L1<br />

weneedonlyconsider<br />

(1 − S K/L1 Z(ξ))j+1<br />

modulo P pt2+t1<br />

.Supposefirstthat p > 3.Then<br />

L1<br />

and<br />

Moreover<strong>the</strong>integralpart<strong>of</strong><br />

isatleast<br />

Z(ξ) = O(̟ p2e−(p−2)u K )<br />

p 2 e − (p − 2)u ≥ p(p − 1)t2 − (p − 2)u ≥ p(p − 2)t2.<br />

p(p − 2)t2 + (p − 1) (t + 1)<br />

p<br />

(p − 2)t2 −<br />

(p − 1)<br />

t<br />

p<br />

andtwicethisisatleast pt2 + t1.Wereplace(11.15)by<br />

1 − (j + 1) S K/L1 Z(ξ).<br />

(11.15)


Chapter11 138<br />

Since<br />

and<br />

while<br />

p−2<br />

p−1<br />

Z(ξ) ≡ p∆<br />

i=1 ai<br />

i ξ<br />

∆<br />

p 2 = O(̟ 2p2 e<br />

K )<br />

2p 2 e ≥ 2p(p − 1)t2 ≥ p(pt2 + t1),<br />

wemayreplace Z(ξ)by<strong>the</strong>rightside<strong>of</strong>(11.16).ByLemma11.7<br />

if 1 ≤ i ≤ p − 2and<br />

if i ≥ 2.Wereplace Z(ξ)by<br />

Wemaywrite(11.14)as<br />

N L2/FxN K/L1 ∆j+1<br />

Whenweexpand<br />

andsumover ξwewillobtain<br />

whichwewriteas<br />

pSK/L1 (∆p−1−i ) = O(̟ pe+it2)<br />

L1<br />

pe + it2 ≥ (p − 1)t2 + it2 ≥ pt2 + t1<br />

<br />

1 + <br />

ξ N K/L1<br />

N K/L1<br />

N L2/FxN K/L1 ∆j+1<br />

plusasum<strong>of</strong>terms<strong>of</strong><strong>the</strong>form<br />

pa1ξ∆ p−2 .<br />

<br />

1 + ξ<br />

j+1 ∆<br />

<br />

1 + ξ<br />

j+1 ∆<br />

<br />

1 + <br />

<br />

NL2/Fx NK/L1∆j+1 = <br />

αp N L2/FxN K/L1 ∆j+1 E i K/L1<br />

ξ N K/L1<br />

ξ N K/L1<br />

<br />

1<br />

∆<br />

(modp 2 ) (11.16)<br />

{1 − SK/L1 (pa1ξ∆ p−2 <br />

)} .<br />

<br />

1 + ξ<br />

j+1 ∆<br />

(∆ + ξ)j+1<br />

<br />

S K/L1 (∆p−2 )


Chapter11 139<br />

where αisrationalandliesin OFand iisatleast1.Since<br />

for i ≥ 1and<br />

E i K/L1<br />

<strong>the</strong>sesupplementarytermsmaybeignored.<br />

Nowtake p = 3. ∗<br />

<br />

1<br />

= O(̟<br />

∆<br />

t1<br />

L1 )<br />

pS K/L1 (∆p−2 ) = O(̟ pt2<br />

L1 )<br />

∗ (1998)Thisiswhereandhow<strong>the</strong>manuscript<strong>of</strong>Chapter11breaks<strong>of</strong>f.


Chapter12 140<br />

Chapter 12.<br />

The Second Main Lemma<br />

Suppose Kisanormalextension<strong>of</strong><strong>the</strong>localfield F and G = G(K/F)is<strong>the</strong>direct<br />

product<strong>of</strong>twocyclicgroups<strong>of</strong>primeorder ℓ.Let XKbeaquasi­character<strong>of</strong> CK.If σbelongs<br />

to Gdefine X σ Kby<strong>the</strong>relation X σ σ−1<br />

K (α) = XK(α ).<br />

Supposethat X σ K = XKforall σin Gbutthatfornoquasi­character XF<strong>of</strong> CFdoes XK =<br />

X K/F.If F ⊆ L ⊆ Kand [K : L] = ℓ<strong>the</strong>n XKcanbeextendedtoaquasi­character<strong>of</strong> W K/L<br />

because W K/L/CKisisomorphicto G(K/L)whichiscyclic.Ifthisquasi­characteris XL<strong>the</strong>n<br />

XK = X K/L.<br />

Lemma 12.1<br />

Suppose L1and L2aretw<strong>of</strong>ieldslyingbetween Fand Kand [K : L1] = [K : L2] = ℓ.<br />

Suppose XL1isaquasi­character<strong>of</strong> CL1 , XL2isaquasi­character<strong>of</strong> CL2 ,and<br />

Then<br />

isequalto<br />

XK = X K/L1 = X K/L2 .<br />

∆(XL1 , ψ L1/F) <br />

∆(XL2 , ψ L2/F) <br />

µF ∈S(L1/F) ∆(µF, ψF)<br />

µF ∈S(L2/F) ∆(µF, ψF).<br />

Because<strong>of</strong><strong>the</strong>assumptionon G(K/F)<strong>the</strong>field Fmustbenon­archimedean.Toprove<br />

<strong>the</strong>lemmaingeneralitisenoughtoproveitforagiven L1andall L2. Therearethree<br />

possibilitiestoconsider.<br />

(i)Thesequence<strong>of</strong>groups<strong>of</strong>ramificationtakes<strong>the</strong>form<br />

G = G−1 = G0 = . . . = Gt = Gt+1 = . . . = {1}.<br />

(ii)Thesequence<strong>of</strong>groups<strong>of</strong>ramificationtakes<strong>the</strong>form<br />

G = G−1 = G0 = G1 = . . . = Gu = Gu+1 = . . . = Gt = Gt+1 = . . . = {1}.


Chapter12 141<br />

(iii)Thesequence<strong>of</strong>groups<strong>of</strong>ramificationtakes<strong>the</strong>form<br />

G = G−1 = G0 = G1 = . . . = Gt = Gt+1 = . . . = {1}.<br />

In<strong>the</strong>firsttwocaseswetake G 1 = G(K/L1)tobe Gt. In<strong>the</strong>thirdcase<strong>the</strong>choice<strong>of</strong> L1is<br />

immaterial.<br />

If<strong>the</strong>relation X σ Li = XLiobtainsforone σdifferentfrom1in Gi = G(Li/F)itobtainsfor<br />

allsuch σand XLiis<strong>of</strong><strong>the</strong>form XLi/Fforsomequasi­character XF<strong>of</strong> CF.Then XK = XK/F whichiscontrarytoassumption.Thus<strong>the</strong>characters X σ−1<br />

Li with σin Giaredistinct.Theyare clearlytrivialon NK/Li CKso<br />

{X σ−1<br />

Li | σ ∈ G i } = S(K/Li) = {µ Li/F | µF ∈ S(Lj/F)}.<br />

Here jis2or1accordingas iis1or2.<br />

while<br />

Then<br />

Let ti ≥ −1bethatintegerforwhich<br />

G i = G i<br />

ti<br />

G i<br />

ti+1 = {1}.<br />

δi = δ(Li/F) = (ti + 1) (ℓ − 1).<br />

In<strong>the</strong>firstcase L1/Fisunramifiedand L2/Fisramified.Wechoose ̟L2 arbitrarilyandtake<br />

̟K = ̟L2 .Alsoweset<br />

̟L1 = ̟F = N L2/F̟L2 .<br />

In<strong>the</strong>secondandthirdcases K/L1and K/L2areramifiedand K/Fistotallyramified.We<br />

choose ̟kfirstandset<br />

and<br />

̟Li = N K/Li ̟K<br />

̟F = N K/F̟K.<br />

Let mi = m(XLi ).The m(X σ ) = miand<br />

Li<br />

m(X σ−1<br />

Li ) ≤ mi.


Chapter12 142<br />

Thus m(ν) ≤ miif νbelongsto S(K/Li).If G i = G(K/Li)andif<br />

while<br />

G i ui<br />

G i ui+1<br />

= Gi<br />

= {1}<br />

<strong>the</strong>n m(ν) = ui + 1if νisnon­trivial.Thus ui + 1 ≤ mi.Since νXLiis<strong>of</strong><strong>the</strong>form X σ Li forall<br />

νin S(K/Li),<br />

m(νXLi ) = m(XLi ).<br />

Lemma8.8and8.12implythat*<br />

This m(XK) = miif K/Liisunramifiedand<br />

m(XK) = ψ K/Li (mi − 1) + 1.<br />

m(XK) = ℓmi − δ(K/Li)<br />

if K/Liisramified.If n = n(ψF)<strong>the</strong>n ni = n(ψ Li/F)is nif Li/Fisunramifiedandis ℓn+δi<br />

if Li/Fisramified.<br />

In<strong>the</strong>firstcase<br />

Therelations<br />

and<br />

implythat t2 = t.Also<br />

sothat<br />

Moreover<br />

δ(K/L2) = δ(L1/F) = 0.<br />

δ(K/F) = δ(K/L1) + ℓδ(L1/F) = δ(K/L1) = (t + 1) (ℓ − 1)<br />

δ(K/F) = δ(K/L2) + δ(L2/F) = δ2 = (t2 + 1) (ℓ − 1)<br />

m(XK) = m2 = ℓm1 − δ(K/L1) = ℓm1 − δ2<br />

m2 + n2 = ℓ(m1 + n1).<br />

XL1 (̟m1+n1<br />

L1<br />

) = XK (̟ m1+n1)<br />

L2<br />

*Weareencounteringonceagain<strong>the</strong>conflictinguses<strong>of</strong><strong>the</strong>symbole ψ.


Chapter12 143<br />

isequalto<br />

XL2 (̟m2+n2<br />

L2<br />

and <br />

isequalto<br />

If<br />

σ∈G2<br />

) = XL2 (̟m1+n1<br />

<br />

F ) XL2<br />

<br />

σ∈G 2 ̟ 1−σ<br />

L2<br />

XL2 (̟1−σ<br />

<br />

) = L2<br />

µF ∈S(L1/F) µ L2/F(̟L2 )<br />

<br />

<strong>the</strong>n <br />

µF ∈S(L1/F) µF(̟F) = (−1) ℓ−1 .<br />

S ′ 1<br />

and <br />

Thuswehavetoshowthat<br />

isequalto<br />

and<br />

S ′ i = S(Li/F) − {1}<br />

µF(̟ t1+1+n<br />

F ) = (−1) n(ℓ−1)<br />

S ′ 2<br />

µF (̟ t2+1+n<br />

F ) = 1.<br />

(−1) m1(ℓ−1)<br />

∆1(XL1 , ψL1/F ̟ m1+n1<br />

F )<br />

∆1(XL2 , ψL2/F, ̟ m1+n1<br />

F ) <br />

S ′ 2<br />

In<strong>the</strong>secondandthirdcases<strong>the</strong>relations<br />

m1+n1<br />

∆1(µF, ψF, ̟ t+1+n<br />

F ).<br />

m(XK) = ℓm1 − δ(K/L1) = ℓm2 − δ(K/L2)<br />

δ(K/F) = δ(K/L1) + ℓδ1 = δ(K/L2) + ℓδ2<br />

implythat m1 + δ1 = m2 + δ2andhencethat m1 + n1 = m2 + n2.Thus<br />

XL1 (̟m1+n2<br />

L1<br />

Since <br />

) = XK (̟ m1+n1<br />

K<br />

S ′ i<br />

µF(̟ ti+1+n<br />

F ) = 1<br />

) = XL2 (̟m2+n2).<br />

L2


Chapter12 144<br />

wehavetoshowthat<br />

isequalto<br />

Suppose X ′ F<br />

isequalto<br />

and<br />

isequalto<br />

∆1(XL1 , ψL1/F, ̟ m1+n1)<br />

L1<br />

<br />

S ′ 1<br />

∆1(XL2 , ψL2/F, ̟ m2+n2)<br />

L2<br />

<br />

S ′ 2<br />

∆1(µF, ψF, ̟ t1+1+n<br />

F )<br />

∆1(µF, ψF, ̟ t2+1+n<br />

F ).<br />

isaquasi­character<strong>of</strong> CF.AccordingtoLemma10.1<br />

∆(X ′ L1/F , ψ L1/F) <br />

<br />

µF ∈S(L1/F) ∆(µF, ψF)<br />

µF ∈S(L1/F) ∆(µF X ′ F , ψF) (12.1)<br />

∆(X ′ L2/F , ψ L2/F) <br />

<br />

µF ∈S(L2/F) ∆(µF, ψF)<br />

µF ∈S(L2/F) ∆(µF X ′ F, ψF). (12.2)<br />

Suppose m ′ = m(X ′ F ) = 2d′ + ε ′ and d ′ isgreaterthanorequaltoboth 1 + t1and 1 + t2.<br />

Choose γin Fsuchthat<br />

γ OF = P m′ +n<br />

F<br />

and<strong>the</strong>nchoose β = β(XF).ByLemma9.4<strong>the</strong>expression(12.1)isequalto<br />

and(12.2)isequalto<br />

Consequently<br />

{∆(X ′ ℓ<br />

F , ψF)}<br />

{∆(X ′ ℓ<br />

F , ψF)}<br />

∆(X ′ L1/F , ψ L1/F)<br />

<br />

<br />

<br />

µF ∈S(L1/F) µF<br />

µF ∈S(L2/F) µF<br />

µF ∈S(L1/F) µF<br />

<br />

β<br />

γ<br />

<br />

γ<br />

β<br />

<br />

γ<br />

.<br />

β<br />

<br />

∆(µF, ψF)


Chapter12 145<br />

isequalto<br />

∆(X ′ L2/F , ψ L2/F)<br />

<br />

µF ∈S(L2/F) µF<br />

<br />

β<br />

γ<br />

<br />

∆(µF, ψF) .<br />

Supposethatboth m1 = m(XL1 )and m2 = m(XL2 )areatleast2andlet mi = 2di + εi.<br />

Supposethat<br />

for iequalto1and2.Then<br />

If<br />

for xin P di+εi<br />

Li<br />

m(X −1<br />

Li X ′ Li/F ) ≤ di<br />

mi = m(X ′ Li/F ) = ψ Li/F(m ′ − 1) + 1.<br />

<strong>the</strong>n,byLemma9.4again,<br />

X ′ Li/F (1 + x) = ψ Li/F<br />

∆(XLi , ψ Li/F) = X −1<br />

Li X ′ Li/F<br />

<br />

βi<br />

γ<br />

<br />

βix<br />

γ<br />

∆ (X ′ Li/F , ψ Li/F).<br />

ThustoproveLemma12.1in<strong>the</strong>presentcircumstanceswehaveonlytoverifythat<br />

isequalto<br />

X −1<br />

L1 X ′ L1/F<br />

X −1<br />

L2 X ′ L2/F<br />

Supposefirstthat ℓisodd.Then<br />

andweneedonlyverifythat<br />

X −1<br />

L1<br />

γ<br />

β1<br />

<br />

<br />

X ′ L2/F<br />

<br />

β1<br />

<br />

γ µF ∈S(L1/F) µF<br />

<br />

β2<br />

<br />

γ µF ∈S(L2/F) µF<br />

µF ∈S(Li/F) µF<br />

γ<br />

β2<br />

<br />

= X −1<br />

L2<br />

<br />

γ<br />

= 1<br />

β<br />

γ<br />

AccordingtoLemmas8.3and8.4wemaytake β1 = β2 = β.<br />

β2<br />

<br />

<br />

γ<br />

β<br />

<br />

γ<br />

.<br />

β<br />

X ′ L2/F<br />

γ<br />

β2<br />

<br />

.


Chapter12 146<br />

Certainly<br />

X ′ L1/F<br />

<br />

γ<br />

= X<br />

β<br />

′ F<br />

ℓ γ<br />

Since CFis<strong>the</strong>product<strong>of</strong> N L1/FCL1 and N L2/FCL2<br />

Consider<br />

β ℓ<br />

= X ′ L2/F<br />

γ<br />

β = N L1/F δ1 N L2/F δ2.<br />

XLi (N Lj/Fδj) = XK(δj)<br />

where jis1or2accordingas iis2or1.Therightsideequals<br />

Theproductisequalto<br />

whichis1because ℓisodd.<br />

XLj (δℓ j) = XLj (N Lj/F δj) <br />

<br />

<br />

γ<br />

.<br />

β<br />

wemaywrite γ<br />

β asaproduct<br />

σ∈G(Lj/F)<br />

µF ∈S(Li/F) µ Lj/F(δj)<br />

XLj (δ1−σ<br />

j ).<br />

Beforediscussing<strong>the</strong>case ℓ = 2weconsider<strong>the</strong>circumstancesunderwhich,foragiven<br />

XL1 and XL2 ,aquasi­character X ′ F with<strong>the</strong>propertiesdescribedaboveexists.<br />

Lemma 12.2<br />

(a)If Li/Fisunramified, xbelongsto U ui+1<br />

,and Li<br />

<strong>the</strong>n<br />

N Li/F(x) = 1<br />

XLi (x) = 1.<br />

(b)If Li/Fisramified, K/Liisunramified, xbelongsto U ti+1<br />

,and Li<br />

<strong>the</strong>n<br />

N Li/F(x) = 1<br />

XLi (x) = 1.<br />

(c)If Li/Fand K/Liareramified, xbelongsto U ui+ti+1<br />

,and<br />

Li<br />

N Li/F(x) = 1


Chapter12 147<br />

<strong>the</strong>n<br />

XLi (x) = 1.<br />

Choosesomenon­trivial σiin G i = G(Li/F).Then<br />

isanon­trivialcharacterin S(K/Li)and<br />

µLi<br />

= X σ−1<br />

i −1<br />

Li<br />

m(µLi ) = ui + 1.<br />

Since Li/Fiscyclic<strong>the</strong>reisayin CLi suchthat<br />

x = y σi−1 .<br />

Weshallshowthat ycanbetakenin U ui+1<br />

.Then<br />

Li<br />

XLi (x) = µLi (y) = 1.<br />

Suppose Li/Fisunramified. Ifwecannotchoose yin U ui+1<br />

<strong>the</strong>reisalargestinteger<br />

Li<br />

a ≥ −1suchthatwecanchoose yin Ua Liwhere ais<strong>of</strong>courselessthan ui + 1.Choosesucha<br />

y.Then aisnot­1becausewecanalwaysdivide ybyapower<strong>of</strong> ̟F.If awere0<strong>the</strong>n ycould<br />

notbecongruenttoanelement<strong>of</strong> UF modulo PF. Then yσi−1 1 wouldnotbein UF . Since<br />

ui + 1 > 0in<strong>the</strong>presentsituationthisisimpossible.Let<br />

y = 1 + ε̟ a F .<br />

Then εcannotbecongruenttoanelement<strong>of</strong> OFmodulo PF.Thus<br />

and<br />

isnotin U a+1<br />

.Thisisacontradiction.<br />

Li<br />

ε σi − ε ≡ 0 (modPLi )<br />

y σi−1 ≡ 1 + (ε σi − ε) ̟ a F (modP a+1<br />

Li )<br />

Nowsuppose Li/Fisramifiedand K/Liisunramified.Then ti + 1 ≥ 1and ui + 1 = 0.<br />

Weneedonlyshowthat ycanbetakentobeaunit.Write<br />

y = ε̟ b Li


Chapter12 148<br />

where εisaunit. If biscongruentto0modulo ℓwecandivide ybysomepower<strong>of</strong> ̟Fto<br />

obtainanelement<strong>of</strong> UF = U0 F .Toseethat bmustbecongruentto0modulo ℓwesuppose<strong>the</strong><br />

contrary.Then<br />

y σi−1 σi−1 σi−1<br />

= ε (̟ ) Li<br />

b ≡ (̟ σi−1<br />

) Li<br />

b<br />

(modP ti+1<br />

). Li<br />

If ti = 0<strong>the</strong>residue<strong>of</strong> ̟ σi−1<br />

Li<br />

If ti > 0<strong>the</strong>n<br />

where αisaunit.Thus<br />

modulo PLi isanon­trivial ℓthroot<strong>of</strong>unityand<br />

(̟ σi−1<br />

Li ) b ≡ 1 (modPLi ).<br />

̟ σi−1<br />

Li<br />

= 1 + α ̟ti<br />

Li<br />

(̟ σi−1<br />

Li ) b ≡ 1 + αb ̟ ti<br />

Li (mod P ti+1<br />

Li ).<br />

Therightsideisnotcongruentto0modulo P ti+1<br />

. Li<br />

Nowsuppose Li/Fand K/Liarebothramified. Then ℓ = pandboth uiand tiareat<br />

least1.Againsupposethat ycannotbechosenin U ui+1<br />

andlet abe<strong>the</strong>largestintegersuch<br />

Li<br />

that ycanbechosenin Ua .Theargumentjustusedshowsthat a ≥ 0.Since Li/Fisramified<br />

U kp<br />

Li = Uk F Ukp+1<br />

Li .<br />

Therefore aisnotdivisibleby pandinparticularisatleast1.Let<br />

where βisaunit.Then<br />

Let<br />

and<br />

y = 1 + ε̟ a Li<br />

y σi−1 = (1 + ε σi ̟ aσi<br />

Li ) (1 + ε̟a Li )−1 .<br />

ε σi = ε + η ̟ ti+1<br />

Li<br />

̟ σi−1<br />

Li<br />

where αisaunit.Then y σi−1 isequalto<br />

= 1 + α ̟ti<br />

Li<br />

ti+1<br />

1 + (ε + η ̟ ) (1 + α̟ Li ti<br />

Li )a̟ a <br />

a −1<br />

1 + ε̟ Li<br />

Li


Chapter12 149<br />

whichiscongruentto<br />

1 + aαε̟ ti+a<br />

Li<br />

modulo P ti+a+1<br />

.Therefore a ≥ ui + 1.Thisisacontradiction.<br />

Li<br />

Lemma 12.3<br />

and<br />

If L1/Fisunramifiedwecanchoose X ′ F suchthat<br />

m(X −1<br />

L1 X ′ L1/F ) = t + 1<br />

m(X −1<br />

L2 X ′ L2/F ) = t + 1.<br />

If m(XL1 ) > t + 1<strong>the</strong>n m(X ′ F )willequal m(XL1 ).<br />

By<strong>the</strong>previouslemmawecandefineaquasi­character X ′ F <strong>of</strong><br />

bysetting<br />

N L1/FU u1+1<br />

L1<br />

X ′ F(N L1/Fx) = XL1 (x).<br />

Weextend X ′ Ftoaquasi­character,whichweagaindenoteby X ′ F ,<strong>of</strong> CF.Then<br />

m(X −1<br />

L1 X ′ L1/F ) ≤ u1 + 1.<br />

However X −1<br />

K X ′ −1<br />

K/F , XL1 X ′ −1<br />

L1/F ,and XL2 X ′ L2/Fsatisfy<strong>the</strong>conditions<strong>of</strong>Lemma12.1.There fore<br />

m(X −1<br />

L1 X ′ L1/F ) ≥ u1 + 1.<br />

Since L1/Fisunramified u1and t2arebo<strong>the</strong>qualto t.Thus<br />

and<br />

m(X −1<br />

L1 X ′ L1/F ) = t + 1<br />

m(X −1<br />

L2 X ′ L2/F ) = ℓ(u1 + 1) − δ2 = ℓ(u1 + 1) − (ℓ − 1) (t2 + 1) = t + 1.<br />

Thelastassertion<strong>of</strong><strong>the</strong>lemmaisclear.<br />

Lemma 12.4


Chapter12 150<br />

If K/Fistotallyramified<strong>the</strong>n<br />

Thereexists X ′ F suchthat<br />

for iequalto1and2.<br />

m(XLi ) ≥ ti + ui + 1.<br />

m(X −1<br />

Li X ′ Li/F ) = ti + ui + 1<br />

In<strong>the</strong>presentcircumstances tiand uiarebothatleast1. Chooseanon­trivial σiin G i<br />

andlet<br />

asbefore.Choose yin U ui<br />

Li sothat<br />

Then<br />

Howeverif<br />

where εisaunit<strong>the</strong>n<br />

if<br />

Inparticular<br />

sothat<br />

µLi<br />

= X σ−1<br />

i −1<br />

Li<br />

µLi (y) = 1.<br />

XLi (yσi−1 ) = 1.<br />

y = 1 + ε̟ ui<br />

Li<br />

y σi−1 ≡ 1 + uiα ε̟ ti+ui<br />

Li<br />

̟ σi−1<br />

Li<br />

= 1 + α ̟ti<br />

Li .<br />

y σi−1 ∈ U ti+ui<br />

Li<br />

m(XLi ) ≥ ti + ui + 1.<br />

(modP ti+ui+1<br />

) Li<br />

Justasin<strong>the</strong>previouslemmawecanfindaquasi­character X ′ F<br />

m(X −1<br />

L1 X ′ L1/F ) = t1 + u1 + 1.<br />

Wehaveseenthat m1 + δ1 = m2 + δ2.Thesameargumentshowsthat<br />

m(X −1<br />

L1 X ′ L1/F ) + δ1 = m(X −1<br />

L2 X ′ L2/F ) + δ2.<br />

<strong>of</strong> CFsuchthat


Chapter12 151<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmaweshowthat<br />

Since<br />

wehaveonlytoshowthat<br />

t1 + u1 + δ1 = t2 + u2 + δ2.<br />

δi = (ℓ − 1) (ti + 1)<br />

u1 + 1 + ℓ(t1 + 1) = u2 + 1 + ℓ(t2 + 1).<br />

Multiplying<strong>the</strong>leftor<strong>the</strong>rightsideby ℓ − 1weobtain δ(K/F). Theequalityfollows<br />

immediately.<br />

Lemmas12.3and12.4toge<strong>the</strong>rwith<strong>the</strong>remarkswhichprovoked<strong>the</strong>mallowustoprove<br />

Lemma12.1inmany,butbynomeansall,cases. Weshallnothoweverapply<strong>the</strong>selemmas<br />

immediately.Weshallra<strong>the</strong>rbegin<strong>the</strong>systematicexposition<strong>of</strong><strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma12.1taking<br />

up<strong>the</strong>casestowhich<strong>the</strong>selemmasapplyin<strong>the</strong>irturn.<br />

Supposefirstthat L1isunramifiedover F.Asbefore mi = m(XLi ).Then<br />

m2 = m1 + (ℓ − 1) (m1 − t − 1) ≥ m1<br />

because u1 = t.Since<strong>the</strong>number m1isatleast t + 1and t ≥ 0itisatleast1.If m1 = 1<strong>the</strong>n<br />

t = 0and m2 = 1.<strong>On</strong>cewehavetreatedthiscase,asweshallimmediately,wemaysuppose<br />

that m2 ≥ m1 > 1.<br />

andlet<br />

If m2 = 1let<br />

λ = OL2 /PL2 = OF/PF<br />

κ = OK/PK = OL1 /PL1 .<br />

κisanextension<strong>of</strong> λ. Therestriction<strong>of</strong> XL1 to UL1 definesacharacter Xλ<strong>of</strong> λ ∗ and<strong>the</strong><br />

restriction<strong>of</strong> XL2 to UKdefinesacharacter Xκ<strong>of</strong> κ ∗ . Therestriction<strong>of</strong> XKto UKdefinesa<br />

character<strong>of</strong> κ ∗ whichisequalto X κ/λandto X ℓ κ sothat<br />

X ℓ κ = X κ/λ.<br />

As σvariesover G 2 , ̟ σ−1<br />

,takenmodulo PL2 ,variesover<strong>the</strong> ℓthroots<strong>of</strong>unityin λandif<br />

L2<br />

X σ−1 −1<br />

L2<br />

= ν


Chapter12 152<br />

<strong>the</strong>n<br />

Xλ(̟ σ−1<br />

) = ν(̟L2 ).<br />

L2<br />

Therightsideisnot1if σ = 1because νis<strong>the</strong>nnon­trivial.Thus<strong>the</strong>restriction<strong>of</strong> Xλto<strong>the</strong> ℓth<br />

roots<strong>of</strong>unityisnottrivial.Toevery µFin S(L2/F)isassociatedacharacter µλ<strong>of</strong> λ ∗ which<br />

is<strong>of</strong>order1if µF = 1and<strong>of</strong>order ℓo<strong>the</strong>rwise.If ψλis<strong>the</strong>additivecharacter<strong>of</strong> λdefinedby<br />

<strong>the</strong>n<br />

if µFisnottrivial.Moreover<br />

and<br />

Finally<br />

ψλ(x) = ψF<br />

<br />

x<br />

̟ 1+n<br />

F<br />

<br />

∆1(µF, ψF, ̟ 1+n<br />

F ) = A [−τ(µλ, ψλ)]<br />

ψ L2/F<br />

<br />

x<br />

̟ 1+n<br />

<br />

= ψλ(ℓ x)<br />

F<br />

∆1(XL2 , ψ L2/F, ̟ 1+n<br />

F ) = A [−Xλ(ℓ)τ(Xλ, ψλ)].<br />

∆1(XL1 , ψ L1/F, ̟ 1+n<br />

F ) = A [−τ(Xκ, ψ κ/λ)].<br />

Thus<strong>the</strong>requiredidentityisaconsequence<strong>of</strong><strong>the</strong>relation<br />

whichweprovedasLemma7.9.<br />

τ(Xκ, ψ κ/λ) = Xλ(ℓ)τ(Xλ, ψλ) <br />

µλ=1 τ(µλ, ψλ)<br />

Retaining<strong>the</strong>assumptionthat L1/Fisunramifiedwenowsupposethat m1 > 1.There<br />

aretwopossibilities.<br />

(a)<br />

(b)<br />

Thesecondpossibilityoccursonlywhen t > 0.<br />

m1 ≥ 2(t + 1)<br />

t + 1 ≤ m1 < 2(t + 1).


Chapter12 153<br />

If mj ≥ 2(t + 1)choose X ′ F sothat<br />

for i = 1and2.Itisclearthat<br />

if mi = 2di + εi.Since m2 ≥ m1wealsohave<br />

Moreover<br />

m(X −1<br />

Li X ′ Li/F ) = t + 1<br />

m(X −1<br />

L1 X ′ L1/F ) ≤ d1<br />

m(X −1<br />

L2 X ′ L2/F ) ≤ d2.<br />

m ′ = m(X ′ F ) = m1<br />

sothat d ′ isgreaterthanorequaltoboth 1 + t2 = 1 + tand 1 + t1 = 0.Lemma12.1for L 1/F<br />

unramifiedand m1 ≥ 2(t + 1),followsimmediatelyif ℓisodd.Suppose ℓ = 2.<br />

If t = 0wecaninvokeLemmas8.3and8.7toseethatif β = β(X ′ F )wemaychoose<br />

β1 = β(χL1/F)and β2 = β(X ′ L2/F )equalto β.If µ(1)<br />

F is<strong>the</strong>non­trivialelement<strong>of</strong> S(L1/F)<br />

and µ (2)<br />

F<br />

isequalto<br />

Certainly<br />

is<strong>the</strong>non­trivialelement<strong>of</strong> S(L2/F)wehaveonlytoshowthat<br />

XL1<br />

XL2<br />

<br />

γ<br />

β<br />

<br />

γ<br />

β<br />

X ′ L1/F<br />

X ′ L1/F<br />

X ′ L2/F<br />

andweneedonlyshowthatif δisin CF<strong>the</strong>n<br />

Wemaywrite<br />

Then<br />

XL1<br />

(δ) µ(1)<br />

F<br />

<br />

β<br />

γ<br />

<br />

β<br />

γ<br />

<br />

β<br />

= X<br />

γ<br />

′ L2/F<br />

µ (1)<br />

F<br />

µ (2)<br />

F<br />

<br />

β<br />

γ<br />

<br />

γ<br />

β<br />

<br />

γ<br />

.<br />

β<br />

(δ) = XL2 (δ) µ(2)<br />

F (δ).<br />

δ = N L1/F δ1 N L2/F δ2.<br />

µ (i)<br />

F (N L1/F δi) = 1


Chapter12 154<br />

and,if jis1or2accordingas iis2or1,<br />

whichequals<br />

XLi (N Lj/F δj) = XK(δj) = XLj (δ2 j )<br />

XLj (N Lj/F δj)µ (i)<br />

Lj/F (δj) = XLj (N Lj/F δj)µ (i)<br />

F (N Lj/F δj).<br />

Therequiredequalityfollowsimmediately.<br />

If tispositivewemaystillchoose β1 = β.If m1 − t − 1 = v<strong>the</strong>n,byLemma8.6,wemay<br />

choose β2in<strong>the</strong>form<br />

β2 = β + η<br />

with ηin Pv .Since v ≥ t + 1<br />

L2<br />

X −1<br />

L2 (β2)X ′ L2/F (β2) = X −1<br />

L2 (β)X ′ L2/F (β).<br />

Thisobservationmade,wecanproceedasbefore.<br />

Somepreparationisnecessarybeforewediscuss<strong>the</strong>secondpossibility.Supposethat tis<br />

positivesothat ℓisequalto<strong>the</strong>residualcharacteristic p.Thefinitefield λ1 = OL1 /PL1isan extension<strong>of</strong>degree p<strong>of</strong> φ = OF/PF.<br />

Themap<br />

x −→ x p − x<br />

isanadditiveendomorphism<strong>of</strong> φwith<strong>the</strong>primefieldaskernel.Chooseayin φwhichisnot<br />

in<strong>the</strong>image<strong>of</strong>thismapandconsider<strong>the</strong>equation<br />

x p − x = y.<br />

If x,insomeextensionfield<strong>of</strong> φ,satisfiesthisequationand φhas qelements<strong>the</strong>n x q = x.<br />

However<br />

(x q − x) p − (x q − x) = (x p − x) q − (x p − x) = y q − y = 0.<br />

So<br />

x q − x = z<br />

where zisanon­zeroelement<strong>of</strong><strong>the</strong>primefield.Then<br />

x q2<br />

= (x + z) q = x q + z = x + 2z


Chapter12 155<br />

andingeneral<br />

x qn<br />

= x + nz.<br />

Thus<strong>the</strong>lowestpower n<strong>of</strong> qsuchthat xqn = xis n = pand xdeterminesanextension<strong>of</strong><br />

degree p.Consequently xmaybechosentoliein λ1and<strong>the</strong>n λ1 = φ(x).<br />

wehave<br />

Let E r (x)be<strong>the</strong> r<strong>the</strong>lementarysymmetricfunction<strong>of</strong> xanditsconjugates.Since<br />

if 1 ≤ r < p − i,<br />

and,<strong>of</strong>course,<br />

x p − x + (−1) p N λ1/φx = 0 (12.3)<br />

E r (x) = 0 (12.4)<br />

E p−1 (x) = (−1) p<br />

(12.5)<br />

E p (x) = N λ1/φx. (12.6)<br />

If λisanon­zeroelement<strong>of</strong><strong>the</strong>primefieldwecanreplace yby λy.Then xistobereplaced<br />

by λx.Alsowecanreplace xby x + λwithoutchanging y.<br />

Let R(L1)be<strong>the</strong>set<strong>of</strong> (q p − 1)throots<strong>of</strong>unityin L1. Chooseaγin R(L1)whose<br />

imagein λ1is x.Ifwearedealingwithfields<strong>of</strong>powerseries γwillalsosatisfy<strong>the</strong>equations<br />

(12.3),(12.4),(12.5)and(12.6).Letusseehow<strong>the</strong>seequationsaretobemodifiedforfields<strong>of</strong><br />

characteristiczero. Fand L1are<strong>the</strong>nextensions<strong>of</strong><strong>the</strong> p­adicfield Qp.Let F 0 and L 0 1 be<strong>the</strong><br />

maximalunramifiedextensions<strong>of</strong> Qpcontainedin Fand L1respectively. R(L1)isasubset<br />

<strong>of</strong> L 0 1 and pgenerates<strong>the</strong>ideal P F 0and<strong>the</strong>ideal P L 0 1 .Thus<br />

and<br />

if 1 ≤ r < p − 1while<br />

Let<br />

γ p − γ + (−1) p N L1/F γ ≡ 0 (modp)<br />

E r (γ) ≡ 0 (modp)<br />

E p−1 (γ) ≡ (−1) p<br />

S r (γ) = <br />

(modp).<br />

σ∈G(L1/F) γrσ .<br />

Thefollowingrelationsarespecialcases<strong>of</strong>Newton’sformulae.


Chapter12 156<br />

Weinferthat<br />

if 1 ≤ r < p − 1andthat<br />

S 1 (γ) − E 1 (γ) = 0<br />

S 2 (γ) − E 1 (γ) S 1 (γ) + 2E 2 (γ) = 0<br />

S 3 (γ) − E 1 (γ) S 2 (γ) + E 2 (γ) S 1 (γ) − 3E 3 (γ) = 0<br />

.<br />

S p−1 (γ) − E 1 (γ) S p−2 (γ) + . . . + (−1) p−1 (p − 1)E p−1 (γ) = 0<br />

S p (γ) − E 1 (γ) S p−1 (γ) + . . . + (−1) p p E p (γ) = 0.<br />

S r (γ) ≡ 0 (modp)<br />

S p−1 (γ) ≡ (−1) p (p − 1) E p−1 (γ) (mod p).<br />

Combining<strong>the</strong>first<strong>of</strong><strong>the</strong>secongruenceswithNewton’sformulaeweobtain<br />

if 1 ≤ r ≤ p − 1.If pisodd<br />

Therightsideisequalto<br />

If piseven<br />

Since<br />

wehave<br />

S r (γ) ≡ r(−1) r+1 E r (γ) (modp 2 )<br />

S p (γ) − p E p (γ) ≡ E 1 (γ) S p−1 (γ) − E p−1 (γ) S 1 (γ) (mod p 2 ).<br />

E 1 (γ) (S p−1 (γ) − E p−1 (γ)) ≡ 0 (modp 2 ).<br />

S 2 (γ) + 2E 2 (γ) = {E 1 (γ)} 2 .<br />

E 1 (γ) ≡ 1 (mod2)<br />

S 2 (γ) + 2E 2 (γ) ≡ 1 (mod4).<br />

If σ = 1belongsto G(L1/F)<strong>the</strong>reisa(p − 1)throot<strong>of</strong>unity ζsuchthat<br />

γ σ − γ ≡ ζ (modp).


Chapter12 157<br />

Byasuitablechoice<strong>of</strong> y<strong>the</strong>root ζcanbemadetoequal,foragiven σ,anychosen (p − 1)th<br />

root<strong>of</strong>unity.<br />

Theaboverelationsare<strong>of</strong>coursealsovalidwhen Fisafield<strong>of</strong>powerseries.<br />

Chooseanon­trivialcharacter µFin S(L2/F)andchoose αsothat<br />

if xisin P s F<br />

unitywedefine µ ζ<br />

F<br />

µF(1 + x) = ψF<br />

<br />

α x<br />

̟ t+1+n<br />

F<br />

<br />

t+1<br />

.Here sis<strong>the</strong>leastintegergreaterthanorequalto 2 .If ζisa(p − 1)throot<strong>of</strong><br />

tobe µj<br />

F<br />

Asweobservedin<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma8.5<br />

if xisin P s F .<br />

if jis<strong>the</strong>uniqueintegersuchthat<br />

ζ ≡ j (modp).<br />

µ ζ<br />

F (1 + x) = ψF<br />

Let mi = 2di + εiasusual.If β1in L1issuchthat<br />

for xin P d1+ε1<br />

L1<br />

isequalto<br />

if ζσissuchthat<br />

Thusif<br />

XL1 (1 + x) = ψ L1/F<br />

<br />

αζx<br />

̟ 1+t+n<br />

<br />

F<br />

αβ1x<br />

̟ m1+n1<br />

F<br />

<strong>the</strong>n,if σ = 1belongsto G 1 = G(L1/F)and xbelongsto P d1+ε1,<br />

L1<br />

ψ L1/F<br />

σ α(β1 − β1)x<br />

̟ m1+n2<br />

F<br />

ψ L1/F<br />

X σ−1<br />

L1<br />

<br />

αζσx<br />

̟ 1+t+n<br />

<br />

F<br />

= µζσ<br />

F .<br />

v = m1 − 1 − t<br />

<br />

= X σ−1<br />

L1 (1 + x)


Chapter12 158<br />

wehave<br />

Suppose<br />

Itisclearthat<br />

β σ 1 − β1 ≡ ζσ ̟ v F (mod P d1<br />

L1 ).<br />

ζστ ≡ ζ τ σ + ζσ (modPL1 ).<br />

γ σ − γ ≡ ξσ (modp)<br />

where ξσisalsoa(p − 1)throot<strong>of</strong>unity.Then<br />

Weobservedthatwecouldarrangethat<br />

ξστ ≡ ξ τ σ + ξσ (mod PL1 ).<br />

ξσ = ζσ<br />

foronenon­trivial σ. <strong>On</strong>cewedothis<strong>the</strong>equalitywillholdforall σ. Then γpσ − γp ≡<br />

ξσ (mod p)and<br />

(β1 − γ p ̟ v F )σ ≡ β1 − γ p ̟ v F (modP d1<br />

L1 )<br />

forall σbecause,asweobservedin<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma8.5, pbelongsto Pr if r + s = t + 1<br />

L1<br />

and<br />

2(r + v) ≥ t + 2v = 2m1 − 2 − 2t + t<br />

whichisatleast<br />

(m1 − 1) + (m1 − 1 − t) ≥ m1 − 1<br />

sothat r + v ≥ d1.Since L1/Fisunramified<strong>the</strong>reis<strong>the</strong>reforeaβin Fsuchthat<br />

Wemaysupposethat<br />

β1 − γ p ̟ v F<br />

≡ β (modPd1<br />

L1 ).<br />

β1 = β + γ p ̟ v F .<br />

βisaunitunless v = 0. If v = 0<strong>the</strong>n,byreplacing γbyaroot<strong>of</strong>unitycongruentto γ + 1<br />

moduloPL1 ifnecessary,wecanstillarrangethat βisaunit. βiscongruenttoanorm N L2/Fβ ′<br />

modulo P t F .Since d1 ≤ twe ∗<br />

∗ (1998)At<strong>the</strong>momentthisisallthatcouldbefound<strong>of</strong>Chapter12.


Chapter13 159<br />

Chapter Thirteen.<br />

The Third Main Lemma<br />

Suppose K/FisGaloisand G = G(K/F).Suppose G = HCwhen H = {1}, H ∩ C =<br />

{1},andCisanon­trivialabeliannormalsubgroup<strong>of</strong>Gwhichiscontainedineverynon­trivial<br />

normalsubgroup<strong>of</strong> G.<br />

Lemma 13.1<br />

Let Ebe<strong>the</strong>fixedfield<strong>of</strong> Handlet XFbeaquasi­character<strong>of</strong> CF.If m = m(XF)<strong>the</strong>n<br />

Set<br />

m(X E/F) = ψ E/F(m − 1) + 1.<br />

m ′ = m(X E/F) − 1.<br />

Observethat m ′ − 1is<strong>the</strong>greatestlowerbound<strong>of</strong>allrealnumbers v > −1suchthat XE/Fis andthat m − 1is<strong>the</strong>greatestlowerbound<strong>of</strong>allrealnumbers usuchthat XFis<br />

trivialon Uv E<br />

trivialon Uu F .Since<br />

weseeimmediatelythat<br />

Toprove<strong>the</strong>lemmaweneedonlyshowthat<br />

NE/F(U ψE/F(u) E ) ⊆ U u F<br />

m ′ − 1 ≤ ψ E/F(m − 1).<br />

NE/F(U ψE/F(m−1) E ) ⊇ U m−1<br />

F .<br />

Weshowthiswith m − 1replacedbyany u ≥ −1.<br />

ByLemma6.15, τK/Fmaps W u K/Fonto Uu F . Theprojection<strong>of</strong> W u K/Fon Gisanormal<br />

subgroup<strong>of</strong> G.Thusitisei<strong>the</strong>r {1}orasubgroupcontaining C.Ifitis {1}<strong>the</strong>n<br />

and<br />

W u K/F = W u K/F ∩ CK = U ψ K/F(u)<br />

K<br />

U u F = N K/F(U ψ K/F(u)<br />

K<br />

) = NE/F(NK/EU ψK/F(u) K )


Chapter13 160<br />

which,byLemma6.6,iscontainedin<br />

NE/F(U ψE/F(u) E ).<br />

Suppose<strong>the</strong>projectionisnot {1}.If Lis<strong>the</strong>fixedfield<strong>of</strong> C<strong>the</strong>group W u K/F contains<br />

Since Cisgeneratedby<br />

{wvw −1 v −1 | w ∈ W K/F, v ∈ W u K/F ∩ W K/L}. (13.1)<br />

{σρσ −1 ρ −1 | σ ∈ G, ρ ∈ C}<br />

<strong>the</strong>groupgeneratedby<strong>the</strong>set(13.1)containsaset<strong>of</strong>representativesfor<strong>the</strong>cosets<strong>of</strong> CKin<br />

W K/L.Thisgroupclearlyliesin<strong>the</strong>kernel<strong>of</strong> τ K/F.Thuseveryelement<strong>of</strong> W u K/F iscongruent<br />

modulo<strong>the</strong>kernel<strong>of</strong> τ K/Fin W u K/F toanelement<strong>of</strong><br />

and<br />

whichis<br />

andthissetiscontainedin<br />

W u K/F ∩ W K/E = W ψ E/F(u)<br />

K/E<br />

U u F = τK/F(W u K/F ) = τK/F(W ψE/F(u) K/E )<br />

NE/F(τK/E(W ψE/F(u) K/E ))<br />

NE/F(U ψE/F(u) E ).<br />

Suppose F1isnon­archimedean, K1/F1isGaloisand F1 ⊆ E1 ⊆ K1. Let µ1bea<br />

character<strong>of</strong> G(K1/E1).Wemayalsoregard µ1asacharacter<strong>of</strong> CE1 .Let σbeanelement<strong>of</strong><br />

G(K1/F1)anddefine<strong>the</strong>character<strong>of</strong> µ σ 1 <strong>of</strong> G(K1/E σ 1 )by<br />

µ σ 1(ρ) = µ1(σρσ −1 )<br />

for ρ ∈ G(K1/E σ 1 )or,whatamountsto<strong>the</strong>same<br />

for α ∈ CE σ 1 .Since<br />

µ σ 1(α) = µ1(α σ−1<br />

)<br />

ψEσ 1 /F1 (α) = ψE1/F1 (ασ−1)<br />

<strong>the</strong>nextlemmaisacongruence<strong>of</strong><strong>the</strong>definitions.


Chapter13 161<br />

Lemma 13.2<br />

∆(µ σ 1, ψ E σ 1 /F1 ) = ∆(µ1, ψ E1/F1 ).<br />

Wereturnto<strong>the</strong>extension K/Land<strong>the</strong>group G.Let Tbeaset<strong>of</strong>representativesfor<strong>the</strong><br />

orbitsunder G<strong>of</strong><strong>the</strong>non­trivialcharactersin S(K/L).If µ ∈ Tlet Gµbe<strong>the</strong>isotropygroup<br />

<strong>of</strong> µandlet Fµbe<strong>the</strong>fixedfield<strong>of</strong> Gµ.Let Hµ = H ∩Gµ.Since Ciscontainedin Gµwehave<br />

Gµ = Hµ · C.Then µmayalsoberegardedasacharacter<strong>of</strong> C.Let µ ′ be<strong>the</strong>character<strong>of</strong> Gµ<br />

definedby<br />

µ ′ (hc) = µ(c)<br />

if h ∈ Hµand c ∈ C.Eventuallywemustshowthat<br />

isequalto<br />

∆(X E/F, ψ E/F) <br />

∆(XF, ψF) <br />

µ∈T ∆(µ′ , ψ Fµ/F) (13.2)<br />

µ∈T ∆(µ′ X Fµ/F, ψ Fµ/F) (13.3)<br />

if XFisaquasi­character<strong>of</strong> CF.At<strong>the</strong>momentwecontentourselveswithaspecialcase.The<br />

nextlemmawillbereferredtoas<strong>the</strong>ThirdMainLemma.<br />

Lemma 13.3<br />

If K/Fistamelyramified<strong>the</strong>expressions(13.2)and(13.3)areequal.<br />

AsweobservedinLemma6.4<strong>the</strong>extension L/Fwillbeunramifiedand ℓ = [C : 1]<br />

willbeaprime. Chooseagenerator ̟F<strong>of</strong> PF. Since Fµ/Fisunramifiedwemaychoose<br />

̟Fµ = ̟F.Choose ̟Esothat N E/F ̟E = ̟F.Certainly<br />

while<br />

Since<br />

weconcludethat<br />

δ L/F = δ K/E = 0<br />

δ K/L = ℓ − 1.<br />

δ K/F = δ K/L + ℓ δ L/F = δ K/E + δ E/F<br />

δ E/F = ℓ − 1.


Chapter13 162<br />

Clearly<br />

<br />

µ [Fµ : F] = <br />

µ [H : Hµ] = <br />

µ [G : Gµ]<br />

isjust<strong>the</strong>number<strong>of</strong>non­trivialcharactersin S(K/L),thatis ℓ − 1.Moreover m(µ ′ ) = 1.Let<br />

Eµbe<strong>the</strong>fixedfield<strong>of</strong> Hµ.Then<br />

N Eµ/Fµ (̟E) = N E/F(̟E) = ̟F.<br />

Thus,asanelement<strong>of</strong> CFµ , ̟Fliesin<strong>the</strong>image<strong>of</strong> W K/Eµ under τ K/Fµ andhence µ′ (̟F) =<br />

1.Also<br />

n(ψ E/F) = ℓn(ψF) + δ E/F = ℓn + (ℓ − 1)<br />

while<br />

and<br />

If m = m(XF) = 0<strong>the</strong>n<br />

X E/F(̟ ℓn+ℓ−1<br />

E<br />

sothat<strong>the</strong>lemmaamountsto<strong>the</strong>equality<br />

and<br />

<br />

If m > 0<strong>the</strong>n,byLemma6.4,<br />

Since K/Eisunramified<br />

However<br />

n(ψ Fµ/F) = n.<br />

m(X E/F) = m(X Fµ/F) = 0<br />

) = XF(̟ ℓn+ℓ−1<br />

F ) = XF(̟ n <br />

F )<br />

µ XFµ/F(̟ 1+n<br />

F )<br />

µ ∆1(µ, ψ Fµ/F, ̟ 1+n<br />

F ) = <br />

µ ∆1(µ, ψ Fµ/F, ̟ 1+n<br />

F ).<br />

m(X E/F) = ℓm − (ℓ − 1)<br />

m(X E/F) + n(ψ E/F) = ℓ(m + n).<br />

m(X K/F) = m(X E/F) = ℓm − (ℓ − 1).<br />

X K/F = (µ ′ X Fµ/F) K/Fµ


Chapter13 163<br />

sothat<br />

or<br />

Consequently<br />

ψ K/Fµ (m(µ′ X Fµ/F) − 1) ≥ m(X K/F) − 1 = ℓ(m − 1)<br />

m(µ ′ XFµ/F) − 1 ≥ ϕK/Fµ (ℓ(m − 1)) = m − 1.<br />

m(µ ′ X Fµ/F) ≥ m.<br />

Sinceitisclearlylessthanorequalto mitisequalto m.Because<br />

X E/F(̟ m+n<br />

wehavetoshowthat<br />

isequalto<br />

F ) = XF(̟ ℓ(m+n)<br />

F ) = XF(̟ m+n<br />

F ) <br />

µ XFµ/F(̟ m+n<br />

F )<br />

∆1(X E/F, ψ E/F, ̟ m+n<br />

F ) ∆1(µ ′ , ψ Fµ/F, ̟ m+n<br />

F )<br />

∆1(XF, ψF, ̟ m+n<br />

F ) ∆1(µ ′ X Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ).<br />

Let φbe<strong>the</strong>field OF/PF,let λ = OL/PL,let qbe<strong>the</strong>number<strong>of</strong>elementsin φ,andlet<br />

f = [λ : φ] = [L : F].<br />

Let θbe<strong>the</strong>homomorphism<strong>of</strong> Cinto λ ∗ introducedinChapterIV<strong>of</strong>Serre’sbook.Thus<br />

sothatif h ∈ H<br />

Let h0bethatelement<strong>of</strong> Hsuchthat<br />

θ(c) = ̟ c−1<br />

E<br />

(modPF)<br />

θ(h −1 ch) ≡ (̟ h−1c−h −1<br />

E ) ≡ (̟ c−1<br />

E )h ≡ θ(c) h .<br />

α h0 = α q<br />

if α ∈ λandlet c0beagenerator<strong>of</strong> C.Then θ(c0)hasorder ℓand,since<strong>the</strong>centralizer<strong>of</strong> C<br />

in His {1},<br />

θ(h −r<br />

0 chr 0) = θ(c0) qr<br />

is θ(c0)ifandonlyif fdivides r.<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand,itis θ(c0)ifandonlyif ℓdivides q r − 1.<br />

Thus<strong>the</strong>order<strong>of</strong> qmodulo ℓis f.Wealsoobservethatboth Canditsdualgrouparecyclic<strong>of</strong><br />

primeordersothatanyelement<strong>of</strong> Hwhichfixedanelement<strong>of</strong> Twouldacttriviallyon<strong>the</strong><br />

dualgroupand<strong>the</strong>reforeon Citself.Itfollowsthat Fµ = Lforall µin T.


Chapter13 164<br />

Supposefirstthat m = 1.Let ψφbe<strong>the</strong>character<br />

ψφ(x) = ψF<br />

<br />

x<br />

̟ 1+n<br />

F<br />

<br />

on φ.Since OE/PEisnaturallyisomorphicto OF/PFand<strong>the</strong>map x −→ N E/Fxgives<strong>the</strong><br />

map x −→ x ℓ <strong>of</strong> φintoitselfwhile<strong>the</strong>map x −→ S E/Fxinduces<strong>the</strong>map x −→ ℓx<strong>the</strong><br />

requiredidentityreducesto<strong>the</strong>equality<strong>of</strong><br />

and<br />

Xφ(ℓ ℓ )τ(X ℓ φ, ψφ) <br />

τ(Xφ, ψφ) <br />

ThisequalityhasbeenprovedinLemma7.8.<br />

µ∈T τ(µλ, ψ λ/φ)<br />

µ∈T τ(µλX λ/φ, ψ λ/φ).<br />

Nowlet mbegreaterthan1.Since Fµ = 1forall µwearetryingtoshowthat<br />

isequalto<br />

∆1(X E/F, ψ E/F, ̟ m+n<br />

F ) ∆1(µ, ψ L/F, ̟ m+n<br />

F )<br />

∆1(XF, ψF, ̟ m+n<br />

F ) ∆1(µX L/F, ψ L/F, ̟ m+n<br />

F ).<br />

Since<strong>the</strong>action<strong>of</strong> Hon Cisnottrivial ℓcannotbe2. If µliesin Tand µ −1liesin<strong>the</strong> orbit<strong>of</strong> ν<strong>the</strong>n<br />

∆1(ν, ψL/F, ̟ m+n<br />

F ) = ∆1(µ −1 , ψL/F, ̟ m+n<br />

F )<br />

is µ(−1)times<strong>the</strong>complexconjugate<strong>of</strong><br />

∆1(µ, ψ L/F, ̟ m+n<br />

F ).<br />

Since<strong>the</strong>order<strong>of</strong> µis ℓ, µ(−1) = 1and,if µ = ν,<strong>the</strong>product<strong>of</strong><strong>the</strong>twotermscorresponding<br />

to µand νis1.If<br />

µ −1 = µ qr<br />

with 0 ≤ r < fliesin<strong>the</strong>orbit<strong>of</strong> µ<strong>the</strong>n ℓdivides q r + 1.Thus ℓdivides q 2r − 1and 2r = f.<br />

ByLemma7.1<br />

| τ(µλ, ψ λ/φ) | = √ q f = q r<br />

and<br />

τ(µλ, ψ λ/φ) = −∆1(µ, ψ L/F, ̟ 1+n<br />

F )q r


Chapter13 165<br />

if ψ λ/φhas<strong>the</strong>samemeaningasbeforeand µλis<strong>the</strong>character<strong>of</strong> λ ∗ inducedby µ.Since<br />

δ = ∆1(µ, ψ L/F, ̟ 1+n<br />

F )<br />

isitsowncomplexconjugate,itis ±1.If α ∈ φ<strong>the</strong>n<br />

Since u(α)isan ℓthroot<strong>of</strong>unityitis1.Thus<br />

HoweveritfollowsfromLemma7.1that<br />

µ −1 (α) = µ(α qr<br />

) = µ(α).<br />

τ(µλ, ψ λ/φ) = τ(µλ).<br />

τ(µλ) ≡ 1 (modη)<br />

where ηisanumberin k p(q f −1)whichisnotaunitandwhoseonlyprimedivisorsaredivisors<br />

<strong>of</strong> ℓ.Thus<br />

−δq r = τ(µλ) ≡ 1 (modℓ)<br />

and δ = 1.Wearereducedtoshowingthat<br />

isequalto<br />

∆1(X E/F, ψ E/F, ̟ m+n<br />

F )<br />

∆1(XF, ψF, ̟ m+n<br />

F ) ∆1(µX L/F, ψ L/F, ̟ m+n<br />

F )<br />

Let β = β(XF).Byrepeatedapplications<strong>of</strong>Lemma8.9weseethatwemaytake<br />

If β(X E/F)ischosenwecouldalsotake<br />

Thusif<br />

wehave<br />

β(X L/F) = β(X K/F) = β(µX L/F) = β.<br />

β(X K/F) = β(X E/F).<br />

m ′ = m(X E/F) = m(X K/F) = 2d ′ + ε ′<br />

β ≡ β(X E/F) (mod P d′<br />

K).


Chapter13 166<br />

Sincebothsides<strong>of</strong><strong>the</strong>congruenceliein E<br />

andwemaytake<br />

Then<br />

while<br />

isequalto<br />

β ≡ β(X E/F) (modP d′<br />

E )<br />

β(X E/F) = β.<br />

∆2(X E/F, ψ E/F, ̟ m+n<br />

F ) = ψF<br />

<br />

ℓβ<br />

̟ m+n<br />

<br />

F<br />

X −1<br />

F (βℓ )<br />

∆2(XF, ψF, ̟ m+n<br />

F ) <br />

µ∈T ∆2(µXF, ψ L/F, ̟ m+n<br />

F )<br />

ψF<br />

<br />

ℓβ<br />

̟ m+n<br />

<br />

F<br />

X −1<br />

F (βℓ ).<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmawehavetoshowthat<br />

isequalto<br />

∆3(XF, ψF, ̟ m+n<br />

F ) <br />

µ∈T ∆3(µXF, ψ L/F, ̟ m+n<br />

F ) (13.4)<br />

∆3(X E/F, ψ E/F, ̟ m+n<br />

F )<br />

whenone,andhenceboth,<strong>of</strong> mand m ′ isodd.<br />

AsremarkedinLemma9.4<br />

∆3(µX L/F, ψ L/F, ̟ m+n<br />

F ) = ∆3(X L/F, ψ L/F, ̟ m+n<br />

F ).<br />

AccordingtoLemma9.6<strong>the</strong>rightsideisequalto<br />

ε∆3(XF, ψF, ̟ m+n<br />

F ) [L:F]<br />

where εis1if f = [L : F]isoddand­1ifitiseven.Thus(13.4)isequalto<br />

Asbefore<br />

ε ℓ−1<br />

f {∆3(XF, ψF, ̟ m+n<br />

F )}.<br />

φ = OF/PF = OE/PE.


Chapter13 167<br />

Let ϕφbe<strong>the</strong>functionon φdefinedby<br />

ϕφ(x) = ψF<br />

<br />

βx<br />

̟ d+1+n<br />

F<br />

if m = 2d + 1.Then m ′ = 2ℓd + 1sothat d ′ = ℓd.Let ϕ ′ φ<br />

ϕ ′ φ(x) = ψ E/F<br />

<br />

βx<br />

̟ d+1+n<br />

F<br />

<br />

<br />

X −1<br />

F (1 + ̟d F x)<br />

be<strong>the</strong>functionon φdefinedby<br />

X −1<br />

E/F (1 + ̟d Fx).<br />

Because<strong>of</strong>Lemma9.3,tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmawehaveonlytoshowthat<br />

wehave<br />

Since d ′ ≥ mand<br />

ε ℓ−1<br />

f A[σ(ϕφ) ℓ ] = A[σ(ϕ ′ φ )].<br />

3d ′ + ℓ − 1<br />

ℓ<br />

≥ m<br />

N K/L(1 + ̟ d F x) ≡ 1 + ̟d F S K/Lx + ̟ 2d<br />

F E2 K/L (x) (modPm L )<br />

if E2 K/L (x)is<strong>the</strong>secondelementarysymmetricfunction<strong>of</strong> xanditsconjugatesover L.Thus<br />

Thisinturniscongruentto<br />

Thus<br />

if<br />

or<br />

N E/F(1 + ̟ d Fx) ≡ 1 + ̟ d FS E/Fx + ̟ 2d<br />

F E 2 E/F (x) (modPm F ).<br />

(1 + ̟ d F S E/Fx) (1 + ̟ 2d<br />

F E2 K/F (x)).<br />

ϕ ′ φ(x) = ϕφ(ℓx)ψφ(−E 2 λ/φ (x))<br />

ϕ ′ φ (x) = ϕφ(ℓx)ψφ<br />

ψφ(x) = ϕF<br />

<br />

βx<br />

̟ 1+n<br />

<br />

F<br />

−ℓ(ℓ − 1)<br />

2<br />

x 2<br />

<br />

= {ϕφ(x)} ℓ .


Chapter13 168<br />

sothat<br />

Supposefirstthat pisoddandlet<br />

ϕ ′ φ(x) = ψφ<br />

ϕφ(x) = ψφ<br />

2 ℓx − 2ℓαx<br />

2<br />

2 x − 2αx<br />

= ψφ<br />

2<br />

2 ℓ(x − α)<br />

2<br />

ψφ<br />

−ℓα 2<br />

Referringto<strong>the</strong>observationsinparagraph9weseethatwemustshowthat<br />

ε ℓ−1<br />

f νφ(−1) ℓ−1<br />

<br />

2<br />

2<br />

−ℓα −ℓα<br />

2 ψφ = νφ(ℓ)ψφ<br />

2<br />

2<br />

or<br />

ε ℓ−1<br />

f = νφ(−1) ℓ−1<br />

2 νφ(ℓ)<br />

if νφis<strong>the</strong>quadraticcharacter<strong>of</strong> φ ∗ . Let qbe<strong>the</strong>number<strong>of</strong>elementsin φ. If qisaneven<br />

power<strong>of</strong> p<strong>the</strong>rightsideis1andif qisanoddpower<strong>of</strong> p<strong>the</strong>rightsideis,by<strong>the</strong>law<strong>of</strong><br />

quadraticreciprocity, ω(p)if ωis<strong>the</strong>quadraticcharacter<strong>of</strong><strong>the</strong>fieldwith ℓelements.Thusin<br />

allcases<strong>the</strong>rightsideis ω(q).If fisodd<strong>the</strong>n q f isaquadraticresidue<strong>of</strong> ℓifandonlyif qis.<br />

Since<br />

q f − 1 ≡ 0 (modℓ).<br />

qisaquadraticresidueandbothsides<strong>of</strong><strong>the</strong>equationare1.If fisodd<strong>the</strong>leftsideis (−1) ℓ−1<br />

f .<br />

Since fis<strong>the</strong>order<strong>of</strong> qmodulo ℓthisis ω(q).<br />

Nowsupposethat p = 2.If<br />

ψφ(−x 2 ) = ψφ(αx)<br />

<strong>the</strong>n,by<strong>the</strong>remarksin<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma9.7,wehavetoshowthat<br />

if ℓ ≡ 1(mod4)andthat<br />

ε ℓ−1<br />

f ϕφ(α) ℓ−1<br />

2 = 1<br />

ε ℓ−1<br />

f ϕφ(α) ℓ+1<br />

2 = 1<br />

if ℓ ≡ 3 (mod4).Wealsosawinparagraph9that<br />

{ϕφ(α)} 2 = ψφ(α 2 )<br />

was+1or­1accordingas qisorisnotanevenpower<strong>of</strong> p.By<strong>the</strong>secondsupplementto<strong>the</strong><br />

law<strong>of</strong>quadraticreciprocity<br />

ϕφ(α) ℓ−1<br />

2 = ω(q)<br />

2<br />

<br />

.


Chapter13 169<br />

if ℓ ≡ 1 (mod4)and<br />

if ℓ ≡ 3 (mod4).Wehavejustseenthat<br />

Thelemmaisproved.<br />

ϕφ(α) ℓ+1<br />

2 = ω(q)<br />

ε ℓ−1<br />

f = ω(q).


Chapter14 170<br />

Chapter Fourteen.<br />

The Fourth Main Lemma.<br />

In<strong>the</strong>previousparagraphwesaidthatwewouldeventuallyhavetoshowthat<br />

isequalto<br />

∆(χ E/F,ψ E/F) <br />

∆(χF, ψF) <br />

µ∈T ∆(µ′ , ψ Fµ/F) (14.1)<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F). (14.2)<br />

Howeverweverifiedthat<strong>the</strong>twoexpressionsareequalonlywhen K/Fistamelyramified.<br />

Inthisparagraphweshallshowthat<strong>the</strong>yareequalifTheorem2.1isvalidforallpairs K ′ /F ′<br />

in P(K/F)forwhich [K ′ : F ′ ] < [K : F].<br />

Lemma 14.1<br />

Suppose K/FiswildlyramifiedandTheorem2.1isvalidforallpairs K ′ /F ′ in P(K/F)<br />

forwhich [K ′ : F ′ ] < [K : F].If χFisanyquasi­character<strong>of</strong> CF<strong>the</strong>expressions(14.1)and<br />

(14.2)areequal.<br />

If aand baretwonon­zerocomplexnumbersand misapositiveintegerweagainwrite<br />

a ∼m bif,forsomenon­negativeinteger r, a<br />

b isan mr throot<strong>of</strong>unity. Define<strong>the</strong>non­zero<br />

complexnumber ρbydemandingthat<br />

beequalto<br />

∆(χ E/F,ψ E/F) <br />

ρ∆(χF, ψF) <br />

µ∈T ∆(µ′ , ψ Fµ/F)<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F).<br />

Wehavetoshowthat ρ = 1. Lemma14.1willbeaneasyconsequence<strong>of</strong><strong>the</strong>followingfour<br />

lemmas.<br />

Lemma 14.2<br />

If m(χF)is0or1<strong>the</strong>n ρ = 1andinallcases p ∼2p 1.<br />

Lemma 14.3<br />

If [G : G1]isapower<strong>of</strong>2<strong>the</strong>n ρ ∼p 1.


Chapter14 171<br />

Lemma 14.4<br />

If<strong>the</strong>inductionassumptionisvalid,if F ⊆ F ′ ⊆ L,if F ′ /Fisnormal,andif [F ′ : F] = ℓ<br />

isaprime<strong>the</strong>n p ∼ℓ 1.<br />

Lemma 14.5<br />

Suppose H = H1H2where H2isacyclicnormalsubgroup<strong>of</strong> H, [H2 : 1]isapower<strong>of</strong>a<br />

prime ℓ,and [H1 : 1]isprimeto ℓ.If<strong>the</strong>inductionassumptionisvalid ρ ∼ℓ 1.<br />

Grant<strong>the</strong>sefourlemmasforamomentandobservethatif mand narerelativelyprime<br />

<strong>the</strong>n ρ ∼m 1and ρ ∼n 1implythat ρ = 1. If ℓisaprimewhichdivides [G : G0]<strong>the</strong>reis<br />

afield F ′ containing Fandcontainedin Lsothat F ′ /Fisnormaland [F ′ : F] = ℓ. Thus<br />

Lemma14.1followsfromLemma14.4unless [G : G0]isaprimepower.Lemma14.1follows<br />

fromLemmas14.2and14.4unless [G : G0]isapower<strong>of</strong>2or p.Suppose [G : G0]isapower<br />

<strong>of</strong>2or p.Then ρ ∼ [G:G0] 1exceptperhapswhen [G : G0] = 1.If ℓisaprimewhichdoesnot<br />

divide [G : G0]butdoesdivide [G0 : G1]let H2be<strong>the</strong> ℓ­Sylowsubgroup<strong>of</strong> G0/G1. H2isa<br />

normalsubgroup<strong>of</strong> G/G1whichwemayidentifywith Hand H/H2hasorderprimeto H2.<br />

Thus,byawell­known<strong>the</strong>orem<strong>of</strong>Schur[7], H = H1H2where H1 ∩ H2 = {1}and H1has<br />

orderprimeto H2.ItfollowsfromLemma14.5that ρ = 1unless [G : G0] = 1or [G : G1]is<br />

apower<strong>of</strong>2or p.If [G : G0] = 1and ℓisaprimedividing [G0 : G1]<strong>the</strong>reisafield F ′ with<br />

F ⊆ F ′ ⊆ Lsuchthat F ′ /Fisnormaland [F ′ : F] = ℓ.Thusif [G : G0] = 1itfollowsfrom<br />

Lemma14.4that ρ = 1unless [G : G1]isapower<strong>of</strong>2. Howeverif [G : G1]isapower<strong>of</strong>2<br />

<strong>the</strong>recertainlyisan F ′ in Lwith [F ′ : F] = 2.ItfollowsfromLemmas14.3and14.4that ρ = 1<br />

inthiscaseunless p = 2.If [G : G1]isapower<strong>of</strong> p<strong>the</strong>n G0 = G1and G/G1isabelian.By<br />

assumption<strong>the</strong>abelian p­group G/G1actson<strong>the</strong> p­group C = G1faithfullyandirreducibly.<br />

Thisisimpossible.<br />

WeproveLemma14.2first.Let t ≥ 1besuchthat C = Gtwhile Gt+1 = {1}.Let θtbe<br />

<strong>the</strong>homomorphism<strong>of</strong> Gtinto Pt K /Pt+1<br />

K and θ0<strong>the</strong>homomorphism<strong>of</strong> G0/G1into U0 K /U1 K<br />

introducedinSerre’sbook.If σ ∈ G0and γ ∈ Gt<strong>the</strong>n<br />

θt(σγσ −1 γ −1 ) = (θ t 0 (σ) − 1)θt(γ).<br />

If σisnotin G1<strong>the</strong>n θ t 0 (σ)isnot1and γ → σγσ−1 γ −1 isaone­to­onemap<strong>of</strong> Contoitself.<br />

Thus,if σ ∈ G0,<br />

µ(σγσ −1 ) = µ(γ)<br />

implies µ = 1or σ ∈ G1. Consequentlyif µ = 1, Gµ ∩ G0 = G1and L/Fµisunramified.<br />

Since µ = µ ′ L/Fµ ,<br />

m(µ ′ ) = m(µ) = t + 1.


Chapter14 172<br />

Observealsothat tmustberelativelyprimeto [G0 : G1].Inparticularif tiseven [G0 : G1]is<br />

odd.<br />

and<br />

Therelations<br />

δ K/L = ([Gt : 1] − 1) (t + 1)<br />

δ L/F = [G0 : G1] − 1<br />

δ K/E = [G0 : G1] − 1<br />

δ K/F = δ K/L + [G1 : 1] δ L/F = δ K/E + [G0 : G1]δ E/F<br />

obtainedfromProposition4<strong>of</strong>ChapterIV<strong>of</strong>Serre’sbook,implythat<br />

If n = n(ψF)<strong>the</strong>n<br />

and<br />

<br />

t<br />

δE/F = ([G1; 1] − 1)<br />

[G0 : G1]<br />

<br />

+ 1 .<br />

n(ψ Fµ/F) = [G0 : G1]n + [G0 : G1] − 1<br />

n ′ <br />

t<br />

= n(ψE/F) = [G1 : 1]n + ([G1 : 1] − 1)<br />

[G0 : G1]<br />

<br />

+ 1 .<br />

Chooseagenerator ̟K<strong>of</strong> PKandagenerator ̟E<strong>of</strong> PE.Thenset ̟L = N K/L̟Kand<br />

̟F = N E/F̟E.Thereisaunit δin Ksuchthat<br />

̟ 1+n<br />

F<br />

̟ 1+n′<br />

E<br />

= δ ̟t K<br />

̟t .<br />

L<br />

Taking<strong>the</strong>normfrom Kto L<strong>of</strong>bothsidesweseethatif q = [G1 : 1]and k = [G0 : G1]<strong>the</strong>n<br />

̟ t(q−1)<br />

L<br />

̟ t(q−1)<br />

k<br />

F<br />

= N K/Lδ.<br />

t<br />

Let m = m(χF).If m − 1isequalto [G0:G1] <strong>the</strong>n [G0 : G1]divides tand [G0 : G1]is1.<br />

Supposethat<br />

t<br />

m < + 1.<br />

[G0 : G1]


Chapter14 173<br />

Then<br />

m(χ Fµ/F) < ψ Fµ/F<br />

However ψ Fµ/F = ϕ L/Fµ ◦ ψ L/F = ψ L/Fsothat<br />

<br />

t<br />

+ 1.<br />

[G0 : G1]<br />

ψ Fµ/F(u) = [G0 : G1]u<br />

if u ≥ 0.Thus m(χFµ/F) < t + 1and m(µ ′ χFµ/F) = t + 1.Moreover,byLemmas13.1and<br />

6.4, m ′ = m(χE/F) = m.Chooseagenerator ̟Fµ <strong>of</strong> PFµ .Then<br />

NFµ/F(̟ t Fµ ) = γµ ̟ t[Fµ:F]<br />

k<br />

F<br />

where γµisaunit.Theorder<strong>of</strong> ̟ 1+n<br />

F ̟t Fµ in Fµis 1 + t + n(ψ Fµ/F).Observingthat<br />

weseethat<br />

isequalto<br />

<br />

µ [Fµ : F] = q − 1<br />

∆1(χE/F,ψ E/F ′̟ m′ +n ′<br />

E ) <br />

µ∈T ∆1(µ ′ , ψFµ/F, ̟ 1+n<br />

F ̟t Fµ )<br />

<br />

<br />

p<br />

µ χF(γµ)<br />

<br />

{∆1(χF,ψF, ̟ m+n<br />

<br />

<br />

F }<br />

µ ∆1(µ ′ χFµ/F, ψFµ/F, ̟ 1+n<br />

F ̟t Fµ )<br />

<br />

.<br />

Itisnowclearthat ρ = 1if m = 0.<br />

If<br />

sothatinparticular m ≥ 2,<strong>the</strong>n<br />

m ≥<br />

t<br />

+ 1<br />

[G0 : G1]<br />

m ′ <br />

t<br />

= m(χE/F) = [G1 : 1]m − ([G1 : 1] − 1)<br />

[G0 : G1]<br />

isalsogreaterthanorequalto2and<br />

Since m ′ ≥ 2and K/Eistamelyramified<br />

m ′ + n ′ = [G1 : 1] (m + n).<br />

<br />

+ 1<br />

m(χ K/F) = ψ K/E(m(χ E/F) − 1) + 1 = ψ K/F(m − 1) + 1.


Chapter14 174<br />

Since<br />

and<br />

wehave<br />

However<br />

sothat<br />

isatmost<br />

Thus<br />

Consequently<br />

m(χ Fµ/F) ≤ ψ Fµ/F(m − 1) + 1<br />

ψ Fµ/F(m − 1) + 1 ≥ ψ Fµ/F<br />

<br />

t<br />

+ 1 = t + 1<br />

k<br />

m(µ ′ χFµ/F) ≤ ψFµ (m − 1) + 1.<br />

χ K/F = (µ ′ χ Fµ/F) K/Fµ<br />

ψ K/Fµ (ψ Fµ/F(m − 1)) + 1 = ψ K/F(m − 1) + 1 = m(χ K/F)<br />

ψ K/F(m(µ ′ χ Fµ/F) − 1) + 1.<br />

m(µ ′ χ Fµ/F) = ψ Fµ/F(m − 1) + 1.<br />

m(µ ′ χ Fµ/F) + n(ψ Fµ/F) = [G0 : G1] (m + n).<br />

Since<strong>the</strong>range<strong>of</strong>each µ ′ liesin<strong>the</strong>group<strong>of</strong> qthroots<strong>of</strong>unity<br />

isequalto<br />

with σ ∼p ρ.<br />

∆1(χ E/F, ψ E/F, ̟ m+n<br />

F ) <br />

µ ∆1(µ ′ , ψ Fµ/F, ̟ n+1<br />

F ̟t Fµ )<br />

σ∆1(χF, ψF, ̟ m+n<br />

F ) <br />

µ ∆1(µ ′ χFµ/F, ψFµ/F, ̟ m+n<br />

F )<br />

Thenextstepin<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmaistoestablishasimpleidentity.Asusuallet rbe<br />

<strong>the</strong>integralpart<strong>of</strong> t+1<br />

2 andlet r + s = t + 1.Choose β(µ′ )sothat<br />

ψ Fµ/F<br />

<br />

β(µ ′ )x<br />

̟ 1+n<br />

F ̟t Fµ<br />

<br />

= µ ′ (1 + x)<br />

for xin P s Fµ .Thereisaunit αµin Lsuchthat αµ̟ t Fµ = ̟t L .Then<br />

<br />

αµβ(µ<br />

ψL/F ′ <br />

)x<br />

= µ(1 + x)<br />

̟ 1+n<br />

F ̟t L


Chapter14 175<br />

for xin P s L .Wetake β(µ) = αµβ(µ ′ ).If σ ∈ Gapossiblechoicefor β(µ σ )is<br />

β(µ) σ ̟t L<br />

σ t ̟L Let φ = OF/PF = OE/PEandlet ψφbe<strong>the</strong>additivecharacter<strong>of</strong> φdefinedby<br />

Thereisaunique αin φsuchthat<br />

Finallylet<br />

Iwanttoshowthat<br />

in φ.<br />

<br />

Let λ = OL/PL = OK/PK.If<br />

ψφ(x) = ψF<br />

.<br />

<br />

x<br />

̟ 1+n<br />

<br />

.<br />

F<br />

ψφ(αx) = ψφ(x q ).<br />

ω1 = S E/F<br />

µ γµ = ωq 1<br />

α q<br />

<br />

<br />

ω = S K/L<br />

<strong>the</strong>n ω1 = δωin λ.Weneed<strong>the</strong>followinglemma.<br />

Lemma 14.6<br />

̟ 1+n<br />

F<br />

̟ 1+n′<br />

E<br />

<br />

.<br />

µ N Fµ/Fβ(µ ′ ) (14.3)<br />

t ̟K Suppose K ′ /F ′ isanabelianextensionand G ′ = G(K ′ /F ′ ). Suppose<strong>the</strong>reisat ≥ 1<br />

suchthat G ′ = G ′ tand G′ t+1 = {1}.Let ̟K ′beagenerator<strong>of</strong> P′ K ,let ̟F ′ = NK ′ /F ′(̟K ′),<br />

andlet<br />

t ̟K ′<br />

ω = SK ′ /F ′<br />

̟t F ′<br />

<br />

.<br />

Alsolet q = [K ′ : F ′ ].Therearenumbers a, . . ., fin OF ′suchthatforall xin OF ′<br />

̟ t L<br />

N K ′ /F ′(1 + x̟ t K ′)


Chapter14 176<br />

iscongruentto<br />

modulo P t+1<br />

F ′ .<br />

1 + (x q + ax q<br />

p + . . . + fx p + ωx)̟ t F ′<br />

Suppose F ′ ⊆ L ′ ⊆ K ′ and<strong>the</strong>lemmaistruefor K ′ /L ′ and L ′ /F ′ .Thelemmafor K ′ /F ′<br />

followsfrom<strong>the</strong>relations<br />

[K ′ : F ′ ] = [K ′ : L ′ ] [L ′ : F ′ ]<br />

and<br />

and<br />

N K ′ /F ′(1 + x̟ t K ′) = N L ′ /F ′(N K ′ /L ′(1 + x̟t K ′))<br />

S K ′ /F ′<br />

t ̟K ′<br />

̟ t F ′<br />

≡ S L ′ /F ′<br />

t ̟L ′<br />

̟ t F ′<br />

S K ′ /L ′<br />

̟ t K ′<br />

Thelemmaforextensions<strong>of</strong>primeorderisprovedinSerre’sbook.<br />

Suppose<strong>the</strong>n<br />

for xin OL.Since<br />

whichinturnequals<br />

weconcludethat<br />

̟ t L ′<br />

<br />

.<br />

N K/L(1 + x̟ t K ) ≡ 1 + (xq + . . . + ̟x)̟ t L (modPt+1<br />

L )<br />

ψ λ/φ(αx) = ψφ(αS λ/φ(x)) = ψφ((S λ/φ(x)) q )<br />

ψφ(S λ/φx q ) = ψ λ/φ(x q )<br />

ψ λ/φ(y(x q + . . . + ωx)) = ψ λ/φ((αy 1<br />

q + . . . + ωy)x).<br />

Also <br />

αy 1 q q + . . . + ωy = α q y + . . . + ω q y q<br />

isapolynomial Q(y)in y.<br />

Foreach νin S(K/L),wechoose β1(ν)sothat<br />

<br />

β1(ν)x<br />

ψL/F = ν(1 + x)<br />

for xin P s L .Since kp = kin λ<br />

̟ 1+n<br />

F ̟t L<br />

ψ λ/φ(kβ1(ν)(x q + . . . + ωx) = ψ λ/φ(β1(ν) [(kx) q + . . . + ωkx])


Chapter14 177<br />

if xisin OF.Theleftsideisalsoequalto<br />

<br />

β1(ν) PK/L(x̟ ψL/F t K )<br />

<br />

= 1.<br />

̟ 1+n<br />

F ̟t L<br />

Thus Q(kβ1(ν)) = 0.Since β1(ν1) = β2(ν2) (modPL)implies ν1 = ν2wehavefoundall<strong>the</strong><br />

roots<strong>of</strong> Q(y) = 0.Thus<br />

αq <br />

≡<br />

ωq ν=1 kβ1(ν) ≡ <br />

ν=1 β1(ν) (mod PL).<br />

Let Mµbeaset<strong>of</strong>representativesfor<strong>the</strong>cosets<strong>of</strong> Gµin G.Then<br />

iscongruentto<br />

<br />

µ∈T NFµ/Fβ(µ ′ ) = <br />

<br />

<br />

ν=1 β1(ν)<br />

<br />

<br />

µ∈T<br />

µ∈T<br />

<br />

<br />

σ∈Mµ<br />

α<br />

σ∈Mµ<br />

σ µ<br />

modulo PL.Toverify<strong>the</strong>identity(14.3)wehavetoshowthat<br />

Since<br />

<br />

<strong>the</strong>congruencereducesto<br />

µ<br />

<br />

σ∈Mµ<br />

γµ =<br />

α σ µ<br />

̟t L<br />

σ t<br />

L<br />

̟<br />

<br />

̟ t(q−1)<br />

L<br />

(q−1)<br />

t k ̟F σ∈Mµ<br />

<br />

≡ δ q<br />

whichisvalidbecause<strong>the</strong>leftsideis N K/Lδand<br />

N K/Lδ ≡ δ q<br />

σ t<br />

L<br />

ασ µ<br />

̟<br />

µ γµ<br />

<br />

̟<br />

<br />

≡ δ q<br />

β(µ ′ ) σ<br />

̟t −1 L<br />

σ t<br />

L<br />

̟<br />

[Fµ:F]<br />

−t k<br />

F<br />

(mod PK)<br />

(modPK).<br />

(modPK).<br />

If m = 1<strong>the</strong>n m(χ Fµ/F) ≤ 1andwecantake β(µ ′ χ Fµ/F) = β(µ ′ ).Then<br />

∆2(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ )


Chapter14 178<br />

isequalto<br />

Lemma9.4impliesthat<br />

If xbelongsto OE<strong>the</strong>n<br />

χF(N Fµ/F(β(µ ′ ))) ∆2(µ ′ χ Fµ/F, ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ).<br />

∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ) = ∆3(µ ′ χ Fµ/F, ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ).<br />

ψ E/F<br />

<br />

x<br />

̟ 1+n′<br />

E<br />

If χφis<strong>the</strong>character<strong>of</strong> φ ∗ determinedby χF<strong>the</strong>n<br />

and<br />

<br />

= ψφ(ω1x).<br />

∆1(χF, ψF, ̟ 1+n<br />

F ) = A[−τ(χφ, ψφ)]<br />

∆1(χE/F, ψE/F, ̟ 1+n′<br />

E ) = χφ(ω q<br />

1 ) A[−τ(χq φ , ψφ)].<br />

Therightside<strong>of</strong>thisexpressionisequalto<br />

χφ(ω q<br />

1 α−q ) A[−τ(χφ, ψφ)].<br />

Theidentity(14.3)nowshowsthat ρ = 1when m = 1.<br />

Supposethat<br />

Let βbeagivenchoice<strong>of</strong> β(χF).Then<br />

if m ′ = 2d ′ + ε ′ .<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand<br />

1 < m <<br />

t<br />

+ 1.<br />

[G0 : G1]<br />

β(χE/F) ≡ P ∗ E/F (β, ̟m′ +n ′<br />

E , ̟ m+n<br />

F ) (mod P d′<br />

E )<br />

ψ L/F(m − 1) + 1 + n(ψ L/F) = [G0 : G1](m − 1) + 1 + [G : G0]n + [G0 : G1] − 1<br />

whichequals [G0 : G1](m + n)andLemmas8.3,8.4and8.7implythat<br />

if<br />

P ∗ L/F (β, ̟m+n<br />

F , ̟ m+n<br />

F ) ≡ β (modP d1<br />

L )<br />

ψ L/F(m − 1) + 1 = 2d1 + ε1.


Chapter14 179<br />

If<br />

<strong>the</strong>n<br />

Thus<br />

If<br />

and<br />

<strong>the</strong>n<br />

Let<br />

iscongruentto<br />

modulo P d′<br />

1<br />

K .<br />

andthat<br />

Itisclearthat<br />

Ifwechoose<br />

<strong>the</strong>n<br />

P ∗ K/E (β(χ E/F,̟ m′ +n ′<br />

E<br />

ψ K/F(m − 1) + 1 = 2d ′ 1 + ε′ 1<br />

, ̟ m′ +n ′<br />

E<br />

β(χE/F) ≡ P ∗ K/F (β, ̟m′ +n ′<br />

E , ̟ m+n<br />

) ≡ β(χ E/F) (modP d′<br />

1<br />

K ).<br />

F ) (mod P d′<br />

1<br />

K ).<br />

v = t + 1 − (ψ L/F(m − 1) + 1) = t − [G0 : G1] (m − 1).<br />

γ = ̟t−v<br />

L<br />

̟ m−1<br />

F<br />

γ ′ = ̟m′ +n ′<br />

E ̟v K<br />

̟ 1+n<br />

F ̟t L<br />

P ∗ K/F (β, ̟m′ +n ′<br />

E , ̟ m+n<br />

F ) ≡ P ∗ K/L (β, ̟m′ +n ′<br />

E<br />

γ ′ P ∗ K/L (γβ, ̟1+n<br />

F ̟t L̟ −v<br />

K<br />

, ̟ m+n<br />

F ) (modP d′<br />

1<br />

, ̟1+n<br />

F ̟t−v<br />

L )<br />

∆2(χE/F, ψE/F, ̟ m′ +n ′<br />

E ) ∼p χ −1<br />

F (NE/F(β(χ E/F)))<br />

∆2(µ ′ , ψ Fµ/F, ̟ n+1<br />

F ̟t Fµ ) ∼p 1.<br />

β(µ ′ χ Fµ/F) = β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F<br />

∆2(µ ′ χ Fµ/F, ψ Fµ/F, ̟ n+1<br />

F ̟t Fµ ) ∼p χ −1<br />

F<br />

<br />

N Fµ/F<br />

<br />

K )<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F<br />

<br />

.


Chapter14 180<br />

Moreover<br />

Let<br />

equal<br />

Since<br />

∆2(χF, ψF, ̟ m+n<br />

F ) ∼p χ −1<br />

F (β).<br />

∆2(χE/F,ψ E/F, ̟ m′ +n ′<br />

E ) <br />

µ ∆2(µ ′ , ψFµ/F, ̟ n+1<br />

F ̟t Fµ )<br />

τ∆2(χF,ψF, ̟ m+n<br />

<br />

<br />

F )<br />

µ ∆2(µ ′ χFµ/F, ψFµ/F, ̟ n+1<br />

F ̟t Fµ )<br />

<br />

<br />

µ χF(γµ)<br />

<br />

.<br />

χF(u) ∼p 1<br />

if u ∈ U 1 F ,allweneeddotoshowthat τ ∼p 1isprovethat<br />

iscongruentto<br />

modulo PF.<br />

β <br />

µ N Fµ/F<br />

<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F<br />

N E/F(β(χ E/F)) <br />

µ γµ<br />

Asbeforewechoose β(µ) = αµ(β(µ ′ ).If ν = µ σ apossiblechoicefor β(ν)is<br />

Wecanalsochoose<br />

α σ µβ(µ ′ ) σ ̟t L<br />

̟σ t<br />

L<br />

β(µχ L/F) = αµβ(µ ′ ) + β ̟t L<br />

̟ m−1<br />

F<br />

Thenapossiblechoicefor B(µ σ χ L/F)is<br />

α σ µ<br />

<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F<br />

σ ̟ t L<br />

WeapplyLemma8.10with Freplaceby L,<br />

.<br />

= αµ<br />

<br />

<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F<br />

<br />

̟σ t = α<br />

L<br />

σ µ(β(µ ′ ) σ ̟t L<br />

̟σ t + β<br />

L<br />

̟t L<br />

̟ m−1<br />

F<br />

δ = ̟ 1+n<br />

F ̟t L<br />

.<br />

.


Chapter14 181<br />

and ε1 = ̟ v K .Itimpliesthat<br />

iscongruentto<br />

γβ<br />

<br />

µ∈T<br />

<br />

σ∈Mµ<br />

N K/L<br />

<br />

α σ <br />

µ<br />

modulo PL.Thelastexpressionisequalto<br />

γβ<br />

<br />

µ∈T N Fµ/F<br />

andwehavetoshowthat<br />

γNK/L(γ ′ <br />

<br />

)<br />

<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ t F<br />

µ γµ<br />

iscongruentto1modulo PL.First<strong>of</strong>all<br />

Since<br />

<strong>the</strong>requiredrelationfollows.<br />

equalto<br />

Define ηbysetting<br />

β(χE/F)<br />

<br />

γ ′<br />

<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F<br />

<br />

µ∈T<br />

<br />

µ∈T<br />

NK/L(γ ′ ) = ̟ m′ +n ′ −q(1+n)<br />

F ̟ −qt+v<br />

L = γ<br />

γµ =<br />

<br />

σ∈Mµ<br />

<br />

η∆3 χE/F,ψ E/F, ̟ m′ +n ′ <br />

E<br />

ασ −1 µ<br />

σ t ̟L µ∈T ∆3<br />

̟<br />

σ<br />

<br />

α<br />

σ∈Mµ<br />

σ µ<br />

̟t L<br />

σ t<br />

L<br />

̟<br />

<br />

α<br />

σ∈Mµ<br />

σ µ<br />

̟t L<br />

σ t<br />

L<br />

̟<br />

(q−1)t<br />

k<br />

−1 ̟ F<br />

[Fµ:F]<br />

−t k<br />

F<br />

̟ (q−1)t<br />

L<br />

<br />

.<br />

̟t L<br />

σ t<br />

L<br />

̟<br />

<br />

µ ′ , ψFµ/F, ̟ 1+n<br />

F ̟t <br />

Fµ<br />

∆3(χF, ψF, ̟ m+n<br />

F ) <br />

µ∈T ∆3<br />

<br />

µ ′ χFµ/F, ψFµ/F, ̟ 1+n<br />

F ̟t <br />

. Fµ<br />

Wenowknowthat η ∼p ρ.Weshallshowthat η ∼p 1.Thiswillprovenotonly<strong>the</strong>assertion<br />

<strong>of</strong>Lemma14.2butalsothat<strong>of</strong>Lemma14.3,provided<strong>of</strong>coursethat<br />

m − 1 <<br />

t<br />

[G0 : G1] .


Chapter14 182<br />

Lemmas9.2and9.3implydirectlythat η ∼p 1if pis2.<br />

Suppose pisodd.Lemma9.4impliesthat<br />

∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ) ∼p ∆3(µ ′ χ Fµ/F, ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ).<br />

Since m ′ = mallweneeddoisshowthat<br />

∆3(χE/F,ψ E/F, ̟ m′ +n ′<br />

E ) ∼p ∆3(χF, ψF, ̟ m+n<br />

F )<br />

when misodd.Let φ = OF/PF = OE/PE.Let β ′ = β(χ E/F)andlet β = β(χF).If ψ ′ φ is<br />

<strong>the</strong>character<strong>of</strong> φdefinedby<br />

and ψ ′′<br />

φis<strong>the</strong>character<strong>of</strong> φdefinedby<br />

ψ ′ φ (x) = ψF<br />

ψ ′′<br />

φ (x) = ψ E/F<br />

<br />

β x<br />

̟ n+1<br />

<br />

F<br />

<br />

β ′ x<br />

̟ n′ +1<br />

E<br />

andif ψ ′′<br />

φ (x) = ψ′ φ (δx)<strong>the</strong>n,byLemmas9.2and9.3,allwehavetodoisshowthat δisasquare<br />

in φ.If<br />

ω1 = S E/F<br />

<br />

̟ n+1<br />

F<br />

̟ n′ +1<br />

E<br />

<strong>the</strong>n δ = ω1 β′<br />

β in φ.Toshowthat δisasquareweshowthat δq isasquare.<br />

Wesawthat<br />

in φ.But<br />

N E/F(β ′ )<br />

β<br />

<br />

<br />

δ q ≡ NE/Fα ≡ β 1−q NE/F(β ′ )<br />

ω<br />

β<br />

q<br />

1 .<br />

<br />

<br />

=<br />

µ γµ<br />

−1 <br />

β ̟t Fµ<br />

̟ m−1<br />

F<br />

µ N Fµ/F<br />

<br />

≡ 0 (modPL)<br />

β(µ ′ ) + β ̟t Fµ<br />

̟ m−1<br />

F


Chapter14 183<br />

because t > [G0 : G1](m − 1).Wealsosawthat<br />

<br />

µ γµ<br />

−1 <br />

<br />

µ NFµ/Fβ(µ ′ <br />

)<br />

= αq<br />

̟ q<br />

1<br />

in φ.Since β 1−q isclearlyasquare,weneedonlycheckthat αisasquare.Thecharacter<br />

isidentically1,sothat<strong>the</strong>kernel<strong>of</strong><strong>the</strong>map<br />

isnon­trivial.Thus α = x q−1 forsome xin φ.<br />

Nowsupposethat<br />

x −→ ψφ (x q − αx)<br />

x −→ x q − αx<br />

m − 1 ≥<br />

t<br />

[G0 : G1] .<br />

Wehavetoshowthat<strong>the</strong>complexnumber σdefinedat<strong>the</strong>beginning<strong>of</strong><strong>the</strong>pro<strong>of</strong>satisfies<br />

σ ∼2p 1.ToproveLemma14.3wewillhavetoshowthat σ ∼p 1if [G : G1]isapower<strong>of</strong>2.<br />

Given β = β(χF)wemaychoose β(χ L/F) = β(χ Fµ/F) = β.Moreover<br />

β(χE/F) ≡ P ∗ E/F (β, ̟m+n<br />

F , ̟ m+n<br />

F ) (modP d′<br />

E)<br />

if m ′ = m(χ E/F) = 2d ′ + ε ′ .ByLemmas8.3,8.4and8.7<br />

modulo P d′<br />

1<br />

K if<br />

Thus<br />

If<br />

and<br />

P ∗ K/F (β, ̟m+n<br />

F , ̟ m+n<br />

F ) ≡ P ∗ K/E (β(χE/F), ̟ m+n<br />

F , ̟ m+n<br />

F ) ≡ β(χE/F )<br />

ψ K/F(m − 1) + 1 = 2d ′ 1 + ε ′ 1.<br />

β(χE/F ) ≡ P ∗ K/L (β, ̟m+n<br />

F , ̟ m+n<br />

F ) (modP d′<br />

1<br />

ψ Fµ/F(m − 1) + 1 = 2dµ + εµ<br />

ψ Fµ/F<br />

′ α(µ )x<br />

̟ m+n<br />

<br />

= µ<br />

F<br />

′ (1 + x)<br />

K ).


Chapter14 184<br />

for xin P dµ+εµ<br />

Fµ<br />

If<br />

<strong>the</strong>n<br />

wemaytake<br />

for xin P d1+ε1<br />

L .If ν = µ σ<strong>the</strong>n β(µ ′ χ Fµ/F) = β + α(µ ′ ).<br />

ψ L/F(m − 1) + 1 = 2d1 + ε1<br />

µ(1 + x) = ψ L/F<br />

ν(1 + x) = ψ L/F<br />

for xin P d1+ε1<br />

L .Lemma8.2impliesthat<br />

iscongruentto<br />

′ α(µ )x<br />

̟ m+n<br />

<br />

F<br />

′ σ α(µ ) x<br />

̟ m+n<br />

<br />

F<br />

N E/F(β(χ E/F)) = N K/L(β(χ E/F))<br />

β <br />

µ∈T<br />

<br />

modulo PL.Thelastexpressionisequalto<br />

Moreover<br />

β <br />

σ∈Mµ<br />

(β + α(µ ′ ) σ )<br />

µ∈T N Fµ/F(β + α(µ ′ )).<br />

∆2(χF, ψF, ̟ m+n<br />

F ) ∼p χ −1<br />

F (β)<br />

∆2(µ ′ , ψ Fµ/F,̟ 1+n<br />

F ̟t Fµ ) ∼p 1<br />

∆2(χ E/F,ψ E/F, ̟ m+n<br />

F ) ∼p χ −1<br />

F (N E/F(β(χ E/F)))<br />

∆2(µ ′ χ Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ) ∼p χ −1<br />

F (N Fµ/F(β + α(µ ′ ))).<br />

Define τbydemandingthat<br />

beequalto<br />

∆3(χ E/F,ψ E/F, ̟ m+n<br />

F ) <br />

µ ∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ )<br />

τ ∆3(χF, ψF, ̟ m+n<br />

F ) <br />

µ ∆3(µ ′ , χ Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ).


Chapter14 185<br />

Since χF(u) ∼p 1if u ∈ U 1 F <strong>the</strong>precedingdiscussionshowsthat σ ∼p τ.Lemmas9.2and9.3<br />

showthat τ ∼2p 1.Lemma14.2isnowcompletelyproved.ToproveLemma14.3wehaveto<br />

showthat τ ∼p 1if [G : G1]isapower<strong>of</strong>2.Wemaysupposethat pisodd.<br />

Thereareanumber<strong>of</strong>possibilities.<br />

(i.a) tisevenand misodd. [G0 : G1]mustbeoddandhence1,forwearenowassumingthat<br />

[G : G1]isapower<strong>of</strong>2.Since<br />

and<br />

m(χ Fµ/F) = [G0 : G1] (m − 1) + 1<br />

m(χ E/F) = [G1 : 1] (m − 1) − ([G1 : 1] − 1)t<br />

[G0 : G1]<br />

both m(χ Fµ/F)and m(χ E/F)areodd.<br />

(i.b) tisevenand miseven.Again [G0 : G1]is1.Thistimeboth m(χ Fµ/F)and m(χ E/F)are<br />

even.<br />

(ii.a) tisoddand misodd.Then m(χ Fµ/F)isodd.If<br />

[G1 : 1] − 1<br />

[G0 : G1]<br />

iseven m(χ E/F)isodd.O<strong>the</strong>rwiseitiseven.<br />

(ii.b) tisoddand miseven.If [G0 : G1]isodd,thatis1,<strong>the</strong>n m(χ Fµ/F)isoddand m(χ E/F)<br />

iseven.If [G0 : G1]iseven<strong>the</strong>n m(χ Fµ/F)isoddand m(χ E/F)isevenoroddaccording<br />

as<br />

[G1 : 1] − 1<br />

[G0 : G1]<br />

isevenorodd.<br />

If tisodd<strong>the</strong>nclearly<br />

<br />

µ ∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ) ∼p 1.<br />

Wearegoingtoshowthatthisisalsotrueif tiseven. Then L/F,andhence Fµ/F,is<br />

unramified.Let φµ = OFµ /PFµ .If<br />

ψφµ (x) = ψ Fµ/F<br />

′ β(µ )x<br />

̟ 1+n<br />

<br />

F<br />

+ 1


Chapter14 186<br />

andif ϕφµ isanowherevanishingfunctionon φµsatisfying<br />

<strong>the</strong>n<br />

ϕφµ (x + y) = ϕφµ (x) ϕφµ (y)ψφµ (xy)<br />

∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ) ∼p A[−σ(ϕφµ )].<br />

If αbelongsto φ ∗ µ let νφµ (α)equal+1or­1accordingas αisorisnotasquarein φµ. If<br />

φ = OF/PF<strong>the</strong>n<br />

νφµ (α) = νφ (N φµ/φ(α)).<br />

If<br />

<strong>the</strong>n,accordingtoparagraph9,<br />

ψφ(x) = ψF<br />

<br />

x<br />

̟ 1+n<br />

F<br />

<br />

∆3(µ ′ , ψ Fµ/F,̟ 1+n<br />

F ̟t Fµ ) ∼p νφ(N Fµ/F(β(µ ′ ))) {A[−σ(ϕφ)]} [Fµ:F]<br />

if ϕφisanynowherevanishingfunctionon φsatisfying<br />

Thusif ais<strong>the</strong>number<strong>of</strong> µin T<br />

isequalto<br />

ϕφ(x + y) = ϕφ(x) ϕφ(x) ψφ(xy).<br />

<br />

η(−1) a νφ<br />

where η ∼p 1and q = [G1 : 1].<br />

Wesawinparagraph9that<br />

µ ∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ )<br />

<br />

µ NFµ/F(β(µ ′ <br />

)) A[σ(ϕφ) q−1 ]<br />

A[σ(ϕφ) 2 ] ∼p νφ(−1) A[|σ(ϕφ)| 2 ] = νφ(−1).<br />

Since tiseven G0 = G1and G/G1 = G/G0isabelian.If σ ∈ G<br />

{µ ∈ S(K/L) | µ = µ σ }


Chapter14 187<br />

isasubgroup<strong>of</strong> S(K/L)invariantunder G.Itisnecessarilyei<strong>the</strong>r S(K/L)or {1}.If σisnot<br />

in G1itisnot S(K/L). Thus Gµ,<strong>the</strong>isotropygroup<strong>of</strong> µ,is G1forall µin Tand Fµ = L.<br />

Moreover <br />

µ NFµ/F(β(µ ′ )) = <br />

β(µ<br />

µ<br />

′ ) σ .<br />

σ∈G/G1<br />

Wemayregard C = G1asavectorspaceover<strong>the</strong>fieldwith pelements.If σ ∈ G/G1and<br />

<strong>the</strong>order<strong>of</strong> σdivides p − 1<strong>the</strong>nall<strong>the</strong>eigenvalues<strong>of</strong><strong>the</strong>lineartransformation c −→ σcσ −1<br />

liein<strong>the</strong>primefield. Since<strong>the</strong>lineartransformationalsohasorderdividing p − 1itis<br />

diagonalizable.Since G/G1isabelianandactsirreduciblyon C<strong>the</strong>lineartransformationisa<br />

multiple<strong>of</strong><strong>the</strong>identity.Inparticularif σ0is<strong>the</strong>uniqueelement<strong>of</strong>order2<strong>the</strong>n σ0cσ −1<br />

0<br />

forall c.Asaconsequence µ σ0 = µ −1 and<br />

β(µ ′ ) σ0 ≡ −β(µ ′ ) (modPL)<br />

= c−1<br />

ifwechoose,aswemaysince Fµ/Fisunramified, ̟Fµ = ̟F.If Dis<strong>the</strong>group {1, σ0}and<br />

Misaset<strong>of</strong>representativesfor<strong>the</strong>cosets<strong>of</strong> Din G/G1<strong>the</strong>n<br />

if<br />

Clearly<br />

<br />

µ∈T<br />

<br />

γ = <br />

If χis<strong>the</strong>non­trivialcharacter<strong>of</strong> Dand<br />

is<strong>the</strong>transfer<strong>the</strong>n<br />

σ∈G/G1<br />

µ∈T<br />

<br />

γγ σ0 = (1−) q−1<br />

2 γ 2<br />

β(µ ′ ) σ = γγ σ0<br />

σ∈M β(µ′ ) σ .<br />

v : G/G0 −→ D<br />

γ σ = χ(v(σ)) a γ<br />

(mod PL).<br />

forall σin G/G0. νφ(γ 2 ) = 1ifandonlyif χ(v(σ)) a is1forall σ.If σisagenerator<strong>of</strong> G/G0<br />

<strong>the</strong>n<br />

v(σ) = σ [G:G 0 ]<br />

2 = σ0<br />

sothat νφ(γ 2 ) = (−1) a .Puttingall<strong>the</strong>sefactstoge<strong>the</strong>rweseethat<br />

<br />

µ ∆3(µ ′ , ψ Fµ/F, ̟ 1+n<br />

F ̟t Fµ ) ∼p 1.


Chapter14 188<br />

Observethatifwehadtaken ̟Fµ tobe δµ̟F<strong>the</strong>n N Fµ/Fβ(µ ′ )wouldhavetobemultiplied<br />

by<br />

{N Fµ/Fδµ} t<br />

whichisasquaremodulo PFbecause tiseven.Thus<strong>the</strong>resultisvalidforallchoices<strong>of</strong> ̟Fµ .<br />

Eventuallywewillhavetodiscuss<strong>the</strong>variouspossibilitiesseparately.Therearehowever<br />

anumber<strong>of</strong>commentsweshouldmakefirst.If misoddand m(χ Fµ/F)isodd<strong>the</strong>n<br />

if<br />

∆3(µ ′ χ Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ) ∼p νφµ (β + α(µ′ )) A[−σ(ϕφµ )]<br />

ψφµ (x) = ψ Fµ/F<br />

<br />

x<br />

̟ 1+n<br />

<br />

.<br />

F<br />

Observethat,because misodd,wemaytake<strong>the</strong>number δinLemma9.3tobe ̟ m−1<br />

2<br />

F . Of<br />

course ϕφµ isanyfunctionon φµwhichvanishesnowhereandsatisfies<br />

ApplyingLemma9.1weseethat<br />

if k = [G0 : G1],if<br />

ϕφµ (x + y) = ϕφµ (x) ϕφµ (y)ψφµ (xy).<br />

A[−σ(ϕφµ )] ∼p −νφ<br />

<br />

ψφ(x) = ψF<br />

k [Fµ:F]<br />

k<br />

<br />

<br />

x<br />

̟ 1+n<br />

F<br />

<br />

A σ(ϕφ) [Fµ:F] <br />

k<br />

andif ϕφbears<strong>the</strong>usualrelationto ψφ.Weuse,<strong>of</strong>course,<strong>the</strong>relation<br />

Observealsothat<br />

If misodd<br />

kS φµ/φ(x) = S Fµ/F(x).<br />

νφµ (β + α(µ′ )) = νφ(N φµ/φ(β + α(µ ′ ))).<br />

∆3(χF, ψF, ̟ m+n<br />

F ) ∼p −νφ(β) A[σ(ϕφ)].<br />

Ifboth mand m ′ = m(χ E/F)areoddandif β ′ = β(χ E/F)<strong>the</strong>n<br />

∆3(χ E/F, ψ E/F, ̟ m+n<br />

F ) ∼p −νφ(β ′ ) A[σ(ϕ ′ φ )]


if ϕ ′ φ bears<strong>the</strong>usualrelationto<strong>the</strong>character<br />

ψ ′ φ (x) = ψ E/F<br />

⎛<br />

⎝<br />

̟ 1+n<br />

F<br />

⎞<br />

x<br />

⎠ . (q−1)t<br />

k ̟<br />

Thereisaunit εin OKsuchthat ̟E = ε̟ q<br />

K .If σ ∈ C<strong>the</strong>n<br />

̟ σ−1<br />

E = εσ−1̟ (σ−1)q<br />

K ≡ 1 (mod PK)<br />

because t ≥ 1.Thus<strong>the</strong>multiplicativecongruence<br />

issatisfiedand<br />

If<br />

asbefore,<strong>the</strong>n<br />

Since<br />

wehave<br />

̟ q<br />

E ≡ N E/F̟E = ̟F (mod ∗ PE)<br />

1<br />

̟ (q−1)t<br />

k<br />

E<br />

≡ ̟1+n<br />

F<br />

̟ 1+n′<br />

E<br />

ω1 = S<br />

<br />

ψ ′ φ(x) = ψF<br />

̟ 1+n<br />

F<br />

̟ 1+n′<br />

E<br />

E<br />

(mod ∗ PE).<br />

<br />

<br />

ω1x<br />

̟ 1+n<br />

<br />

.<br />

F<br />

νφ(β ′ ) = νφ(β ′ ) q = νφ(N E/Fβ ′ )<br />

∆3(χ E/F, ψ E/F, ̟ m+n<br />

F ) ∼p −νφ(N E/Fβ ′ ) νφ(ω1) A[σ(ϕφ)].<br />

Define ηbydemandingthat<br />

beequalto<br />

∆3(χ E/F,ψ E/F, ̟ m+n<br />

F )<br />

η∆3(χF, ψF, ̟ m+n<br />

F ) <br />

µ ∆3 (µ ′ χ Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ).<br />

Wehavetoshowthat η ∼p 1.Ifboth tand mareeventhisisclear.If tisevenand misodd<br />

wearetoshowthat<br />

νφ(N E/Fβ ′ )νφ(ω1) ∼p (−1) a νφ(−1) q−1<br />

2k νφ(k) q−1<br />

k νφ(β) <br />

µ νφ(N φµ/φ(β + α(µ ′ )))


Chapter14 190<br />

if ais<strong>the</strong>number<strong>of</strong>elementsin T.Since tiseven kis1.Asbefore<br />

β <br />

µ N φµ/φ(β + α(µ ′ )) = β <br />

µ<br />

<br />

σ∈G/G1<br />

iscongruentto N E/Fβ ′ modulo PK.Allweneeddoisshowthat<br />

νφ(ω1) = (−1) a νφ(−1) q−1<br />

2 .<br />

(β + α(µ ′ ) σ )<br />

Since tiseveneach γµisasquarein φ.Applying<strong>the</strong>identity(14.3)weseethat<br />

νφ(ω1) = νφ(ω q<br />

<br />

−1<br />

1 ) = νφ(α)νφ µ NFµ/Fβ(µ ′ <br />

) .<br />

Wehaveseenthat αisasquarein φsothat νφ(α) = 1.Wealsosawthat<br />

νφ<br />

<br />

µ NFµ/Fβ(µ ′ <br />

)<br />

when tiseven.Therequiredrelationfollows.<br />

= (−1) a νφ(−1) q−1<br />

2<br />

Wesupposehenceforththat tisodd.Thediscussionwillbefairlycomplicated.Suppose<br />

firstthat misalsoodd.Then<br />

[G0 : G1](m − 1) = t<br />

and<br />

sothat<br />

and<br />

<br />

m − 1 ><br />

t<br />

[G0 : G1]<br />

β + α(µ ′ ) ≡ β (mod PL)<br />

µ ∆3(µ ′ χ Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ) ∼p (−1) a νφ<br />

Thusif q−1<br />

k isoddwehavetoshowthat<br />

andif q−1<br />

k isevenwehavetoshowthat<br />

<br />

k q−1<br />

k<br />

<br />

νφ<br />

<br />

β q−1<br />

k<br />

<br />

A[σ(ϕφ)] q−1<br />

k .<br />

(−1) a+1 νφ(k) νφ(−1) q−1 1<br />

2k + 2 ∼p 1 (14.4)<br />

νφ(ω1) ∼p (−1) a νφ(−1) q−1<br />

2k . (14.5)


Chapter14 191<br />

Nowsuppose miseven. If [G0 : G1]is1<strong>the</strong>reisnothingtoprove. If k = [G0 : G1]is<br />

even<strong>the</strong>n<br />

t<br />

m − 1 ><br />

[G0 : G1]<br />

and<br />

If<br />

β + α(µ ′ ) ≡ β (modPL).<br />

ψ ′ φµ (x) = ψ Fµ/F<br />

⎛<br />

⎝β ̟k(m−1)<br />

Fµ<br />

̟ m+n<br />

F<br />

⎞<br />

x<br />

⎠<br />

and ϕ ′ isafunctionon φµwhichvanishesnowhereandsatisfies<br />

φµ<br />

<strong>the</strong>n<br />

If<br />

<strong>the</strong>n εµisaunitand<br />

if,asbefore,<br />

ByLemma9.1, A[−σ(ϕφµ )]isequalto<br />

−νφ<br />

<br />

ϕ ′ φµ (x + y) = ϕ′ φµ (x) ϕ′ φµ (y) ψ′ φµ (xy)<br />

∆3(µ ′ χ Fµ/F, ψ Fµ/F, ̟ m+n<br />

F ) ∼p A[−σ(ϕ ′ φµ )].<br />

k [Fµ:F]<br />

k<br />

<br />

νφ<br />

If q−1<br />

k isevenwehavetoshowthat<br />

(−1) a νφ<br />

εµ̟ m−1<br />

F<br />

= ̟ k(m−1)<br />

Fµ<br />

ψφµ (x) = ψ φµ/φ(kβεµx)<br />

ψφ(x) = ψF<br />

<br />

<br />

β [Fµ:F]<br />

k<br />

<br />

µ N φµ/φεµ<br />

If q−1<br />

k isodd<strong>the</strong>n m ′ = m(χ E/F)isodd.If<br />

ψ ′′<br />

φ (x) = ψ E/F<br />

<br />

x<br />

̟ 1+n<br />

<br />

.<br />

F<br />

νφ(N φµ/φεµ) A[σ(ϕφ)] [Fµ:F]<br />

k .<br />

<br />

<br />

νφ(−1) q−1<br />

2k ∼p 1 (14.6)<br />

β ′ ̟m′ −1<br />

E<br />

̟ m+n<br />

F<br />

<br />

x


Chapter14 192<br />

and ϕ ′′ φ<br />

bears<strong>the</strong>usualrelationto ψ′′<br />

φ <strong>the</strong>n<br />

Now νφ(β ′ ) = νφ(β ′ ) q and<br />

whichinturniscongruentto<br />

modulo PK.Let<br />

and,asbefore,<br />

<strong>the</strong>n<br />

Wesawthat<br />

sothat<br />

Thuswehavetoshowthat<br />

∆3(χ E/F,ψ E/F, ̟ m+n<br />

F ) ∼p A[−σ(ϕ ′′ φ )].<br />

β <br />

µ∈T<br />

(β ′ ) q ≡ N E/Fβ ′<br />

<br />

σ∈Mµ<br />

ε1̟ m+n<br />

F<br />

ω1 = S E/F<br />

(β + α(µ ′ ) σ ) ≡ β q<br />

= ̟ q(m+n)<br />

E<br />

<br />

̟ 1+n<br />

F<br />

̟ 1+n′<br />

E<br />

A[−σ(ϕ ′′ φ )] ∼p νφ(ω1) νφ(ε1) νφ(β) A[−σ(ϕφ)].<br />

<br />

̟ q<br />

E ≡ ̟F (mod ∗ PE)<br />

ε1 ≡ 1 (modPE).<br />

νφ(ω1) ∼p (−1) a+1 νφ(k) νφ(−1) q−1<br />

2k −1<br />

2 νφ<br />

<br />

µ N φµ/φεµ<br />

<br />

. (14.7)<br />

Thefouridentities(14.4),(14.5),(14.6),and(14.7)lookra<strong>the</strong>rinnocuous. Howeverto<br />

prove<strong>the</strong>misnotanentirelytrivialmatter.Wefirstconsider<strong>the</strong>casethat G/G1isabelian.If<br />

σ0 ∈ G/G1is<strong>of</strong>order2,<strong>the</strong>argumentusedbeforeshowsthat σ0cσ −1<br />

0 = c−1 forall cin C.<br />

Since<strong>the</strong>representation<strong>of</strong> G/G1on Cisfaithful G/G1hasonlyoneelement<strong>of</strong>order2andis<br />

<strong>the</strong>reforecyclic.Inthiscase Fµ = Lforall µand a = q−1<br />

[G:G1] .Wemaychoose ̟Fµ = ̟L.If<br />

<strong>the</strong>n γµ = γ t and<br />

N L/F̟L = γ̟ [G:G0]<br />

F<br />

<br />

µ γµ = γ at .


Chapter14 193<br />

If [G0 : G1] = 1wemaychoose ̟L = ̟Fsothat γ = 1. Theargumentusedbefore<br />

showsthat <br />

<br />

β(µ ′ ) σ<br />

<br />

= (−1) a νφ(−1) q−1<br />

2 .<br />

νφ<br />

µ∈T<br />

Theidentity(14.3)showsthat<br />

σ∈G/G1<br />

νφ(ω1) = (−1) a νφ(−1) q−1<br />

2k .<br />

Theidentity(14.5)whichis<strong>the</strong>onlyone<strong>of</strong>concernherebecomes<br />

whichisclearbecause k = [G0 : G1] = 1.<br />

νφ(−1) q−1<br />

2 = νφ(−1) q−1<br />

2k<br />

Nowtake [G : G0] = 1.Wemaychoose ̟E = N K/E̟Ksothat ̟F = N L/F̟Land γ<br />

isagain1.Itisperhapsworthpointingout<strong>the</strong>sespecialchoicesarenotinconsistentwithany<br />

choicesyetmadeinthisparagraph.Thisisnecessarybecause<strong>the</strong>argumentsappearingin<strong>the</strong><br />

<strong>functions</strong> ∆2mustbe<strong>the</strong>sameasthoseappearingin<strong>the</strong><strong>functions</strong> ∆3.Wepreviouslydefined<br />

andshowedthat<br />

Observethat<br />

because<br />

̟ k L<br />

̟F<br />

= <br />

σ∈G/G1<br />

δ = ̟1+n<br />

F<br />

̟ 1+n′<br />

E<br />

· ̟t L<br />

̟ t K<br />

NK/Lδ = ̟t(q−1)<br />

L<br />

̟ t(q−1)<br />

k<br />

F<br />

.<br />

̟ 1−σ<br />

L ≡ θ0(σ) −1 ≡ −1 (modPL)<br />

{θ0(σ) | σ ∈ G/G1}<br />

isjust<strong>the</strong>set<strong>of</strong> kthroots<strong>of</strong>unityin φand kisapower<strong>of</strong>2.Itisnot1because<br />

Since<br />

wehave<br />

[G0 : G1] = [G : G1] > 1.<br />

δ q ≡ N K/Lδ (modPK)<br />

νφ(δ) = νφ(−1) q−1<br />

k .


Chapter14 194<br />

Ifasbefore<br />

ψ L/F<br />

β1(ν)x<br />

̟ 1+n<br />

F ̟t L<br />

<br />

= ν(1 + x)<br />

for xin Ps Land νin S(K/L)<strong>the</strong>n,aswesawwhenproving<strong>the</strong>identity(14.3),<br />

Thus<br />

ω q<br />

1 ≡ δqα q<br />

<br />

<br />

ν=1 β1(ν)<br />

<br />

νφ(ω1) = νφ(−1) q−1<br />

k<br />

<br />

(mod PL).<br />

ν=1 νφ(β1(ν)).<br />

Wecanchoose q−1<br />

p−1elements νiin S(K/L)sothateverynon­trivialelement<strong>of</strong> S(K/L)is<strong>of</strong><br />

<strong>the</strong>form ν j<br />

i , 0 < j < p.Then<br />

because<br />

When miseven<br />

<br />

ν=1 νφ(β1(ν)) = νφ<br />

νφ(εµ) = νφ<br />

q−1<br />

p−1<br />

i=1<br />

j=1 jβ(νi)<br />

<br />

p−1<br />

νφ(β(νi)) p−1 = 1.<br />

k ̟L = νφ(−1).<br />

̟F<br />

= νφ(−1) q−1<br />

p−1<br />

Since a = q−1<br />

k <strong>the</strong>identities(14.4),(14.5),(14.6)and(14.7)become<br />

νφ(k) νφ(−1) q−1 1<br />

2k + 2 = 1 (14.4 ′ )<br />

νφ(−1) q−1<br />

p−1 = νφ(−1) q−1<br />

2k (14.5 ′ )<br />

νφ(−1) q−1<br />

2k = 1 (14.6 ′ )<br />

νφ(−1) q−1<br />

k νφ(−1) q−1<br />

p−1 = νφ(k) νφ(−1) q−1 1<br />

2k + 2 νφ(−1) q−1<br />

k . (14.7 ′ )<br />

If p ≡ 1 (mod4)<strong>the</strong>identities(14.5 ′ )and(14.6 ′ )areclearlyvalid. Moreoverfor(14.5 ′ )and<br />

(14.6 ′ )<strong>the</strong>number q−1<br />

k iseven. Since kisapositivepower<strong>of</strong>2, qisanevenpower<strong>of</strong> pif<br />

p ≡ 3 (mod4).If q = p2f<strong>the</strong>n q − 1<br />

p − 1 = 1 + p + . . . + p2f−1 ≡ 0 (mod4)


Chapter14 195<br />

and<strong>the</strong>leftside<strong>of</strong>(14.5 ′ )is1. If q−1<br />

2k iseven(14.5′ )and(14.6 ′ )arenowclear. Ifitisodd,4<br />

divides kbecause8divides q − 1.But {θ0(σ) | σ ∈ G0/G1}is<strong>the</strong>set<strong>of</strong> kthroots<strong>of</strong>unityin<br />

OL/PL = φso­1isasquarein φ, νφ(−1) = 1,and<strong>the</strong>relationsarevalidinthiscasetoo.The<br />

relations(14.4 ′ )and(14.7 ′ )areobviousif<strong>the</strong>degree<strong>of</strong> φover<strong>the</strong>primefield φ0iseven.Since<br />

φ × contains<strong>the</strong> kthroots<strong>of</strong>unityand kisapower<strong>of</strong>2<strong>the</strong>degreecanbeoddonlyif kdivides<br />

p − 1.Since<br />

q − 1<br />

k<br />

q − 1 p − 1<br />

= ·<br />

p − 1 k<br />

and q−1<br />

k isnowodd p−1<br />

k mustalsobeoddandbyquadraticreciprocity<br />

because<br />

νφ(k) = νφ0 (k) = νφ0 (−1) νφ0<br />

<br />

p ≡ 1 mod<br />

<br />

p − 1<br />

k<br />

<br />

p − 1<br />

.<br />

k<br />

p−1<br />

= νφ0 (−1) νφ0 (−1) 2k −1<br />

2<br />

If p ≡ 1 (mod4)<strong>the</strong>tworelationsarenowclear.If p ≡ 3 (mod 4)and q = p f<br />

q − 1<br />

p − 1<br />

= 1 + p + . . . + pf−1<br />

mustbeodd.Itis<strong>the</strong>reforecongruentto1modulo4.(14.4 ′ )becomes<br />

and(14.7 ′ )becomes<br />

p−1<br />

νφ0 (−1) νφ0 (−1) k = 1<br />

νφ0 (−1) = νφ0 (−1).<br />

Thereisnoquestionthatboth<strong>the</strong>serelationsarevalid.<br />

Wehavestilltotreat<strong>the</strong>casethat G/G1isabelianwhilenei<strong>the</strong>r [G : G0]nor [G0 : G1]is<br />

1.Then<br />

NFµ/Fβ(µ ′ <br />

<br />

) ≡ β(µ ′ k ) (modPFµ )<br />

σ∈G/G0<br />

isasquarein φand<strong>the</strong>identity(14.3)impliesthat<br />

νφ(ω1) = νφ(γ a )<br />

CF/N L/FCLiscyclic<strong>of</strong>order [G : G1]. Ithasageneratorwhichcontainsanelement<strong>of</strong><strong>the</strong><br />

form γ1̟F.Moreover<strong>the</strong>coset<strong>of</strong><br />

(γ1̟F) [G:G0] NL/F̟ −1<br />

L<br />

= γ[G:G0]<br />

1 γ −1


Chapter14 196<br />

isagenerator<strong>of</strong>UF/UF ∩N L/FCL.Theorder<strong>of</strong>thisgroupisapower<strong>of</strong>2andpisoddsoevery<br />

element<strong>of</strong> UF ∩ N L/FCLisasquare.Consequently γcannotbeasquareand νφ(γ) = −1.If<br />

misevenand F ′ is<strong>the</strong>fixedfield<strong>of</strong> G0<strong>the</strong>n<br />

εµ =<br />

whichiscongruentto<br />

̟ k L<br />

̟F<br />

m−1<br />

=<br />

modulo PL.Since [F ′ : F]iseven<br />

and<br />

Because<br />

NL/F ′̟L<br />

−<br />

̟F<br />

N φµ/φ εµ = N F ′ /F εµ =<br />

m−1 <br />

m−1 NL/F ′̟L<br />

̟F<br />

σ∈G0/G1<br />

m−1 NL/F̟L<br />

̟ [G:G0]<br />

F<br />

νφ(N φµ/φ εµ) = νφ(γ) = −1.<br />

a =<br />

q − 1<br />

[G : G1]<br />

̟ 1−σ<br />

m−1 L<br />

= γ m−1<br />

isintegral, q−1<br />

k iseven,andweneedonlyworryabout<strong>the</strong>identities(14.5)and(14.6). They<br />

bothreduceto<br />

νφ(−1) q−1<br />

2k = 1.<br />

Toprovethisweshowthat q−1<br />

2k isevenif νφ(−1) = −1.Since<br />

k = [UF : UF ∩ N L/FCL]<br />

andthisindexmustdivide<strong>the</strong>order<strong>of</strong> φ ∗ <strong>the</strong>number νφ(−1)is­1onlyif k = 2.Ofcourse<br />

pwillbecongruentto3modulo4. Since4divides q − 1, qisanevenpower<strong>of</strong> pand<br />

q ≡ 1 (mod8).Thus<br />

iseven.<br />

q − 1<br />

2k<br />

= q − 1<br />

4<br />

Nowsupposethat G/G1isnotabelian.Let σ −→ x(σ)beagivenisomorphism<strong>of</strong> G0/G1<br />

with Z/kZandlet x −→ σ(x)beitsinverse.Let τ −→ λ(τ)bethathomomorphism<strong>of</strong> G/G0<br />

into<strong>the</strong>units<strong>of</strong> Z/kZwhichsatisfies<br />

x(τστ −1 ) = λ(τ) x(σ).


Chapter14 197<br />

Thereispreciselyoneelement<strong>of</strong>order2in G0/G1,namely σ <br />

k<br />

2 ,anditliesin<strong>the</strong>center<strong>of</strong><br />

G/G1.Since G/G0iscyclic, G/G1isnon­abelianonlyif k > 2.Chooseafixed σ0in Gwhich<br />

generates G/G0andset<br />

µ0 = λ(σ0)<br />

and<br />

y0 = x(σ [G:G0]<br />

0 ).<br />

Weshallsometimesregard Casavectorspaceover<strong>the</strong>fieldwith pelements.If σbelongsto<br />

G/G1let π(σ)be<strong>the</strong>lineartransformation<br />

c −→ σcσ −1 .<br />

Thedualspacewillbeidentifiedwith S(K/L)and π ∗ willbe<strong>the</strong>representationcontragredient<br />

to π.<br />

Therelation<br />

NFµ/Fβ(µ ′ <br />

<br />

) ≡<br />

toge<strong>the</strong>rwith<strong>the</strong>identity(14.3)impliesthat<br />

Moreoverif misevenand F ′ µ<br />

εµ =<br />

̟ k Fµ<br />

whichiscongruentto<br />

modulo PFµ .Since<br />

whichequals<br />

̟F<br />

m−1<br />

νφ(ω1) = νφ<br />

σ∈G/GµG0<br />

<br />

µ γµ<br />

is<strong>the</strong>fixedfield<strong>of</strong> GµG0<br />

=<br />

NFµ/F ′ µ ̟Fµ<br />

̟F<br />

{N φµ/φ εµ} t = N F ′ µ /F<br />

β(µ ′ ) σ<br />

k <br />

.<br />

m−1 <br />

<br />

− NFµ/F ′ µ ̟Fµ<br />

m−1 ̟F<br />

σ∈G0/G1<br />

<br />

− NFµ/F ′ µ ̟Fµ<br />

(m−1)t<br />

̟F<br />

(−1) t[φµ:φ] γ m−1<br />

µ<br />

̟ 1−σ<br />

m−1 Fµ


Chapter14 198<br />

and tisodd<br />

νφ(N φµ/φ εµ) = νφ(−1) [φµ:φ] νφ(γµ).<br />

Theserelationswillbeusedfrequentlyandwithoutcomment.<br />

Iwanttodiscuss<strong>the</strong>case [G : G0] = 2and µ0 ≡ −1 (mod4)first.Since<br />

wemusthave<br />

or,if k > 4,<br />

Then<br />

or<br />

Since<br />

(−µ0) 2 = µ 2 0 = λ(σ 2 0) ≡ 1 (modk)<br />

−µ0 ≡ 1 (modk)<br />

−µ0 ≡ k<br />

+ 1 (mod k).<br />

2<br />

µ0 ≡ −1 (modk)<br />

µ0 ≡ k<br />

− 1 (mod k).<br />

2<br />

µ0 − 1 ≡ 2 (mod 4)<br />

<strong>the</strong>centralizer<strong>of</strong> σ0in G0/G1consists<strong>of</strong><strong>the</strong>identityand σ <br />

k 2<br />

2 .Thus x(σ0)is0or k<br />

2 .<br />

Suppose µ0 ≡ −1 (modk)and x(σ2 k<br />

0 ) = 0 = σ−1<br />

and (σ0σ) 2 = σ2 0 . Thus σ <br />

k<br />

is<strong>the</strong>onlyelement<strong>of</strong>order2in G/G1. If σbelongsto G/G1<br />

2<br />

<strong>the</strong>n σhasanon­trivialfixedpointin S(K/L)ifandonlyif π(σ)has1asaneigenvalue. If<br />

σ = 1<strong>the</strong>reisaninteger nsuchthat σnhasorder2.Then π(σn )alsohas1asaneigenvalue.<br />

Thusifanynon­trivialelement<strong>of</strong> G/G1hasanon­trivialfixedpoint<strong>the</strong>reisanelement τ<strong>of</strong><br />

order2suchthat π(τ)has1asaneigenvalue.Theusualargumentshowsthat<br />

<br />

π σ<br />

2 . If σbelongsto G0/G1<strong>the</strong>n σ0σσ −1<br />

<br />

k<br />

= −I<br />

2<br />

sothat,in<strong>the</strong>caseunderconsideration,only<strong>the</strong>identityhasfixedpoints.Then<br />

a =<br />

q − 1<br />

[G : G1] .


Chapter14 199<br />

Inparticular q−1<br />

k iseven.Wechoose ̟Fµ = ̟Landlet<br />

γ̟ [G:G0]<br />

F<br />

= N L/F̟L.<br />

<strong>On</strong>lyidentities(14.5)and(14.6)aretobeconsidered.(14.5)reducesto<br />

and(14.6)reducesto<br />

νφ(γ) at = (−1) a νφ(−1) q−1<br />

2k<br />

(−1) a νφ(−1) a[G:G0] νφ(γ) at νφ(−1) q−1<br />

2k = 1.<br />

Since [G : G0]iseven<strong>the</strong>yareequivalent.Suppose φhas relements.If x ∈ λ = OL/PL<strong>the</strong>n<br />

xσ0 r = x f<br />

forsome f.If σbelongsto G0/G1<strong>the</strong>n<br />

Thus<br />

and<br />

f<br />

µ0r<br />

θ0(σ)<br />

= θ0(σ0σσ −1<br />

0 )rf<br />

µ rf<br />

0<br />

≡<br />

≡ 1 (modk)<br />

r ≡ −1 (mod4)<br />

sothat νφ(−1) = −1.Since,in<strong>the</strong>presentcase,<br />

<strong>the</strong>identitiesbecome<br />

Themap<br />

a =<br />

q − 1<br />

2k<br />

νφ(γ) at = 1.<br />

τ L/F : W L/F −→ CF<br />

σ0σ<br />

̟L ̟ σ0<br />

f −1<br />

r σo ≡ θ0(σ).<br />

L<br />

determinesamap<strong>of</strong> G/G1onto CF/N L/FCL. Theimage<strong>of</strong> σ0containsanelement<strong>of</strong><strong>the</strong><br />

form γ1̟Fwhere γ1isaunit.Theimage<strong>of</strong> σ 2 0 is1because<strong>the</strong>commutatorsubgroupcontains<br />

{σ((µ0 − 1)x)} = {σ(x) | x ≡ 0 (mod2)}<br />

andinparticularcontains σ 2 0 .Since [G : G0] = 2<strong>the</strong>number γγ −2<br />

1 liesin UF ∩ NL/FCL.The<br />

index<strong>of</strong><strong>the</strong>commutatorsubgroup<strong>of</strong> G/G1in G/G1is4so<br />

[UF : UF ∩ N L/FCL] = 2.


Chapter14 200<br />

Consequently γγ −2<br />

1 and γarebothsquaresand νφ(γ) = 1.<br />

Nowsuppose µ0 ≡ −1 (modk)and x(σ 2 0 ) = 0. Everyelement<strong>of</strong><strong>the</strong>form σ0σ, σ ∈<br />

G0/G1,hasorder2.If π(σ0σ) = −I<strong>the</strong>n σ0σliesin<strong>the</strong>center<strong>of</strong> G/G1whichisimpossible.<br />

Thus π(σ0σ)has1asaneigenvalue.If τ ∈ G0/G1<strong>the</strong>n<br />

τ −1 σ0στ = σ0στ 2<br />

so<strong>the</strong>rearetwoconjugacyclassesin<strong>the</strong>set σ0G0/G1.<strong>On</strong>ehas σ0asrepresentativeand<strong>the</strong><br />

o<strong>the</strong>rhas σ1 = σ0σ(1).<br />

Let V beanon­trivialsubspace<strong>of</strong> S(K/L)invariantandirreducibleunder<strong>the</strong>action<strong>of</strong><br />

G0/G1. Supposefirstthat V isalsoinvariantunder π ∗ (σ0)sothat V = S(K/L). Choose<br />

v0 = 0sothat π ∗ (σ0)v0 = v0.Let λ ′ be<strong>the</strong>fieldobtainedbyadjoining<strong>the</strong> kthroots<strong>of</strong>unity<br />

to<strong>the</strong>primefield.Certainly λ ′ ⊆ λand,since<br />

θ0(σ) σ0 = θ0(σ −1<br />

0 σσ0),<br />

λ ′ isnotcontainedin φ.Let φ ′ = φ∩λ ′ .Wemayregard {1, σ0}as G(λ ′ /φ ′ ).Themap ϕwhich<br />

sends σin G0/G1to (θ −1<br />

0 (σ), 1)and σσ0to (θ −1<br />

0 (σ), σ0)isanisomorphism<strong>of</strong> G/G1with<strong>the</strong><br />

semi­directproduct<strong>of</strong><strong>the</strong> kthroots<strong>of</strong>unityin λ ′ and G(λ ′ /φ ′ ).Thereisauniquemap,again<br />

denotedby ϕ,<strong>of</strong> Vonto λ ′ suchthat ϕ(v0) = 1while<br />

ϕ(π ∗ (τ)v) = ϕ(τ)ϕ(v)<br />

for τin G/G1. Ofcourse<strong>the</strong> kthroots<strong>of</strong>unityacton λ ′ byleftmultiplication. TheGalois<br />

groupactsby σ0α = ασ−1 0 . Putting<strong>the</strong>actionstoge<strong>the</strong>rwegetanaction<strong>of</strong><strong>the</strong>semi­direct<br />

product.Tostudy<strong>the</strong>action<strong>of</strong> G/G1on V westudy<strong>the</strong>equivalentaction<strong>of</strong><strong>the</strong>semi­direct<br />

productin λ ′ .<br />

Itisbesttoconsideramoregeneralsituation.Suppose φ ′ isafinitefieldwith pfelements, λ ′ isanextension<strong>of</strong> φ ′ with pℓelementsand Γis<strong>the</strong>semi­directproduct<strong>of</strong><strong>the</strong>group<strong>of</strong> kth<br />

roots<strong>of</strong>unity,where kdivides pℓ − 1,and G(λ ′ /φ ′ ). Γactson λ ′ asbefore. Let ℓ = nf. If<br />

0 ≤ j1 < n, j = (j1, n),and ρis<strong>the</strong>automorphism x −→ xpf<strong>of</strong> λ ′ /φ ′ <strong>the</strong>n<strong>the</strong>number<strong>of</strong><br />

elements<strong>of</strong> λ ′ fixedbyamember<strong>of</strong> Γ<strong>of</strong><strong>the</strong>form (α, ρji )where αisakthroot<strong>of</strong>unityis<strong>the</strong><br />

sameas<strong>the</strong>number<strong>of</strong>elementsfixedbysomeo<strong>the</strong>rmember<strong>of</strong><strong>the</strong>form (β, ρ−j ).Indeedif<br />

b j1<br />

j<br />

<br />

≡ −1 mod n<br />

<br />

j


Chapter14 201<br />

and bisprimeto<strong>the</strong>order<strong>of</strong> (α, ρ j1 )wecantake<br />

(β, ρ −j ) = (α, ρ j1 ) b .<br />

Let θbeagenerator<strong>of</strong><strong>the</strong>multiplicativegroup<strong>of</strong> λ ′ .Theequation<br />

β θ mρj<br />

= θ m<br />

canbesolvedfor βifandonlyif θ m(pjf −1 )hasorderdividing k,thatis,ifandonlyif p ℓ − 1<br />

divides km(p jf − 1)or,if<br />

u = pℓ − 1<br />

k<br />

ifandonlyif udivides m(pjf − 1).Let u(j)be<strong>the</strong>greatestcommondivisor<strong>of</strong> uand pjf − 1.<br />

udivides m(pjf −1)ifandonlyif u<br />

u(j) divides m.Thenumber<strong>of</strong>such mwith 0 ≤ m < pℓ −1<br />

is<br />

u(j)<br />

u (pℓ − 1) = u(j)k.<br />

<strong>On</strong>ce mand jarechosen αisdetermined.Thenumber<strong>of</strong>non­zero xin λ ′ whicharefixedby<br />

some (β, ρ −j )where jdivides nbutbyno (β, ρ −i )where iproperlydivides jis<br />

<br />

i|j µ<br />

<br />

j<br />

i<br />

u(i)k<br />

if µ(·)is<strong>the</strong>Möbiusfunction.Thenumber<strong>of</strong>orbitsformedbysuch xis<br />

1<br />

jk<br />

<br />

i|j µ<br />

<br />

j<br />

i<br />

u(i)k<br />

sothat<strong>the</strong>totalnumber<strong>of</strong>orbits<strong>of</strong> Γin<strong>the</strong>multiplicativegroup<strong>of</strong> λ ′ is<br />

whichequals<br />

Theproductisoverprimes.<br />

Lemma 14.7<br />

a = <br />

<br />

i|n<br />

i|n<br />

<br />

π<br />

<br />

<br />

n<br />

<br />

n<br />

i<br />

j<br />

i<br />

µ(j)<br />

ij u(i)<br />

<br />

1 − 1<br />

<br />

u(i)<br />

.<br />

π i


Chapter14 202<br />

because<br />

If pℓ −1<br />

k isodd<strong>the</strong>n<br />

Theidentity<strong>of</strong><strong>the</strong>lemmaisequivalentto<br />

(−1) a+1 νφ ′(k) νφ ′(−1) pℓ−1 1<br />

2k + 2 = 1.<br />

(−1) a+1 u−1<br />

νφ ′(u) νφ ′(−1) 2 = 1<br />

νφ ′(k) = νφ ′(−1) νφ ′(u).<br />

By<strong>the</strong>law<strong>of</strong>quadraticreciprocity<strong>the</strong>leftside<strong>of</strong><strong>the</strong>identityisequalto<br />

(−1) a+1 (p f |u)<br />

if (p f |u)isJacobi’ssymbol.If u = 1<strong>the</strong>reisonlyoneorbitso<br />

(−1) a+1 = 1.<br />

Ofcourse (p f |1) = 1so<strong>the</strong>identityisclearinthiscase.<br />

Weproveitingeneralbyinductionon<strong>the</strong>number<strong>of</strong>primefactors<strong>of</strong> u. Let π0bea<br />

primefactor<strong>of</strong> uandlet u = π x 0 vwith vprimeto π0.Let v(j)be<strong>the</strong>analogue<strong>of</strong> u(j).Then<br />

u(j) = π x(j)<br />

0 v(j).Leb bbe<strong>the</strong>analogue<strong>of</strong> a.Then<br />

ν = a − b = <br />

i|n<br />

<br />

π<br />

<br />

n<br />

i<br />

<br />

1 − 1<br />

<br />

v(i)<br />

(π<br />

π i<br />

x(i)<br />

0 − 1).<br />

Observethat π0andall v(i)areodd.Toprove<strong>the</strong>lemmabyinductionwemustshowthat<br />

Let<br />

(−1) ν (p f | π x 0 ) = 1. (14.8)<br />

n = 2 y n1<br />

with n1odd.Therearetwopossibilitiestobeconsidered.<br />

(i)<br />

π0 ≡ 1 (mod 2 y+1 ).


Chapter14 203<br />

(ii)<br />

Since<strong>the</strong>order<strong>of</strong> p f modulo π0divides n<strong>the</strong>quotient<strong>of</strong> π0 − 1bythisorderisevenand<br />

p f isaquadraticresidue<strong>of</strong> π0.Alsoif idivides n<br />

π x(i)<br />

0<br />

− 1<br />

i<br />

isdivisible,in<strong>the</strong>2­adicfield,by4if2divides n<br />

i<br />

evenand(14.8)isvalid.<br />

π0 = 1 + 2 c w<br />

with c ≤ yand wodd.Let i = n1divide n1andconsider<br />

y<br />

j=0<br />

<br />

π<br />

<br />

n<br />

2 j i<br />

<br />

1 − 1<br />

j v(2 i)<br />

π 2ji andisalwaysdivisibleby2.Thus νis<br />

(π x(2j i)<br />

0 − 1). (14.9)<br />

If x(2 y i) = 0<strong>the</strong>sumiszero. If x(2 y i) = 0let zbe<strong>the</strong>smallestintegerforwhich<br />

x(2 z i) = 0.If j < z<strong>the</strong>n x(2 j i) = 0.If j ≥ z<br />

p 2j if − 1 =<br />

<br />

p 2z <br />

if<br />

− 1<br />

2 j−z −1<br />

d=0<br />

Theresidue<strong>of</strong><strong>the</strong>summodulo π0is 2 j−z .Thus<br />

if j ≥ zand(14.9)isequalto<br />

Wewrite<br />

as<br />

1<br />

i<br />

<br />

π<br />

<br />

n1 i<br />

x(2 j i) = x(2 z i)<br />

<br />

1 − 1<br />

y v(2 i) y−1<br />

+<br />

π 2y j=z<br />

v(2yi) y−1<br />

+<br />

2y j=z<br />

v(2zi) y<br />

+<br />

2z j=z+1<br />

v(2 j i)<br />

2 j+1<br />

p 2z <br />

cif<br />

.<br />

v(2ji) − v(2j−1i) 2j .<br />

v(2ji) 2j+1 π x(2y <br />

i)<br />

0 − 1 .<br />

If kisreplacedby pℓ −1<br />

v <strong>the</strong>number<strong>of</strong>elements<strong>of</strong> λ ∗ fixedbysome (α, ρ −2j i )butbyno<br />

(α, ρ −2j−1 i )is<br />

{v(2 j i) − v(2 j−1 i)} pℓ − 1<br />

.<br />

v


Chapter14 204<br />

Thecollection<strong>of</strong>suchelementsisinvariantunder<strong>the</strong>groupobtainedbyreplacing kby pℓ −1<br />

v<br />

and φ ′ by<strong>the</strong>fieldwith p if elements.Theisotropygroup<strong>of</strong>eachsuchpointhasagenerator<br />

<strong>of</strong><strong>the</strong>form (α, ρ −2j i )and,<strong>the</strong>refore,hasorder n<br />

sothat 2 j divides<br />

2jiandindex 2j (p ℓ −1)<br />

v<br />

{v(2 j i) − v(2 j−1 i)} pℓ − 1<br />

v<br />

v(2 j i) − v(2 j−1 i).<br />

.Thus 2j (p ℓ −1)<br />

v<br />

divides<br />

Since n1<br />

i isdivisiblebyatleastoneprime,<strong>the</strong>expression(14.9)iscongruent,in<strong>the</strong>2­adicfield,<br />

to<br />

1<br />

i<br />

<br />

π<br />

<br />

n1 i<br />

<br />

1 − 1<br />

z v(2 i)<br />

π 2z <br />

π x(2y <br />

i)<br />

− 1<br />

modulo4.Since z ≤ cand<strong>the</strong>productisnotemptythisiscongruent,in<strong>the</strong>2­adicfieldagain,<br />

to0modulo2.Thus νisevenoroddaccordingas<br />

y<br />

j=0<br />

<br />

<br />

π2y−j<br />

<br />

1 − 1<br />

j v(2 n1)<br />

π 2j <br />

π<br />

n1<br />

x(2j <br />

n1)<br />

0 − 1<br />

isorisnotdivisibleby2in<strong>the</strong>2­adicfield.Consequently<br />

ν ≡ y<br />

j=0<br />

<br />

<br />

π<br />

2y−j <br />

1 − 1<br />

j v(2 n1)<br />

π 2j (π x(2j n1)<br />

0<br />

− 1) (mod2).<br />

Ofcourse x(2 y n1) = x = 0. Let zagainbe<strong>the</strong>smallestintegerfor x(2 z n1) = 0. Then<br />

z ≤ cand<br />

x(2 j n1) = x(2 z n1)<br />

if j ≥ z.Thesumaboveisequalto<br />

z v(2 n1)<br />

+ y<br />

2 z<br />

j=z+1<br />

Asbeforethisiscongruentmodulo2to<br />

v(2 z n1)<br />

2 z<br />

v(2jn1) − v(2j−1n1) 2j <br />

(π x 0 − 1).<br />

(π x 0<br />

− 1).<br />

If z < cthisisevenand<strong>the</strong>order<strong>of</strong> pmodulo π0divides π0−1<br />

2 sothat (p|π0) = 1. If z = c<br />

<strong>the</strong>n<br />

πx 0<br />

2z − 1<br />

1<br />

=<br />

2c x<br />

i=1<br />

<br />

x<br />

<br />

i<br />

(2 c w) i ≡ x (mod2)


Chapter14 205<br />

sothat ν ≡ x (mod 2).However<strong>the</strong>order<strong>of</strong> p f modulo π0isdivisibleby 2 z sothatitdoes<br />

notdivide π0−1<br />

2 and<br />

Therelation(14.8)isnoweasilyverified.<br />

<br />

f x x<br />

p | π0 = (−1) .<br />

Wereturnto<strong>the</strong>originalproblem. Since λ ′ isaquadraticextension<strong>of</strong> φ ′ and λ ′ isnot<br />

containedin φ<strong>the</strong>degree<strong>of</strong> φover φ ′ isodd.Since Vand λ ′ have<strong>the</strong>samenumber<strong>of</strong>elements<br />

q = p ℓ .If q−1<br />

k isodd<strong>the</strong>relation(14.4)followsimmediatelyfrom<strong>the</strong>equality<br />

and<strong>the</strong>precedinglemma.<br />

(−1) a+1 νφ(k) νφ(−1) q−1 1<br />

2k + 2 = (−1) a+1 νφ<br />

q−1<br />

′(k) νφ ′(−1) 2k<br />

Thenumber<strong>of</strong> µin Twithisotropygroup<strong>of</strong>order2is u(1)and<strong>the</strong>number<strong>of</strong> µwith<br />

trivialisotropygroupis u(2)−u(1)<br />

.Forpoints<strong>of</strong><strong>the</strong>secondtype [φµ : φ] = 2andforpoints<strong>of</strong><br />

2<br />

<strong>the</strong>firsttype [φµ : φ] = 1.Since,asweverifiedearlier,<br />

and<br />

<strong>the</strong>identity(14.7)reducesto<br />

νφ(ω1) = νφ<br />

<br />

µ γµ<br />

νφ(N φµ/φ εµ) = νφ(−1) [φµ:φ] νφ(γµ)<br />

u(1) ≡ 1 (mod 2)<br />

whichistruebecause u(1)divides u = pℓ −1<br />

k which,when(14.7)isunderconsideration,isodd<br />

byassumption.<br />

Theidentity(14.5)maybeformulatedas<br />

and(14.6)as<br />

νφ<br />

<br />

νφ<br />

µ γµ<br />

<br />

µ γµ<br />

For<strong>the</strong>setwoidentities q−1<br />

k iseven.Again<br />

<br />

<br />

<br />

= (−1) a νφ(−1) q−1<br />

2k<br />

νφ(−1) P<br />

µ [φµ:φ] = (−1) a νφ(−1) q−1<br />

2k .<br />

[φµ : φ] ≡ u(1) (mod2).<br />

+ 1<br />

2


Chapter14 206<br />

But<br />

and<br />

u(2) = u = pℓ − 1<br />

k<br />

2a = u(1) + u(2)<br />

so u(1)iseven.Itwillbeenoughtoverify(14.5).<br />

= q − 1<br />

k<br />

Wemaychoose Tsothatif µisin T<strong>the</strong>nitsisotropygroupistrivialorcontainsone<strong>of</strong> σ0<br />

or σ1.If σ0liesin<strong>the</strong>isotropygroup<strong>of</strong> µand νin<strong>the</strong>orbit<strong>of</strong> µcorrespondsto θ m in λ ′ <strong>the</strong>n<br />

α 2 θ mρ = θ m<br />

forsome kthroot<strong>of</strong>unity α.Thisispossibleifandonlyif p ℓ − 1divides km<br />

2 (pf − 1)or 2u<br />

divides m(p f − 1).Thisis<strong>the</strong>sameasrequiringthat 2u<br />

u(1) divide m(pf −1)<br />

u(1) . Thenumber uis<br />

even.Wehavealreadyobservedthatif ris<strong>the</strong>number<strong>of</strong>elementsin φsothat x σ0 = x r for x<br />

in φ<strong>the</strong>n<br />

µ0r ≡ 1 (modk)<br />

andinparticular<br />

µ0r ≡ 1 (mod4).<br />

Since [φ : φ ′ ]isoddand µ0 ≡ −1 (mod4)<strong>the</strong>highestpower<strong>of</strong>2dividing p f − 1is2.Thus<br />

2u<br />

u(1) and pf −1<br />

u(1)<br />

arerelativelyprimesothat 2u<br />

u(1) divides m(pf −1)<br />

u(1) ifandonlyif 2u<br />

u(1)<br />

divides m.<br />

Thereare u(1)k<br />

2 such mwith 0 ≤ m < pℓ − 1. Thecorrespondingcharacters νfallinto u(1)<br />

2<br />

orbits. Thus<strong>the</strong>reare u(1)<br />

2 elementsin Twhoseisotropygroupcontains σ0and u(1)<br />

2 whose<br />

isotropygroupcontains σ1.Let L0be<strong>the</strong>fixedfield<strong>of</strong> σ0and L1<strong>the</strong>fixedfield<strong>of</strong> σ1.Let ̟L0<br />

and ̟L1generate PL0and PL1respectivelyandlet Wehavetoshowthat<br />

νφ<br />

<br />

γ u(1)<br />

2<br />

N L0/F̟L0 = γ0 ̟F<br />

NL1/F̟L1 = γ1̟F<br />

NL/F̟L = γ̟ 2 F .<br />

0 γ u(1)<br />

2<br />

1 γ u(2)−u(1)<br />

<br />

2<br />

= (−1) a νφ(−1) q−1<br />

2k .<br />

Firstweprovealemma,specialcases<strong>of</strong>whichwehavealreadyseen.


Chapter14 207<br />

Lemma 14.8<br />

SupposeL/Fisnormalbutnon­abelianand[L : F]isapower<strong>of</strong>2.SupposeH = G(L/F)<br />

and<strong>the</strong>firstramificationgroup H1is {1}but [H : H0] > 1and [H0 : H1] > 1.Let ̟Lgenerate<br />

<strong>the</strong>primeideal<strong>of</strong> OL,let ̟Fgenerate<strong>the</strong>primeideal<strong>of</strong> OF,andlet<br />

Then γisasquarein UF.<br />

NL/F ̟L = γ̟ [H:H0]<br />

F .<br />

Thehypo<strong>the</strong>sesimplythat<strong>the</strong>residuefieldhasoddcharacteristic.Let Abe<strong>the</strong>fixedfield<br />

<strong>of</strong> H0and L ′ be<strong>the</strong>fixedfield<strong>of</strong><strong>the</strong>commutatorsubgroup<strong>of</strong> H.Then A ⊆ L ′ andif<br />

<strong>the</strong>n<br />

̟L ′ = N L/L ′̟L<br />

N L ′ /F̟L<br />

′ = γ̟[A:F]<br />

F<br />

Ofcourse [A : F] = [H : H0]. Since Hisnilpotentbutnotabelian L ′ cannotbeacyclic<br />

extension.If γisnotasquarein UF<strong>the</strong>n γ −1 generates UF/UF ∩ N L ′ /FCL.Since<br />

̟ [A:F]<br />

F<br />

≡ γ −1<br />

(modN L ′ /FCL ′).<br />

̟Fwould<strong>the</strong>ngenerate CF/N L ′ /FCL ′whichisimpossible.<br />

Returningto<strong>the</strong>problemathand,weobservethat<strong>the</strong>quotient<strong>of</strong> G/G1by<strong>the</strong>squares<br />

in G0/G1isagroup<strong>of</strong>order4inwhicheverysquareis1.Thefixedfield F ′ <strong>of</strong>thisgroupis<br />

<strong>the</strong>composite<strong>of</strong>allquadraticextensions<strong>of</strong> F. F0 = F ′ ∩ L0and F1 = F ′ ∩ L1are<strong>the</strong>two<br />

differentramifiedquadraticextensions<strong>of</strong> F.Define<br />

and<br />

Then<br />

and<br />

̟F0 = N L0/F0 ̟L0<br />

̟F1 = NL1/F1̟L1 .<br />

N F0/F̟F0<br />

= γ0̟F<br />

NF1/F̟F1 = γ1̟F.<br />

.


Chapter14 208<br />

Weneedtoshowthat<br />

νφ(γ0γ1) = νφ<br />

γ0<br />

γ1<br />

<br />

= −1.<br />

Ifnot, γ0<br />

γ1 isasquareandthusin NF1/FCF1 .Then γ0̟Fbelongsto<br />

N F0/FCF0 ∩ N F1/FCF1 = N F ′ /FCF ′.<br />

Thisisimpossiblebecause F ′ containsanunramifiedextension.<br />

Weobservedbeforethatsince<br />

µ0 = λ(σ0) ≡ −1 (mod 4)<br />

<strong>the</strong>number νφ(−1)is −1.Theidentity(14.5)reducesto<br />

Since<br />

and<br />

thisrelationisclearlyvalid.<br />

(−1) u(1)<br />

2 = (−1) a (−1) q−1<br />

2k .<br />

a = u(1)<br />

2<br />

u(2) =<br />

+ u(2)<br />

2<br />

q − 1<br />

k<br />

Wecontinuetosupposethat µ0 ≡ −1 (mod k)andthat σ 2 0 = 1butnowwesupposethat<br />

Visnotinvariantunder π ∗ (σ0).Since π ∗ (σ0)V ∩Vand π ∗ (σ0)V +Varebothinvariantunder<br />

G/G1<strong>the</strong>firstis0and<strong>the</strong>secondis S(K/L)sothat S(K/L)is<strong>the</strong>directsum V ⊕ π ∗ (σ0)V.<br />

Let V have p ℓ elementssothat q = p 2ℓ .If λ ′ isagain<strong>the</strong>fieldgeneratedover<strong>the</strong>primefield<br />

by<strong>the</strong> kthroots<strong>of</strong>unity λ ′ has p ℓ elements.If φ ′ = λ ′ ∩ φhas p f elements<strong>the</strong>n p ℓ = p 2f so<br />

that p ℓ ≡ 1 (mod8).Also kdivides p ℓ − 1sothat<br />

iseven.<br />

q − 1<br />

k =<br />

ℓ p − 1<br />

(p<br />

k<br />

ℓ + 1)<br />

If σ ∈ G0/G1<strong>the</strong>non­zer<strong>of</strong>ixedpoints<strong>of</strong> σ0σare<strong>the</strong>elements<strong>of</strong><strong>the</strong>form<br />

v ⊕ π ∗ (σ0σ)v


Chapter14 209<br />

with v = 0. Thereare (p ℓ − 1)k<strong>of</strong><strong>the</strong>maltoge<strong>the</strong>rand<strong>the</strong>yfallinto p ℓ − 1orbits. The<br />

remaining<br />

(p 2ℓ − 1) − (p ℓ − 1)k<br />

elementsfallinto<br />

orbits.Thus<br />

1<br />

2k {(p2ℓ − 1) − (p ℓ − 1)k}<br />

a = pℓ − 1<br />

2 + p2ℓ − 1<br />

.<br />

2k<br />

Since,for<strong>the</strong>samereasonsasbefore, νφ(−1) = −1<strong>the</strong>identity(14.5)becomes<br />

while(14.6)becomes<br />

νφ<br />

<br />

νφ<br />

µ γµ<br />

<br />

<br />

µ γµ<br />

<br />

= (−1) pℓ −1<br />

2 (14.10)<br />

νφ(−1) Σ[φµ:φ] = (−1) p ℓ −1<br />

2 .<br />

Since [φµ : φ] ≡ p ℓ − 1 ≡ 0 (mod2)<br />

only(14.5)needbeproved.(14.4)and(14.7)arenottobeconsideredbecause q−1<br />

k iseven.<br />

Weproceedasbefore. Thepointsin Tcanbechosensothat<strong>the</strong>irisotropygroupsare<br />

ei<strong>the</strong>rtrivialorcontain σ0or σ1. pℓ −1<br />

2 willhaveisotropygroupscontaining σ0and pℓ −1<br />

2 will<br />

haveisotropygroupscontaining σ1. Theargumentusedaboveshowsthat<strong>the</strong>leftside<strong>of</strong><br />

(14.10)isequalto<br />

asdesired.<br />

Nowsuppose k ≥ 8and<br />

(−1) pℓ−1 2<br />

µ0 = λ(σ0) ≡ k<br />

− 1 (modk).<br />

2<br />

Weare<strong>of</strong>coursestillsupposingthat [G : G0] = 2.If σbelongsto G0/G1<strong>the</strong>n<br />

and<br />

σσ0σ −1 = σ0σ k<br />

2 −2<br />

(σ0σ) 2 = σ 2 0σ k<br />

2 .


Chapter14 210<br />

Thus<br />

x((σ0σ) 2 ) = x(σ 2 k<br />

0 ) +<br />

2 x(σ).<br />

Since x(σ 2 0)is0or k<br />

2 ,wecanmake<strong>the</strong>sumon<strong>the</strong>right0.Replacing σ0by σ0σifnecessary,<br />

wesupposethat σ 2 0 = 1.Then (σ0σ) 2 = 1ifandonlyif<br />

whichissoifandonlyif σ0σisconjugateto σ.<br />

k<br />

2<br />

x(σ) ≡ 0 (modk)<br />

Take Vin S(K/L)asbefore.If Visinvariantunder π ∗ (σ0)and λ ′ with p ℓ elementsand<br />

φ ′ with p f elementshave<strong>the</strong>samemeaningasbefore<strong>the</strong>n<br />

forsomeinteger wsothat<br />

and<br />

p f = k<br />

− 1 + wk<br />

2<br />

q − 1 = p 2f − 1 = k · k<br />

<br />

k<br />

− k + 2wk − 1 + (wk)<br />

4 2 2<br />

q − 1<br />

k<br />

k<br />

≡ − 1 (mod 2)<br />

4<br />

isodd.Thus<strong>the</strong>identities(14.5)and(14.6)arenottobeconsidered.Theidentities(14.4)and<br />

(14.7)followfromLemma14.7exactlyasabove.<br />

and<br />

Suppose<strong>the</strong>n S(K/L)is<strong>the</strong>directsum V ⊕ π ∗ (σ0)V.If Vhas p ℓ elements<strong>the</strong>n q = p 2ℓ<br />

q − 1<br />

k = pℓ − 1<br />

k<br />

(p ℓ + 1)<br />

isevenbecause kdivides p ℓ − 1.Thenon­zeroelements<strong>of</strong> S(K/L)whicharefixedpoints<strong>of</strong><br />

some σ0σwith σasquarein G0/G1are<strong>the</strong>elements<br />

v ⊕ π ∗ (σ0σ)v<br />

with v = 0.Thereare (p ℓ − 1) k<br />

2 suchelementsand<strong>the</strong>yfallinto pℓ −1<br />

2 orbits.Theremaining<br />

(p 2ℓ − 1) − (p ℓ − 1) k<br />

2


Chapter14 211<br />

non­zeroelementshavetrivialisotropygroupandfallinto<br />

orbits.Thus<br />

1<br />

2k<br />

<br />

2ℓ ℓ k<br />

(p − 1) − (p − 1)<br />

2<br />

a = p2ℓ − 1<br />

2k + pℓ − 1<br />

.<br />

4<br />

Since,asbefore, νφ(−1) = −1<strong>the</strong>identity(14.5)becomes<br />

while(14.6)becomes<br />

Again<br />

νφ<br />

<br />

νφ<br />

<br />

µ γµ<br />

<br />

µ γµ<br />

<br />

[φµ : φ] ≡ pℓ − 1<br />

2<br />

= (−1) pℓ −1<br />

4 (14.11)<br />

(−1) Σ[φµ:φ] = (−1) p ℓ −1<br />

4 .<br />

≡ 0 (mod2)<br />

sothatitisenoughtoprove(14.11).Theidentities(14.4)and(14.7)neednotbeconsidered.<br />

that<br />

If λ ′ and φ ′ aredefinedasbeforeand φ ′ has p f elements<strong>the</strong>n λ ′ has p ℓ = p 2f elementsso<br />

p ℓ ≡ 1 (mod 8)<br />

and pℓ −1<br />

4 iseven.Wemaysupposethateach µin Tei<strong>the</strong>rhastrivialisotropygrouporisfixed<br />

by σ0. Lemma14.8showsthatthose µwithtrivialisotropygroupcontributenothingto<strong>the</strong><br />

leftside<strong>of</strong>(14.11).If L0is<strong>the</strong>fixedfield<strong>of</strong> σ0and<br />

<strong>the</strong>leftside<strong>of</strong> Kis<br />

N L0/F̟L0<br />

νφ(γ0) pℓ−1 2<br />

whichis1.Thetruth<strong>of</strong><strong>the</strong>identityisnowclear.<br />

= γ0̟F<br />

Wereturnto<strong>the</strong>generalcasesothat [G : G0]maybegreaterthan2and µ0maybe<br />

congruentto1modulo4.Ofcourse [G : G0]isstilleven.Let<br />

<br />

λ0 = λ σ 1<br />

2 [G:G0]<br />

0


Chapter14 212<br />

sothat<br />

If [G : G0] > 2<strong>the</strong>n<br />

λ0 = µ 1<br />

2 [G:G0]<br />

0<br />

λ0 ≡ 1 (mod4).<br />

If [G : G0] = 2<strong>the</strong>n λ0 = µ0. Since<strong>the</strong>casethat [G : G0] = 2and µ0 ≡ −1 (mod 4)is<br />

completelysettledwemaysupposethat λ0 ≡ 1 (mod4).Set<br />

τ0 = σ 1<br />

2 [G:G0]<br />

0<br />

Anyelement<strong>of</strong> G/G1whichdoesnotliein G0/G1andwhosesquareis1is<strong>of</strong><strong>the</strong>form<br />

σ(x)τ0.If<br />

= σ(y0)<br />

<strong>the</strong>n<br />

Since G/G1isnotcyclic y0iseven.Since<br />

σ [G:G0]<br />

0<br />

(σ(x)τ0) 2 = σ((λ0 + 1)x)τ 2 0 = σ(y0 + (λ0 + 1)x).<br />

<strong>the</strong>reareexactlytwosolutions<strong>of</strong><strong>the</strong>equation<br />

Let x0beone<strong>of</strong><strong>the</strong>m.Then x0 + k<br />

2<br />

Set<br />

λ0 + 1 ≡ 2 (mod 4)<br />

y0 + (λ0 + 1)x ≡ 0 (modk).<br />

.<br />

.<br />

is<strong>the</strong>o<strong>the</strong>r.Wemaysupposethat kdoesnotdivide x0.<br />

ρ0 = σ(x0)τ0.<br />

Weobservedbeforethatif σ = 1belongsto G/G1and π∗ (σ)hasanon­zer<strong>of</strong>ixedpoint<strong>the</strong>n<br />

somepower<strong>of</strong> σis<strong>of</strong>order2andhasanon­zer<strong>of</strong>ixedpoint. Since σ <br />

k<br />

hasnonon­zero<br />

2<br />

fixedpointthispowermustbe ρ0or σ <br />

k<br />

2 ρ0.Since σ <br />

k<br />

2 liesin<strong>the</strong>center<strong>of</strong> G/G1, σmustlie<br />

in<strong>the</strong>centralizer<strong>of</strong> ρ0.<br />

Thegroup<br />

<br />

k k<br />

1, σ , ρ0, σ<br />

2 2<br />

is<strong>of</strong>order4andeveryelementinitis<strong>of</strong>order2soitcannotbecontainedin<strong>the</strong>center<strong>of</strong><br />

G/G1. Howeveritisanormalsubgroupanditscentralizer H ∗ hasindex2in G/G1. G/G1<br />

ρ0


Chapter14 213<br />

maybeidentifiedwith H. Everyelement σ<strong>of</strong> Hsuchthat π ∗ (σ)hasanon­zer<strong>of</strong>ixedpoint<br />

liesin H ∗ . S(K/L)is<strong>the</strong>directsum<strong>of</strong> Vand Wwhere<br />

V = {v | π ∗ (ρ0)v = v}<br />

W = {w | π ∗ (ρ0)w = −w}.<br />

If σin Hdoesnotbelongto H ∗ <strong>the</strong>n π ∗ (σ)V = Wand π ∗ (σ)W = V.Thenumber<strong>of</strong>non­zero<br />

orbits<strong>of</strong> Hin V ∪ Wis<strong>the</strong>sameas<strong>the</strong>number a ′ <strong>of</strong>non­zeroorbits<strong>of</strong> H ∗ in V.If V has p ℓ<br />

elementssothat q = p 2ℓ <strong>the</strong>number<strong>of</strong>non­zeroorbits<strong>of</strong> Hin V ⊕ W − (V ∪ W)is<br />

a ′′ = (pℓ − 1) 2<br />

[G : G1] = pℓ − 1<br />

·<br />

k<br />

pℓ − 1<br />

[G : G0] .<br />

Theaction<strong>of</strong> H ∗ on V mustbeirreduciblealthoughitisnotfaithful.However<strong>the</strong>action<strong>of</strong><br />

H ∗ ∩ H0 = H ∗ 0 isfaithful.<br />

Let F ′ be<strong>the</strong>fixedfield<strong>of</strong> H ∗ in Lor,whatis<strong>the</strong>same,<strong>of</strong> H ∗ Cin K. Let C 1 ⊆ Cbe<br />

<strong>the</strong>orthogonalcomplement<strong>of</strong> V andlet H 1 be<strong>the</strong>subgroup<strong>of</strong> Hwhichactstriviallyon V.<br />

H 1 C 1 isanormalsubgroup<strong>of</strong> H ∗ Canditsfixedfield K ′ isnormalover F ′ .If H ′ = H ∗ /H 1<br />

and C ′ = C/C 1 <strong>the</strong>n G ′ = G(K ′ /F ′ ) = H ′ C ′ . Moreover H ′ ∩ C ′ = {1}and H ′ = {1}<br />

because σ <br />

k<br />

1 ′ ′ ′<br />

2 doesnotliein H . Since<strong>the</strong>action<strong>of</strong> H on C isfaithfulandirreducible C<br />

iscontainedineverynon­trivialnormalsubgroup<strong>of</strong> G ′ . Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>four<br />

identities(14.4),(14.5),(14.6),and(14.7)weuseinductionon [K : F].<br />

Let k ′ be<strong>the</strong>order<strong>of</strong> H ′ 0 andlet φ′ = OF ′/PF ′.If K/Fisreplacedby K′ /F ′ <strong>the</strong>identity<br />

(14.4)becomes<br />

(−1) a′ +1 νφ ′(k′ ) νφ ′(−1) pℓ −1<br />

2k ′ + 1<br />

2 = 1. (14.4 ′′ )<br />

Tistobereplacedby T ′ ,aset<strong>of</strong>representativesfor<strong>the</strong>non­zeroorbits<strong>of</strong> H ′ or H ∗ in V,<br />

whichmaybeidentifiedwith<strong>the</strong>charactergroup<strong>of</strong> C ′ .Wemaysupposethat T ′ isasubset<br />

<strong>of</strong> T.Because H ′ 0 = {1}<strong>the</strong>identity(14.5)for<strong>the</strong>field K′ /F ′ maybewrittenas<br />

Ofcourse<br />

νφ ′<br />

<br />

µ∈T ′ γ′ µ<br />

<br />

= (−1) a′<br />

NFµ/F ′(̟t Fµ ) = γ′ µ ̟<br />

t[Fµ:F ′ ]<br />

k ′<br />

νφ ′(−1) pℓ −1<br />

2k ′ . (14.5 ′′ )<br />

Recallthat tisodd.ByPropositionIV.3<strong>of</strong>Serre’sbook, thas<strong>the</strong>samesignificancefor K ′ /F ′<br />

asithadfor K/F.Theidentity(14.6)maybewrittenas<br />

(−1) a′<br />

νφ ′<br />

<br />

µ∈T ′ γ′ µ<br />

<br />

F ′<br />

.<br />

νφ ′(−1)Σ µ∈T ′[φµ:φ ′ ] νφ ′(−1) pℓ −1<br />

2k ′ = 1. (14.6 ′′ )


Chapter14 214<br />

and(14.7)as<br />

(−1) a′ +1 νφ ′(k′ ) νφ ′(−1) pℓ −1<br />

2k ′ − 1<br />

2 νφ ′(−1)Σ µ∈T ′ [φµ:φ ′ ] = 1 (14.7 ′′ )<br />

Assuming(14.4 ′′ ),(14.5 ′′ ),(14.6 ′′ ),and(14.7 ′′ )wearegoingtoprove(14.4),(14.5),(14.6),and<br />

(14.7).<br />

Since H ′ 0 isisomorphicto H∗ 0 ei<strong>the</strong>r k′ = kor k ′ = k<br />

2<br />

k ′ = k<br />

2 forifnot<br />

q − 1<br />

k =<br />

ℓ p − 1<br />

(p<br />

k<br />

ℓ + 1)<br />

.Supposefirstthat q−1<br />

k isodd.Then<br />

wouldbeeven.Thus H0 = G0/G1isnotcontainedin H ∗ and F ′ /Fisramifiedsothat φ ′ = φ.<br />

Since<br />

<strong>the</strong>number pℓ −1<br />

k ′<br />

if<br />

q − 1<br />

k =<br />

ℓ ℓ p − 1 (p + 1)<br />

isodd.Toprove(14.4)wehavetoshowthat<br />

(−1) a′′<br />

k ′<br />

2<br />

νφ(2) νφ(−1) δ = 1<br />

δ = p2ℓ − 1<br />

2k − pℓ − 1<br />

k = pℓ − 1<br />

k<br />

p ℓ + 1<br />

2<br />

<br />

− 1 .<br />

Since G0/G1isnotcontainedin H ∗ , τ0doesnotcommutewith G0/G1and<strong>the</strong>map λ<strong>of</strong> G/G0<br />

into<strong>the</strong>units<strong>of</strong> Z/k Zisfaithful.Thus<br />

But<br />

λ0 ≡ 1 (modk).<br />

λ0 ≡ 1 (mod4)<br />

sothat k ≥ 8.Ingeneralif k ≥ 4,<strong>the</strong>group<strong>of</strong>units<strong>of</strong> Z/k Zis<strong>the</strong>product<strong>of</strong> {1, −1}and<br />

If<br />

with xoddand 4 ≤ 2 b ≤ k<strong>the</strong>n<br />

{α | α ≡ 1 (mod4)}.<br />

α = 1 + 2 b x<br />

α 2 = 1 + 2 b+1 y


Chapter14 215<br />

with yodd.<strong>On</strong>eshowseasilybyinductionthat<strong>the</strong>order<strong>of</strong> αis 2 −b ksothat<br />

{α | α ≡ 1 (mod 4)}<br />

iscyclic<strong>of</strong>order k<br />

4 . Thisimpliesin<strong>the</strong>particularcaseunderconsiderationthat [G : G0]<br />

divides k<br />

4 .Write<br />

a ′′ isoddifandonlyif<br />

(i)<br />

(ii)<br />

a ′′ ℓ p − 1<br />

=<br />

k ′<br />

ℓ p − 1<br />

.<br />

2[G : G0]<br />

2[G : G0] = k ′ .<br />

Weconsidervariouscasesseparately.Asbefore µ0 = λ(σ0).If φhas p f elements<strong>the</strong>n<br />

Then<br />

µ0p f ≡ 1 (mod 8)<br />

µ0 ≡ 1 (mod 8).<br />

νφ(2) = νφ(−1) = 1<br />

and<strong>the</strong>order<strong>of</strong> µ0in<strong>the</strong>units<strong>of</strong> Z/k Zwhichisequalto [G : G0]divides k<br />

8 .Thus a′′ is<br />

even.Theidentity(14.4)follows.<br />

Then<br />

µ0 ≡ 3 (mod 8).<br />

νφ(2) = νφ(−1) = −1.<br />

Since µ0 ≡ 3 (mod8)<strong>the</strong>numbers µ0and λ0aredifferent.Thus λ0isasquareandhence<br />

congruentto1modulo8.Then k > 8and<br />

Then<br />

δ ≡ pℓ + 1<br />

4<br />

p ℓ ≡ 1 (mod 8).<br />

− 1<br />

2<br />

≡ 0 (mod2).<br />

Since µ0 = λ0<strong>the</strong>index [G : G0]isnot2.Thus<strong>the</strong>order<strong>of</strong> µ0isatleast4andis<strong>the</strong>refore<br />

<strong>the</strong>order<strong>of</strong> −µ0.Since −µ0 ≡ 5 (mod8)itsorderis k<br />

4 and<br />

[G : G0] = k<br />

4 .


Chapter14 216<br />

(iii)<br />

(iv)<br />

Consequently a ′′ isodd.Again(14.4)issatisfied.<br />

µ0 ≡ 5 (mod 8).<br />

Then νφ(2) = −1while νφ(−1) = 1.Theorder<strong>of</strong> µ0whichequals [G : G0]isagain k<br />

4 so<br />

that a ′′ isoddand(14.4)issatisfied.<br />

µ0 ≡ 7 (mod 8).<br />

Then νφ(2) = 1while νφ(−1) = −1.Again k > 8and<br />

δ ≡ 0 (mod2).<br />

Theorder<strong>of</strong> µ0isagainatleast4and<strong>the</strong>reforeequalto<strong>the</strong>order<strong>of</strong> −µ0andthatdivides<br />

k<br />

8<br />

.Thus [G : G0]divides k<br />

8 and a′′ iseven.(14.4)followsoncemore.<br />

Since φ ′ = φallweneedtoprove(14.7)once(14.4)and(14.7 ′′ )aregrantedisshowthat<br />

<br />

µ∈T −T ′ [φµ : φ] ≡ 0 (mod2).<br />

Thisisclearbecause,for<strong>the</strong>se µ, Fµ = Land φµ = OL/PLis<strong>of</strong>evendegreeover φ.<br />

Finallywehavetoassumethat q−1<br />

k isevenandprove(14.5)and(14.6).Firstalemma.<br />

Lemma 14.9<br />

If q−1<br />

k iseven,<br />

<br />

λ σ 1<br />

2 [G:G0]<br />

0<br />

and G/G0actsfaithfullyon G0/G1,<strong>the</strong>n<br />

<br />

≡ 1 (mod4),<br />

(−1) a νφ(−1) q−1<br />

2k = 1.<br />

Since<strong>the</strong>actionisfaithful G0/G1isnotcontainedin H ∗ and k ′ = k<br />

2 . Asbefore λ0 ≡<br />

1 (mod4)and λ0 ≡ 1 (modk)toge<strong>the</strong>rimplythat k ≥ 8and k ′ ≥ 4.Since k ′ divides p ℓ − 1,<br />

and pℓ +1<br />

2 isodd.Since<br />

q − 1<br />

k =<br />

p ℓ ≡ 1 (mod 4)<br />

<br />

ℓ ℓ p − 1 p + 1<br />

k ′<br />

2


Chapter14 217<br />

<strong>the</strong>number pℓ −1<br />

k ′<br />

sothat<br />

iseven.<br />

If σbelongsto H ∗ and σactstriviallyon H ∗ 0 <strong>the</strong>n<br />

<br />

λ(σ) ≡ 1 mod k<br />

<br />

2<br />

λ(σ 2 ) ≡ 1(modk)<br />

and σ 2 belongsto H0.Thus σbelongsto ρ0H0 ∪ H0.Since ρ0belongsto H 1 <strong>the</strong>image<strong>of</strong> σin<br />

H ′ liesin H ′ 0 .Thus G′ /G ′ 0 actsfaithfullyon G′ 0 /G′ 1 .If σbelongsto H1 <strong>the</strong>n σactstrivially<br />

on H ∗ 0 because<strong>the</strong>representation<strong>of</strong> H∗ 0 on Visfaithful.Thus H1 iscontainedin ρ0 H0 ∪ H0<br />

andis<strong>the</strong>reforejust {ρ0, 1}.Thus<br />

Supposethat<br />

[G ′ : G ′ 0 ] = [H′ : H ′ 0 ] = [H∗ : H ∗ 0 H1 ] = 1<br />

2<br />

Since φ ′ = φand,because k ′ ≥ 4divides p ℓ − 1,<br />

q − 1<br />

2k =<br />

[G : G0].<br />

(−1) a νφ ′(−1) pℓ −1<br />

2k ′ = 1. (14.12)<br />

ℓ p − 1<br />

2k ′<br />

ℓ ℓ p + 1 p − 1<br />

≡<br />

2 2k ′<br />

<br />

allweneeddotoestablish<strong>the</strong>lemmaistoshowthat<br />

Asbefore [G : G0]divides k<br />

4 .If<br />

<strong>the</strong>n<br />

a ′′ = 1<br />

k<br />

a ′′ ≡ 0 (mod2).<br />

k<br />

4<br />

= n[G : G0]<br />

(p ℓ − 1) 2<br />

[G : G0]<br />

iscertainlyevenbecause 2k ′ divides p ℓ − 1.<br />

If [G : G0] ≥ 4let<br />

λ ′ 0<br />

<br />

= λ σ 1<br />

ℓ p − 1<br />

= n<br />

k ′<br />

4 [G:G0]<br />

0<br />

<br />

.<br />

2<br />

(mod2),


Chapter14 218<br />

If<br />

λ ′ 0<br />

≡ 1 (mod4)<br />

wemaysupposethat(14.12)istruebyinduction.If [G : G0] = 4and<br />

orif [G : G0] = 2wemustestablishitdirectly.<br />

λ ′ 0 ≡ 3 (mod4)<br />

Supposefirstthat [G : G0] = 2.If φhas p f elements<strong>the</strong>n<br />

sothat νφ(−1) = 1.Itisclearthatinthiscase<br />

a ′ isthusevenand(14.12)isvalid.<br />

λ0 ≡ µ0 ≡ p f ≡ 1 (mod4)<br />

a ′ = pℓ − 1<br />

k ′<br />

.<br />

Nowsuppose [G : G0] = 4sothat [G ′ : G ′ 0 ] = 2. If σ′ 0 generates G′ modulo G ′ 0 <strong>the</strong>n<br />

λ ′ 0is<strong>the</strong>image<strong>of</strong> σ′ 0in<strong>the</strong>group<strong>of</strong>units<strong>of</strong> Z/k′ Z.Wehavealreadystudied<strong>the</strong>casethat<br />

≡ 3 (mod4)intensively.Let<br />

λ ′ 0<br />

x : σ ′ −→ x(σ ′ )<br />

be<strong>the</strong>map<strong>of</strong> G ′ 0 /G′ 1 onto Z/k′ Z. If λ ′ 0 ≡ −1 (modk′ )and x((σ ′ 0 )2 ) = k′<br />

2 weshowed,<br />

incidentally,that(14.12)isvalid.If λ ′ 0 ≡ −1 (mod k′ ), x((σ ′ 0 )2 ) = 0,and<strong>the</strong>action<strong>of</strong> H ′ 0on S(K ′ /L ′ )isreduciblewesawthat pℓisasquare p2ℓ′ andthat<strong>the</strong>leftside<strong>of</strong> (L)is<br />

But<strong>the</strong>fieldwith p ℓ′<br />

and(14.12)isagainvalid.If k ′ ≥ 8,<br />

(−1) pℓ′ −1<br />

2 .<br />

elementsmustcontains<strong>the</strong> k ′ throots<strong>of</strong>unityand k ′ ≡ 0 (mod 4).Thus<br />

p ℓ′<br />

− 1 ≡ 0 (mod4)<br />

λ ′ 0 ≡ k′<br />

2 − 1 (mod k′ )<br />

and<strong>the</strong>action<strong>of</strong> H ′ 0 on S(K′ /L ′ )isreducible,<strong>the</strong>leftside<strong>of</strong>(14.12)is<br />

(−1) pℓ′ −1<br />

4 .


Chapter14 219<br />

Thistime<br />

p ℓ′<br />

− 1 ≡ 0 (mod8).<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemmaweshowthatin<strong>the</strong>caseunderconsideration<strong>the</strong><br />

on Visreducible.Ifnot<strong>the</strong><br />

action<strong>of</strong> H ′ 0and S(K′ /L ′ )or,whatis<strong>the</strong>same,<strong>the</strong>action<strong>of</strong> H∗ 0<br />

fieldgeneratedover<strong>the</strong>primefieldby<strong>the</strong> k ′ throots<strong>of</strong>unityhas pℓelements.Thus p ℓ ≡ 1 (mod4).<br />

Howeveraswehaveobservedrepeatedly,<strong>the</strong>number<strong>of</strong>elementsin φiscongruentto3<br />

modulo4.Thus ℓiseven.Let ℓ = 2ℓ ′ .Ei<strong>the</strong>r pℓ′ − 1or pℓ′ + 1iscongruentto2modulo4.If<br />

pℓ′ + 1 ≡ 2 (mod4)<strong>the</strong>n k ′ divides pℓ′ − 1because<br />

p ℓ − 1<br />

k ′<br />

=<br />

<br />

pℓ′ − 1<br />

k ′<br />

<br />

iseven.Since k ′ cannotdivide pℓ′ − 1wehave<br />

p ℓ′<br />

(p ℓ′<br />

≡ 3 (mod4)<br />

and ℓ ′ isodd.Indeeditis1butthatdoesnotmatter.Since kdivides p ℓ − 1,<strong>the</strong> kthroots<strong>of</strong><br />

unityarecontainedin<strong>the</strong>fieldwith p ℓ elements.Adjoining<strong>the</strong>mto φ = OF/PFweobtaina<br />

quadraticextensionbecause4doesnotdivide ℓ.Thereforeif σbelongsto G0/G1<br />

sothat<br />

+ 1)<br />

θ0(σ) = θ0(σ) σ−2<br />

0 = θ0(σ) λ(σ2<br />

0 )<br />

λ(σ 2 0) ≡ 1 (modk).<br />

Thiscontradicts<strong>the</strong>assumptionthat G/G0actsfaithfullyon G0/G1.<br />

Returningto<strong>the</strong>pro<strong>of</strong><strong>of</strong>(14.5),wesupposefirstthat H0isnotcontainedin H∗sothat<strong>the</strong> action<strong>of</strong> G/G0on G0/G1isfaithful.Because<strong>of</strong>Lemma14.9<strong>the</strong>identity(14.5)isequivalent<br />

to<br />

<br />

= 1.<br />

νφ<br />

µ∈T N Fµ/F γµ<br />

If µbelongsto Tbutnotto T ′ <strong>the</strong>n Fµ = Land,byLemma14.8,<br />

νφ(N Fµ/F γµ) = 1.


Chapter14 220<br />

If µbelongsto T ′ <strong>the</strong>n Gµiscontainedin H ∗ Csothat Fµcontains F ′ .Moreoverwedonot<br />

change Fµifwereplace K/Fby K ′ /F ′ .Let ̟F ′generate PF ′andtake ̟F = N F ′ /F̟F ′.If<br />

E ′ is<strong>the</strong>fixed­field<strong>of</strong> H ∗ wemaysupposethat<br />

andthat<br />

Then<br />

asrequired.Let<br />

Then<br />

̟F ′ = NE ′ /F ′̟E ′<br />

̟E = NE ′ /E̟E ′.<br />

̟F = N E/F̟E<br />

N Fµ/F, ̟ t Fµ = γ′ µ ̟ t[Fµ:F ′ ]<br />

k ′ .<br />

γµ = N F ′ /F γ ′ µ .<br />

Since F ′ /Fisramified γµisasquarein UFand(14.5)isproved. Toprove(14.6)wehaveto<br />

showthat<br />

νφ(−1) Σµ∈T [φµ:φ] = νφ ′(−1)Σ µ∈T ′[φµ:φ ′ ] = 1.<br />

But pℓ −1<br />

k ′<br />

isevenandthisfollowsfrom<strong>the</strong>simultaneousvalidity<strong>of</strong>(14.5 ′′ )and(14.6 ′′ ).<br />

Wehaveyettotreat<strong>the</strong>casethat q−1<br />

k isevenand H0iscontainedin H ∗ .Then F ′ /Fis<br />

unramifiedand k ′ = k.Supposefirst<strong>of</strong>allthat pℓ −1<br />

k isalsoeven.Then<br />

q − 1<br />

2k =<br />

<br />

ℓ ℓ p − 1 p + 1<br />

k<br />

iseven. H0iscontainedin H∗and Hisgeneratedby σ0and H0. Consequently σ0isnot<br />

containedin H∗and σ0ρ0σ −1<br />

<br />

k<br />

0 = σ ρ0.<br />

2<br />

Since ρ0 = σ(x0)τ0<br />

if µ0 = λ(σ0).If<br />

(µ0 − 1)x0 ≡ k<br />

2<br />

<br />

y0 = x<br />

σ [G:G0]<br />

0<br />

2<br />

(modk)


Chapter14 221<br />

and mis<strong>the</strong>greatestcommondivisor<strong>of</strong> y0and k<strong>the</strong>nby<strong>the</strong>definition<strong>of</strong> x0<strong>the</strong>greatest<br />

commondivisor<strong>of</strong> x0and kis m<br />

2<br />

k.Inparticular m < k.Theorder<strong>of</strong> σ0in His<br />

.Therefore k<br />

m is<strong>the</strong>greatestcommondivisor<strong>of</strong> µ0 − 1and<br />

k<br />

[G : G0].<br />

m<br />

Therefore [G : G0]divides k<br />

2m [G : G0]and H ∗ containsacyclicsubgroup<strong>of</strong>order<br />

k<br />

[G : G0].<br />

2m<br />

If σis<strong>the</strong>element<strong>of</strong>order2inthissubgroup,<strong>the</strong>n σbelongsto H0and π ∗ (σ)doesnothave<br />

1asaneigenvalue. Thusnonon­zeroelement<strong>of</strong> V isfixedbyanyelement<strong>of</strong>thiscyclic<br />

subgroupand<br />

Inparticular [G : G0]divides p ℓ − 1and<br />

p ℓ <br />

− 1 ≡ 0 mod k<br />

2m<br />

<br />

[G : G0] .<br />

a ′′ <br />

ℓ ℓ p − 1 p − 1<br />

=<br />

k [G : G0]<br />

iseven.Asbefore νφ(γµ) = 1if µbelongsto Tand Fµ = L.If Fµ = L<strong>the</strong>n µbelongsto T ′<br />

and Gµliesin H ∗ Csothat Fµcontains F ′ .In<strong>the</strong>presentsituation F ′ /Fisunramifiedand<br />

wemaytake ̟F ′ = ̟F.If<br />

<strong>the</strong>n<br />

Theidentity(14.5)reducesto<br />

or<br />

NFµ/F ′̟t Fµ = γ′ t[Fµ:F<br />

µ̟<br />

′ ]<br />

k<br />

F<br />

NFµ/F̟ t Fµ = (NF ′ /F γ ′ t[Fµ:F]<br />

k<br />

µ ) ̟ .<br />

νφ<br />

<br />

νφ ′<br />

µ∈T ′ N F ′ /F γ ′ µ<br />

<br />

µ∈T ′ γ′ µ<br />

<br />

F<br />

<br />

= (−1) a′<br />

= (−1) a′<br />

.<br />

Since φ ′ isaquadraticextension<strong>of</strong> φ<strong>the</strong>number νφ ′(−1)is1andthisrelationisequivalentto<br />

(14.5 ′′ ).Toprove(14.6)wehavetoshowthat<br />

νφ(−1) Σµ∈T [φµ:φ] = 1.


Chapter14 222<br />

Thisisclearbecause2divideseach<strong>of</strong><strong>the</strong>degrees [φµ : φ].<br />

Finallywehavetosupposethat pℓ −1<br />

k isodd. Since [φ ′ : φ] = 2<strong>the</strong>relation(14.4 ′′ )<br />

amountsto<br />

(−1) a′ +1 = 1.<br />

Again<br />

νφ<br />

<br />

µ∈T γµ<br />

<br />

= νφ ′<br />

<br />

µ∈T ′ γ′ µ<br />

<br />

. (14.13)<br />

If µbelongsto T ′ and σ = 1belongsto Gµ<strong>the</strong>nsomepower<strong>of</strong> σwillequal ρ0.Since<br />

isoddand<br />

p ℓ − 1<br />

k<br />

= <br />

µ∈T ′<br />

[Fµ : F ′ ]<br />

k<br />

[Fµ : F ′ ]<br />

k<br />

isapower<strong>of</strong>2<strong>the</strong>reisatleastone µin T ′ forwhich [Fµ : F ′ ] = k.Then Gµmustcontainan<br />

element<strong>of</strong><strong>the</strong>form σ(z0)σ 2 0 .Then<br />

ρ0 = σ(x0)τ0 = (σ(z0)σ 2 0) 1<br />

4 [G:G0] = σ<br />

µ 2 0<br />

<br />

µ 1<br />

2 [G:G0]<br />

0<br />

Thus <br />

µ 1<br />

2 [G:G0]<br />

<br />

0 − 1<br />

z0 ≡ x0 (modk).<br />

− 1<br />

Let<br />

Since<br />

1<br />

4 [G : G0] = 2 b .<br />

µ 2 0<br />

≡ 1 (mod4)<br />

µ 2 0<br />

− 1<br />

− 1<br />

z0τ0<br />

and,asbefore,<strong>the</strong>greatestcommondivisor<strong>of</strong> x0and kis m<br />

2 if<strong>the</strong>greatestcommondivisor<strong>of</strong><br />

y0and kis m,weinferthat<br />

µ 1<br />

2 [G:G0]<br />

0<br />

µ 2 0<br />

ismultiplicativelycongruentto<br />

− 1<br />

=<br />

− 1<br />

b<br />

j=1<br />

− 1<br />

µ 2j<br />

b<br />

=<br />

− 1<br />

µ2j+1 0<br />

·<br />

0<br />

[G : G0]<br />

4<br />

j=1 µ2j<br />

0 + 1<br />

.


Chapter14 223<br />

modulo2andthat<strong>the</strong>greatestcommondivisor<strong>of</strong> z0and kis<br />

2m<br />

[G : G0] .<br />

Inparticular [G:G0]<br />

2 divides m. z0isoddifandonlyif<br />

m = 1<br />

2<br />

[G : G0].<br />

If µ0 ≡ 1 (mod 4)<strong>the</strong>order<strong>of</strong> µ0in<strong>the</strong>group<strong>of</strong>units<strong>of</strong> Z/k Zis mbecauseasweobserved<br />

whentreating<strong>the</strong>casethat pℓ−1 k iseven,<strong>the</strong>greatestcommondivisor<strong>of</strong> µ0 − 1and kis k<br />

m .<br />

However<br />

andinthiscase mdivides 1 [G : G0].Thus<br />

2<br />

if µ0 ≡ 1 (mod 4).<br />

µ 1<br />

2 [G:G0]<br />

0 ≡ λ(τ0) ≡ 1 (mod k)<br />

m = 1<br />

[G : G0]<br />

2<br />

Weshalldefineasequence<strong>of</strong>fields F (i) , L (i) , K (i) , 1 ≤ i ≤ n. nisanintegertobe<br />

specified. Wewillhave F (i) ⊆ L (i) ⊆ K (i) and K (i) /F (i) and L (i) /F (i) willbeGalois. Let<br />

G (i) = G(K (i) /F (i) )and C (i) = G (L (i) /F (i) ). Therewillbeasubgroup H (i) <strong>of</strong> G (i) such<br />

that H (i) = {1}, H (i) ∩ C (i) = {1},and G (i) = H (i) C (i) . C (i) willbeanon­trivialabelian<br />

normalsubgroup<strong>of</strong> G (i) whichiscontainedineveryo<strong>the</strong>rnon­trivialnormalsubgroup. H (n)<br />

willbeabelianbut H (i) willbenon­abelianif i < n.Moreover k (i) = [H (i)<br />

0 : 1]willbeatleast<br />

4forall iand k (i) willequal 2k (i+1) if i < n.If xisanisomorphism<strong>of</strong> H (i)<br />

0 with Z/k(i) Zand<br />

σbelongsto H (i) let<br />

x(στσ −1 ) = λ (i) (σ)x(τ).<br />

Then λ (i) (σ)willbecongruentto1modulo8if i < n.If q (i) is<strong>the</strong>number<strong>of</strong>elementsin C (i)<br />

<strong>the</strong>n<br />

q (i) − 1<br />

k (i)<br />

willbeodd.<br />

F ′ and K ′ havealreadybeendefined. L ′ isjust<strong>the</strong>fixedfield<strong>of</strong> C ′ .<br />

q ′ − 1<br />

k ′<br />

= pℓ − 1<br />

k


Chapter14 224<br />

isodd.If σ ′ in H ′ is<strong>the</strong>image<strong>of</strong> σin H ∗ C<strong>the</strong>n<br />

Since σisasquaremodulo H0<br />

λ ′ (σ ′ ) ≡ λ(σ) (modk).<br />

λ ′ (σ ′ ) ≡ 1 (modk).<br />

IfF (i) , L (i) ,andK (i) havebeendefinedandH (i) isnotabelianwecandefineF (i+1) , L (i+1) ,<br />

K (i+1) by<strong>the</strong>processweusedtopassfrom F, L, Kto F ′ , L ′ , K ′ .Wehaveseenthatif<br />

isodd<strong>the</strong>n<br />

isalsooddandthat<br />

q (i) − 1<br />

k (i)<br />

q (i+1) − 1<br />

k (i+1)<br />

k (i) = 2k (i+1) .<br />

Wehavealsoseenthat k (i) ≥ 8if H (i) isnotabelian.If H (i) isabelianwetake n = i.<br />

Whenwepassfrom<strong>the</strong> ithstageto<strong>the</strong> (i+1)thwebreakup T (i) ,<strong>the</strong>analogue<strong>of</strong> T,into<br />

T (i+1) andacomplementaryset U (i) . Wemaythink<strong>of</strong> T (i) aslyingin T. If σ (i)<br />

0 generates<br />

H (i) modulo H (i)<br />

0 <strong>the</strong>n<br />

λ ′ (σ (i)<br />

0 ) ≡ 1 (mod8).<br />

Wesawthatthisimpliesthat U (i) hasanevennumber<strong>of</strong>elements.If µbelongsto U (i) <strong>the</strong>n<br />

Fµisequalto L (i) .Thuswemaysupposethat<br />

νφ ′<br />

<br />

µ∈U (i) γ′ µ<br />

<br />

= 1.<br />

Moreover L (i) /F (i) isnon­abelianand<strong>the</strong>refore L (i) /F (i) isnottotallyramified. Thus µis<br />

notin U (i) if [Fµ : F ′ ] = k.<br />

Since L (n) /F (n) isabelian<strong>the</strong>isotropygroupin H (n) <strong>of</strong>any µin T (n) istrivialsothat<br />

Fµ = L (n) forsuch µ.Since<br />

<br />

µ∈T ′<br />

[Fµ : F ′ ]<br />

k<br />

≡ <br />

µ∈T (n)<br />

[L (n) : F ′ ]<br />

k<br />

(mod2).


Chapter14 225<br />

Thereareanoddnumber<strong>of</strong>elementsin T (n) and<br />

[L (n) : F ′ ] = k.<br />

Choose z0sothat σ(z0)σ 2 0 liesin G(L/L(n) ).It<strong>the</strong>nfixeseach µin T (n) .<br />

Since L (n) /F ′ mustbetotallyramified<strong>the</strong>reisaδin UFsuchthat<br />

N L (n) /F ̟ L (n) = δ̟ 2 F .<br />

Therightside<strong>of</strong> (14.13)isequalto νφ(δ). L (n) iscontainedin L.Choose w0in W L/Fsothat<br />

τ L/F(w0) = ̟F. Wemaysupposethat σ0hasbeenchosentobe σ(w0).Let L0be<strong>the</strong>fixed<br />

field<strong>of</strong> H0.Choose u0in W L/L0 sothat σ(u0) = σ(z0)andsothat τ L/L0 (u0)isaunit.Clearly<br />

z0isevenifandonlyif τ L/L0 (u0)or<br />

isasquare.Since σ(z0)σ 2 0 liesin G(L/L(n) ),<br />

liesin W L/L (n).Wemaytake<br />

Then<br />

<br />

NL0/F τL/L0 (u0) = τL/F(u0) u0w 2 0<br />

̟ L (n) = τ L/L (n) (u0w 2 0).<br />

N L (n) /F (̟ L (n)) = τ L/F (u0w 2 0 ) = τ L/F̟ 2 F<br />

and δ = τ L/F(u0)isasquareifandonlyif z0iseven.<br />

Since (−1) a′ +1 = 1<strong>the</strong>relation(14.5)amountsto<br />

(1) a′′ −1 νφ(−1) q−1<br />

2k = (−1) z0 .<br />

(14.6)isequivalentto(14.5)becauseeach [φµ : φ] = 2[φµ : φ ′ ]iseven.Recallthat<br />

andthat<br />

a ′′ <br />

ℓ ℓ p − 1 p − 1<br />

=<br />

≡<br />

k [G : G0]<br />

pℓ − 1<br />

[G : G0]<br />

q − 1<br />

2k =<br />

<br />

ℓ ℓ p − 1 p + 1<br />

k<br />

2<br />

≡ pℓ + 1<br />

2<br />

(mod2)<br />

(mod2).


Chapter14 226<br />

If<br />

µ0 ≡ 1 (mod4)<br />

<strong>the</strong>n νφ(−1) = 1and,asweobservedearlier, z0isodd. Wehavetoshowthat a ′′ iseven.<br />

Weshowedbeforethat H∗hastocontainacyclicsubgroup<strong>of</strong>order k [G : G0]andthat<br />

2m<br />

k<br />

2m [G : G0]hastodivide pℓ − 1.But k<br />

mis<strong>the</strong>greatestcommondivisor<strong>of</strong> µ0 − 1and k.Since<br />

4divides µ0 − 1and kitdivides k<br />

mand 2[G : G0]divides pℓ − 1.Thus a ′′ iseven.<br />

If<br />

µ0 ≡ 3 (mod4)<br />

<strong>the</strong>n νφ(−1) = −1.Moreover k > 2sothat p ℓ ≡ 1 (mod 4)and<br />

Wehavetoshowthat a ′′ isoddif<br />

q − 1<br />

2k ≡ pℓ + 1<br />

2<br />

m = 1<br />

[G : G0]<br />

2<br />

andeveno<strong>the</strong>rwise.But µ0 ≡ 3 (mod4)sothat k<br />

m<br />

andonlyif [G : G0] = k.If [G : G0] = k<strong>the</strong>n<br />

a ′′ ≡ pℓ − 1<br />

k<br />

isodd.O<strong>the</strong>rwise 2[G : G0]divides kand a ′′ iseven.<br />

≡ 1 (mod2).<br />

= 2and m = k<br />

2 .Thus [G : G0] = 2mif<br />

(mod2)<br />

Lemma14.3isnowcompletelyproved,soweturntoLemma14.4. In<strong>the</strong>pro<strong>of</strong><strong>of</strong>both<br />

Lemma14.4and14.5,wewillcombine<strong>the</strong>inductionassumptionwithLemma15.1whichis<br />

statedandprovedinparagraph15,<strong>the</strong>followingparagraph.Suppose F ⊆ F ′ ⊆ Land F ′ /F<br />

iscyclic<strong>of</strong>primedegree ℓ.Let G(K/F ′ )be H ′ Cwhere H ′ ⊆ Handlet E ′ be<strong>the</strong>fixedfield<strong>of</strong><br />

H ′ .Then E ′ /Eiscyclic<strong>of</strong>primeorder ℓ.If S(F ′ /F)is<strong>the</strong>set<strong>of</strong>characters<strong>of</strong> CF/N F ′ /FCF ′<br />

<strong>the</strong>n<br />

S(E ′ /E) = {ν E/F | νF ∈ S(F ′ /F)}.<br />

FromLemma15.1weseethatforanyquasi­character χF,<br />

Therefore<br />

Ind(W K/E, W K/E ′, χ E ′ /E) ≃ ⊕ νF ∈S(F ′ /F) ν E/F χ E/F.<br />

Ind(W K/F, W K/E ′, χ E ′ /E) ≃ ⊕νF Ind(W K/F, W K/E, ν E/F χ E/F)


Chapter14 227<br />

whichisequivalentto<br />

⊕νF {(⊕µ∈T Ind(W K/F, W K/Fµ , µ′ ν Fµ/F χ Fµ/F)) ⊕ νFχF }.<br />

If T ′ isaset<strong>of</strong>representativesfor<strong>the</strong>non­trivialorbits<strong>of</strong> H ′ in S(K/L)<strong>the</strong>n<br />

isequivalentto<br />

Moreover<br />

Ind(W K/F ′, W K/E ′, χ E ′ /F) = σ<br />

(⊕µ∈T ′Ind(W K/F ′, W K/F ′ µ , µ′ χ F ′ µ /F)) ⊕ χ F ′ /F.<br />

Ind(W K/F, W K/F ′, σ) ≃ Ind(W K/F, W K/E ′, χ E ′ /E).<br />

Applying<strong>the</strong>inductionassumptionto L/Fweseethat<br />

<br />

isequalto<br />

νF<br />

<br />

<br />

∆(νF, χF, ψF)<br />

νF<br />

{∆(χ F ′ /F, ψ F ′ /F)λ(F ′ /F, ψF)}<br />

<br />

µ∈T ∆(µ′ <br />

νFµ/F χFµ/F, ψFµ/F)λ(F/F, ψF)<br />

<br />

Theapplicationislegitimatebecause<strong>the</strong>fields F ′ , Fµ,and F ′ µ<br />

Lemma4.5<br />

Also<br />

µ∈T ′ ∆(µ′ χ F ′ µ /F, ψ F ′ µ /F)λ(F ′ µ /F, ψF). (14.14)<br />

λ(F ′ µ /F, ψF) = λ(F ′ µ /F ′ , ψF ′ /F) λ(F ′ ′<br />

[F<br />

/F, ψF) µ :F ′ ]<br />

.<br />

λ(F ′ <br />

<br />

/F, ψF)<br />

µ∈T ′ λ(F ′ /F, ψF)<br />

′<br />

[F µ :F ′ <br />

]<br />

allliebetween Fand L. By<br />

= λ(F ′ /F, ψF) [E′ :F ′ ] .<br />

Since<strong>the</strong>fields F ′ and F ′ µ liebetween F ′ and Kwecanapply<strong>the</strong>inductionassumptionto<br />

K/F ′ toseethat(14.14)isequalto<strong>the</strong>product<strong>of</strong><br />

and<br />

λ(F ′ /F, ψF) [E′ :F ′ ]<br />

∆(χ E ′ /F, ψ E ′ /F) λ(E ′ /F ′ , ψ F ′ /F).<br />

Applying<strong>the</strong>inductionassumptionto K/Eweseethat<br />

∆(χ E ′ /F, ψ E ′ /F)


Chapter14 228<br />

isequalto<br />

<br />

Weconcludethat<strong>the</strong>quotient<br />

<br />

νF<br />

νF ∈S(F ′ /F) ∆(ν E/F χ E/F, ψ E/F)<br />

<br />

λ(E ′ /E, ψ E/F) −1 .<br />

<br />

∆(νF χF,ψF) <br />

µ∈T ∆(µ′ <br />

νFµ/F χFµ/F, ψFµ/F ∆(νE/F χE/F,ψ E/F)<br />

isindependent<strong>of</strong> χF.Taking χFtobetrivialweseethatitequals<br />

Thus<br />

<br />

νF<br />

∆(νF, ψF) <br />

µ∈T ∆(µ′ ν Fµ/F, ψ Fµ/F)<br />

∆(ν E/F,ψ E/F)<br />

Itiseasilyseenthat<strong>the</strong>complexconjugate<strong>of</strong> ∆(νF, ψF)is<br />

If ℓisodd<strong>the</strong>rightsideis1.Since<br />

and νF = ν −1<br />

F<br />

if ℓisodd,<strong>the</strong>product<br />

For<strong>the</strong>samereasons <br />

However,if ℓis2<br />

νF(−1) ∆(ν −1<br />

F , ψF).<br />

∆(νF,ψF) ∆(ν −1<br />

F , ψF) = νF(−1).<br />

<br />

∆(1, ψF) = 1<br />

νF ∈S(L/F) ∆(νF, ψF) = 1.<br />

νF ∈S(L/F) ∆(ν E/F, ψ E/F) = 1.<br />

∆(νF, ψF) = ∆(ν −1<br />

F , ψF)<br />

hassquare ±1andis<strong>the</strong>reforeafourthroot<strong>of</strong>unity.Thus<br />

<br />

ν∈S(L/F) ∆(νF, ψF) ∼ <br />

ν∈S(L/F) ∆(ν E/F,ψ E/F) ∼2 1.<br />

(14.15)<br />

<br />

. (14.16)<br />

<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand, m(µ ′ ) = t + 1 ≥ 2while m(ν Fµ/F) ≤ 1.ThusLemma9.5showsthat<br />

∆(µ ′ ν Fµ/F,ψ Fµ/F) ∼ℓ ∆(µ ′ , ψ Fµ/F).


Chapter14 229<br />

Thus<strong>the</strong>expression(14.16)and<strong>the</strong>refore<strong>the</strong>expression(14.15)isequalto<br />

where η ∼ℓ 1.<br />

<br />

<br />

η<br />

µ∈T ∆(µ′ ℓ , ψFµ/F) If m(χF)is0or1,Lemma14.4isaconsequence<strong>of</strong>Lemma14.2. Wesuppose<strong>the</strong>refore<br />

that m(χF) ≥ 2.InthiscaseLemma9.5impliesthat<br />

andthat <br />

νF<br />

<br />

νF<br />

∆(νF χF,ψF) ∼ℓ ∆(χF,ψF) ℓ<br />

∆(ν E/F χ E/F,ψ E/F) ∼ℓ ∆(χ E/F, ψ E/F) ℓ .<br />

Wealsosawin<strong>the</strong>beginning<strong>of</strong><strong>the</strong>paragraphthat,inallcases, m(µ ′ χ Fµ/F) ≥ 2.Thus<br />

∆(µ ′ ν Fµ/Fχ Fµ/F,ψ Fµ/F) ∼ℓ ∆(µ ′ χ Fµ/F, ψ Fµ/F).<br />

Putting<strong>the</strong>sefactstoge<strong>the</strong>rweseethatif<br />

isequalto<br />

<strong>the</strong>n σ ∼ℓ 1.Since σ = ρ ℓ weconcludethat<br />

<br />

σ ∆ (χF, ψF) <br />

µ∈T ∆(µ′ ℓ χFµ/F, ψFµ/F) <br />

∆(χE/F,ψE/F) <br />

µ∈T ∆(µ′ ℓ , ψFµ/F)<br />

ρ ∼ℓ 1.<br />

FinallywehavetoproveLemma14.5.Let F ′ be<strong>the</strong>fixedfield<strong>of</strong> H1Candlet L ′ be<strong>the</strong><br />

fixedfield<strong>of</strong> H2C.Let E ′ be<strong>the</strong>fixedfield<strong>of</strong> H1andlet K ′ be<strong>the</strong>fixedfield<strong>of</strong> H2.Let Pbe<br />

aset<strong>of</strong>representativesfor<strong>the</strong>orbitsunder G(L/F)<strong>of</strong><strong>the</strong>charactersin S(L/L ′ ).If νisone<br />

<strong>of</strong><strong>the</strong>serepresentatives,let HνH2Cwith Hνand H1beitsisotropygroupandlet Fνbe<strong>the</strong><br />

fixedfield<strong>of</strong> HνH2C.Applying<strong>the</strong>inductionassumptionandLemma15.1to<strong>the</strong>extension<br />

L/Fweseethat<br />

∆(χ F ′ /F, ψ F ′ /F) ρ (F ′ /F, ψF)


Chapter14 230<br />

isequalto<br />

Let<br />

<br />

ν∈P ∆(ν′ χ Fν/F, ψ Fν/F) λ(Fν/F, ψF). (14.17)<br />

R = {ν ∈ P | Fν = F }<br />

andlet Sbe<strong>the</strong>complement<strong>of</strong> Rin P. Rconsists<strong>of</strong><strong>the</strong>elements<strong>of</strong> S(L/L ′ )fixedbyeach<br />

element<strong>of</strong> G(L/F).Itisasubgroup<strong>of</strong> S(L/L ′ )anditsorder rmust<strong>the</strong>reforebeapower<strong>of</strong><br />

ℓ.Theexpression(14.17)maybewrittenas<br />

<br />

<br />

ν∈R ∆(ν′ <br />

<br />

χF, ψF)<br />

ν∈S ∆(ν′ <br />

χFν/F, ψFν/F) λ(Fν/F, ψF) .<br />

If Fisreplacedby Eand F ′ by E ′ <strong>the</strong>n Pisreplacedby<br />

{νK ′ /L ′ | ν = νL ′ ∈ P }.<br />

Also Fνisreplacedby Eν,<strong>the</strong>fixedfield<strong>of</strong> HνH2,and ν ′ isreplacedby ν ′ Eν/Fν .Applying<strong>the</strong><br />

inductionassumptionto K/Eweseethat<br />

isequalto<strong>the</strong>product<strong>of</strong><br />

and <br />

∆(χ E ′ /F,ψ E ′ /F) λ(E ′ /E, ψ E/F)<br />

<br />

ν∈R ∆(ν′ E/F χ E/F,ψ E/F<br />

ν∈S ∆(ν′ Eν/Fν χ Eν/Fν , ψ Eν/F) λ(Eν/E, ψ E/F<br />

Thisequalitywillbereferredtoasrelation(14.18).<br />

Toderivethisequalitywehaveusednotonly<strong>the</strong>inductionassumptionbutalsoLemma<br />

15.1whichimpliesthat<br />

Ind(W K/E, W K/E ′, χ E ′ /F)<br />

isequivalentto<br />

Thus<br />

{⊕R Ind(W K/E, W K/E, ν ′ E/F χ E/F)} ⊕ {⊕S Ind(W K/E, W K/Eν , ν′ Eν/Fν χ Eν/F)}.<br />

Ind(W K/F, W K/E ′, χ E ′ /F)<br />

<br />

<br />

.


Chapter14 231<br />

willbeequivalentto<strong>the</strong>directsum<strong>of</strong><br />

and<br />

⊕R Ind(W K/F, W K/E, ν ′ E/F χ E/F)<br />

⊕S Ind(W K/F, W K/Eν , ν′ Eν/Fν χ Eν/F).<br />

If νisin RwecanapplyLemma15.1toseethat<br />

isequivalentto<br />

Wecanobtain<br />

Ind (W K/F, W K/E, ν ′ E/F χ E/F)<br />

{⊕µ∈T Ind(W K/F, W K/Fµ , µ′ ν ′ Fµ/F χ Fµ/F)} ⊕ ν ′ χF.<br />

Ind (W K/F, W K/Fν , ν′ Eν/Fν χ Eν/F)<br />

byfirstinducingfrom W K/Eν to W K/Fν and<strong>the</strong>nfrom W K/Fν to W K/F.<br />

If Tνisaset<strong>of</strong>representativesfor<strong>the</strong>orbits<strong>of</strong> S(K/L)under<strong>the</strong>action<strong>of</strong> G(K/Fν)and<br />

Fν,µis<strong>the</strong>fixedfield<strong>of</strong><strong>the</strong>isotropygroup<strong>of</strong> µin Tν<strong>the</strong>n,byLemma15.1again,<br />

isequivalentto<br />

Ind (W K/Fν , W K/Eν , ν′ Eν/Fν χ Eν/F)<br />

⊕Tν Ind (W K/Fν , W K/Fν,µ , µ′ ν ′ F ν,µ/Fν χ Fν,µ/F).<br />

Since [K : Fν] < [K : F]if νbelongsto S,wecanapply<strong>the</strong>inductionassumptiontoseethat<br />

isequalto<br />

<br />

∆(ν ′ Eν/Fν χ Eν/F, ψ Eν/F) λ(Eν/Fν, ψ Fν/F)<br />

∆(µ<br />

µ∈Tν<br />

′ ν ′ Fν,µ/FνχFν,µ/F, ψFν/F) λ(Fν,µ/Fν, ψFν/F). Thisequalitywillbereferredtoasrelation(14.19).<br />

Itals<strong>of</strong>ollowsthat<br />

isequivalentto<br />

Ind(W K/F, W K/Eν , ν′ Eν/Fν χ Eν/F)<br />

⊕µ∈Tν Ind(W K/F, W K/Fν,µ , µ′ ν ′ Fν,µ/Fν χ Fν,µ/F).


Chapter14 232<br />

Thefields Fνand Fν,µallliebetween Fand L.Thuswehaveexpressed<br />

asadirectsum<strong>of</strong>terms<strong>of</strong><strong>the</strong>form<br />

Ind(W K/F, W K/E ′, χ E ′ /F) (14.20)<br />

Ind(W K/F, W K/M, χM) (14.21)<br />

where Mliesbetween Fand L.Moreoversucharepresentationisinfactarepresentation<strong>of</strong><br />

W K/Fobtainedbyinflatingarepresentation<strong>of</strong> W L/F,namely,byinflating<br />

Ind(W L/F, W L/M, χM).<br />

Thusanyo<strong>the</strong>rexpression<strong>of</strong>(14.20)asasum<strong>of</strong>representations<strong>of</strong><strong>the</strong>form(14.21)willlead,<br />

byanapplication<strong>of</strong><strong>the</strong>inductionassumptionto L/F,toanidentitybetween<strong>the</strong>numbers<br />

∆(χM, ψ M/F).<br />

Toobtainano<strong>the</strong>rsuchexpression,weobservethat<strong>the</strong>representation(14.20)canbe<br />

obtainedbyfirstinducingfrom W K/E ′to W K/F ′and<strong>the</strong>nfrom W K/F ′to W K/F. If T ′ is<br />

aset<strong>of</strong>representativesfor<strong>the</strong>orbits<strong>of</strong>non­trivialcharactersin S(K/L)under<strong>the</strong>action<strong>of</strong><br />

G(K/F ′ )and F ′ µ is<strong>the</strong>fixedfield<strong>of</strong><strong>the</strong>isotropygroupin G(K/F ′ )<strong>of</strong> µin T ′ <strong>the</strong>n<br />

isequivalentto<br />

Ind(W K/F ′, W K/E ′, χ E ′ /F)<br />

{⊕µ∈T ′ Ind(W K/F ′, W K/F ′ µ , µ′ χ F ′ µ /F } ⊕ χ F ′ /F.<br />

Thus(14.20)isequivalentto<strong>the</strong>directsum<strong>of</strong><br />

and<br />

Ind(W K/F, W K/F ′, χ F ′ /F)<br />

⊕µ∈T ′ Ind(W K/F, W K/F ′ µ , µ ′ χ F ′ µ /F).<br />

Weshalldescribe<strong>the</strong>resultantidentityinamoment.Wefirstapply<strong>the</strong>inductionassumption<br />

to<strong>the</strong>extension K/F ′ toseethat<br />

isequalto<br />

∆(χ F ′ /F, ψ F ′ /F) <br />

∆(χ E ′ /F, ψ E ′ /F)λ(E ′ /F ′ , ψ F ′ /F)<br />

µ∈T ′ ∆(µ′ χ F ′ µ /F, ψ F ′ µ /F) λ(F ′ µ /F ′ , ψ F ′ /F).


Chapter14 233<br />

Thisequalitywillberelation(14.22).<br />

Thetwoexpressionsfor<strong>the</strong>representation(14.20)leadto<strong>the</strong>conclusionthat<strong>the</strong>product<br />

<strong>of</strong> <br />

ν∈R ∆(ν′ χF,ψF) (14.23)<br />

and <br />

and <br />

ν∈S<br />

ν∈R<br />

<br />

isequalto<strong>the</strong>product<strong>of</strong><br />

<br />

µ∈Tν<br />

and <br />

µ∈T ∆(µ′ ν ′ Fµ/F χ Fµ/F, ψ Fµ/F) λ(Fµ/F, ψF) (14.24)<br />

∆(µ ′ ν ′ Fν,µ/Fν χ Fν,µ/F, ψ Fν,µ/F) λ(Fν,µ/F, ψF) (14.25)<br />

∆(χ F ′ /F, ψ F ′ /F) λ(F ′ /F, ψF)<br />

µ∈T ′ ∆(µ′ χ F ′ µ /F,ψ F ′ µ /F) λ(F ′ µ/F, ψF).<br />

Applyingrelation(14.22)andLemma4.5weseethat<strong>the</strong>second<strong>of</strong><strong>the</strong>setwoproductsisequal<br />

to<br />

∆(χ E ′ /F, ψ E ′ /F) λ(E ′ /F ′ , ψ F ′ /F) λ(F ′ /F, ψF) [E′ :F ′ ] .<br />

Accordingto<strong>the</strong>relation(14.18)thisexpressionis<strong>the</strong>product<strong>of</strong><br />

<br />

<br />

ν∈R ∆(ν′ E/F χ <br />

<br />

E/F,ψ E/F)<br />

ν∈S ∆(ν′ E/F χ <br />

E/F,ψ E/F)<br />

and <br />

and<br />

ν∈S λ(Eν/E, ψ E/F)<br />

λ(E ′ /E, ψ E/F) −1 λ(E ′ /F ′ , ψ F ′ /F) λ(F ′ /F, ψF) [E′ :F ′ ] . (14.26)<br />

Equatingthisfinalproductto<strong>the</strong>product<strong>of</strong>(14.23),(14.24),and(14.25)and<strong>the</strong>nmaking<br />

certaincancellationsbymeans<strong>of</strong>(14.19),weseethat<strong>the</strong>product<strong>of</strong>(14.23)and(14.24)and<br />

<br />

isequalto<strong>the</strong>product<strong>of</strong><br />

ν∈S<br />

<br />

µ∈Tν<br />

<br />

λ −1 (Fν,µ/Fν, ψ Fν/F) λ(Fν,µ/F, ψF)<br />

ν∈R ∆(ν′ E/F χ E/F,ψ E/F)


Chapter14 234<br />

and <br />

and<strong>the</strong>expression(14.26).<br />

Inparticular,<strong>the</strong>expression<br />

<br />

ν∈R<br />

ν∈S λ−1 (Eν/Fν, ψ Fν/F) λ(Eν/E, ψ E/F)<br />

∆(ν ′ χF,ψF) <br />

isindependent<strong>of</strong> χF.Taking χFtobetrivialweseethat<br />

isequalto<br />

Theset<br />

<br />

ν∈R<br />

µ∈T ∆(µ′ ν ′ Fµ/F χ Fµ/F, ψ Fµ/F)<br />

∆(ν ′ E/F χ E/F,ψ E/F)<br />

′ ∆(ν χF,ψF) <br />

µ∈T ∆(µ′ ν ′ Fµ/F χFµ/F, ψFµ/F) ∆(ν ′ E/F χE/F, ψE/F) <br />

µ∈T ∆(µ′ ν ′ Fµ/F , ψ <br />

Fµ/F)<br />

<br />

ν∈R<br />

∆(ν ′ , ψF)<br />

∆(ν ′ E/F , ψ E/F) .<br />

R ′ = {ν ′ | ν ∈ R}<br />

isagroup<strong>of</strong>characters<strong>of</strong> CFor<strong>of</strong> H.Regardedascharacters<strong>of</strong> H<strong>the</strong>elements<strong>of</strong> R ′ arejust<br />

thosecharacterswhicharetrivialon H1.Asagroup R ′ iscyclicanditsorderisapower<strong>of</strong> ℓ.<br />

Theargumentusedin<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma14.4showsthat<br />

and <br />

<br />

ν∈R ∆(ν′ , ψF) ∼ℓ 1<br />

ν∈R ∆(ν′ E/F , ψ E/F) ∼ℓ 1.<br />

If m(χF)is0or1,Lemma14.5isaconsequence<strong>of</strong>Lemma14.2.Wemayaswellsuppose<br />

<strong>the</strong>reforethat m(χF) > 1. If νbelongsto R<strong>the</strong>n ν ′ is1on N L/FCL. Therefore m(ν ′ ),as<br />

wellas m(ν ′ Fµ/F )and m(ν′ E/F )isatmost1.Wesawin<strong>the</strong>beginning<strong>of</strong>thisparagraphthat<br />

m(χ E/F)wouldalsobeatleast2. Wealsosawthat m(µ ′ χ Fµ/F)wouldbeei<strong>the</strong>r t + 1or


Chapter14 235<br />

ψ Fµ/F(m − 1) + 1. Inanycaseitisatleast2. Also m(µ ′ ) = t + 1isatleast2. Lemma9.5<br />

<strong>the</strong>reforeimplies<strong>the</strong>followingrelations:<br />

Weconcludefinallythat<br />

∆(ν ′ χF,ψF) ∼ℓ ∆(χF, ψF)<br />

∆(ν ′ E/F χ E/F,ψ E/F ∼ℓ ∆(χ E/F, ψ E/F)<br />

∆(µ ′ ν ′ Fµ/F χ Fµ/F, ψ Fµ/F ∼ℓ ∆(µ ′ χ Fµ/F, ψ Fµ/F)<br />

∆(µ ′ ν ′ Fµ/F , ψ Fµ/F) ∼ℓ ∆(µ ′ , ψ Fµ/F).<br />

<br />

∆(χF, ψF) <br />

µ∈T ∆(µ′ χFµ/F, ψFµ/F) ∆(χE/F,ψ E/F) <br />

µ∈T ∆(µ′ , ψFµ/F) if ris<strong>the</strong>number<strong>of</strong>elementsin R.Thelemmafollows.<br />

r<br />

∼ℓ 1


Chapter15 236<br />

Chapter Fifteen.<br />

Ano<strong>the</strong>r Lemma<br />

Suppose K/Fisnormaland G = G(K/F).Suppose Hisasubgroup<strong>of</strong> Gand Cisan<br />

abeliannormalsubgroup<strong>of</strong> G.Let Ebe<strong>the</strong>fixedfield<strong>of</strong> Hand Lthat<strong>of</strong> C.If µisacharacter<br />

<strong>of</strong> Cand hbelongsto H,define µ h by<br />

µ h (c) = µ(hch −1 ).<br />

Theset<strong>of</strong>characters<strong>of</strong> Cmaybeidentifiedwith S(K/L).If αbelongsto CL<br />

µ h (α) = µ(h(α)).<br />

Theset<strong>of</strong>elementsin S(K/L)whicharetrivialon H ∩ Cisinvariantunder H.Let Tbeaset<br />

<strong>of</strong>representativesfor<strong>the</strong>orbits<strong>of</strong> Hinthisset.If µ ∈ Tlet Hµbe<strong>the</strong>isotropygroup<strong>of</strong> µ,let<br />

Gµ = HµCandlet Fµbe<strong>the</strong>fixedfield<strong>of</strong> Gµ.Defineacharacter µ ′ <strong>of</strong> Gµby<br />

µ ′ (hc) = µ(c)<br />

if h ∈ Hµand c ∈ C. µ ′ mayberegardedasacharacter<strong>of</strong> CFµ .<br />

Lemma 15.1<br />

If χFisaquasi­character<strong>of</strong> CF<strong>the</strong>n<br />

isequivalentto<br />

ρ = Ind(W K/F, W K/E, χ E/F)<br />

⊕µ∈T Ind(W K/F, W K/Fµ , µ′ χ Fµ/F).<br />

Let G ′ = HCandlet F ′ be<strong>the</strong>fixedfield<strong>of</strong> G ′ . F ′ iscontainedin Eandin<strong>the</strong>fields Fµ.<br />

Because<strong>of</strong><strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocessitisenoughtoshowthat<br />

isequivalentto<br />

Ind(W K/F ′, W K/E, χ E/F)<br />

⊕µ∈TInd(W K/F ′, W K/Fµ , µ′ χ Fµ/F).


Chapter15 237<br />

If<br />

<strong>the</strong>n<br />

and<br />

χ ′ F ′ = χ F ′ /F<br />

χ E/F = χ ′ E/F ′<br />

χ Fµ/F = χ ′ Fµ/F ′.<br />

Consequentlywemaysuppose,withnoloss<strong>of</strong>generality,that F ′ is F.<br />

by<br />

If K ′ is<strong>the</strong>fixedfield<strong>of</strong> H ∩Cand ν ∈ S(K ′ /L)let ϕνbe<strong>the</strong>functionon W K/Fdefined<br />

ϕν(hc) = χF(τ K/F(hc)) ν(τ K/L(c))<br />

for hin W K/E, cin W K/L. ρactson<strong>the</strong>space<strong>of</strong>all<strong>functions</strong> ϕon W K/Fsatisfying<br />

forall hin W K/Eandall gin W K/F.Theset<br />

isabasisforthisspace.Clearly<br />

if cbelongsto W K/Land<br />

ϕ(hg) = χF(τ K/F(h)) ϕ(g)<br />

{ϕν | ν ∈ S(K ′ /L)}<br />

ρ(c)ϕν = χF(τ K/F(c)) ν(τ K/L(c))ϕν<br />

ρ(h)ϕν = χF(τ K/F(h))ϕν ′,<br />

with ν ′ = νh−1,if hbelongsto WK/E.Thusif Risanorbit<strong>of</strong> Hin S(K ′ /L)<br />

isaninvariantsubspace.<br />

⊕ν∈RCϕν<br />

= V<br />

Let µbe<strong>the</strong>elementcommonto Tand Randconsider<br />

If W K/Fis<strong>the</strong>disjointunion<br />

σ = Ind(W K/F, W K/Fµ , µ′ χ Fµ/F).<br />

r<br />

i=1 W K/Fµ hi


Chapter15 238<br />

andif ϕi(w) = 0unless<br />

while<br />

for win W K/Fµ <strong>the</strong>n<br />

w ∈ W K/Fµ hi<br />

ϕi(whi) = µ ′ χ Fµ/F(τ K/Fµ (w))<br />

{ϕi | 1 ≤ i ≤ r}<br />

isabasisfor<strong>the</strong>space Uonwhich σacts.If νi = µ hi andif λis<strong>the</strong>mapfrom Uto V which<br />

sends ϕito χ −1<br />

F (τ K/F(hi))ϕνi <strong>the</strong>n,asoneverifieseasily,<br />

forall win W K/F.Thelemmafollows.<br />

Thelemmahasacorollary.<br />

Lemma 15.2<br />

IfTheorem2.1isvalidfor K/F<strong>the</strong>n<br />

isequalto<br />

IfTheorem2.1isvalid<br />

isequalto<br />

Taking χF = 1,weseethat<br />

<br />

λσ(w) = ρ(w)λ<br />

∆(χ E/F,ψ E/F) <br />

<br />

µ∈T ∆(µ′ , ψ Fµ/F)<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F).<br />

∆(χ E/F, ψ E/F) λ(E/F, ψF)<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F) λ(Fµ/F, ψF).<br />

λ(E/F, ψF) = <br />

µ∈T ∆(µ′ , ψ Fµ/F) λ(Fµ/F, ψF).<br />

Substitutingthisinto<strong>the</strong>firstequalityandcancelling<strong>the</strong>non­zer<strong>of</strong>actor<br />

weobtain<strong>the</strong>lemma.<br />

<br />

µ∈T λ(Fµ/F, ψF)


Chapter15 239<br />

Todefine<strong>the</strong> λ­functionweshallneed<strong>the</strong>followinglemma.<br />

Lemma 15.3<br />

SupposeTheorem2.1isvalidforallGaloisextensions K1/F1with F ⊆ F1 ⊆ K1 ⊆ K<br />

and [K1 : F1] < [K : F].Then<br />

isequalto<br />

∆(χ E/F,ψ E/F) <br />

<br />

µ∈T ∆(µ′ , ψ Fµ/F)<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F).<br />

Theconclusion<strong>of</strong>thislemmais<strong>the</strong>sameasthat<strong>of</strong><strong>the</strong>previousone.Thereishowevera<br />

criticaldifferencein<strong>the</strong>assumptions.<br />

Let F ′ be<strong>the</strong>fixedfield<strong>of</strong> HC.If<br />

<strong>the</strong>nforallseparableextensions E ′ <strong>of</strong> F ′<br />

ψ ′ F ′ = ψ F ′ /F<br />

ψ ′ E ′ /F ′ = ψ E ′ /F.<br />

If [K : F ′ ] < [K : F]<strong>the</strong>relation<strong>of</strong><strong>the</strong>lemmaisaconsequence<strong>of</strong><strong>the</strong>inductionassumption<br />

and<strong>the</strong>previouslemma.Wethussupposethat F = F ′ and G = HC.<br />

Supposeinadditionthat<strong>the</strong>reisasubgroup C1<strong>of</strong> C,whichisnei<strong>the</strong>r Cnor {1},whose<br />

normalizercontains H. C1is<strong>the</strong>nanormalsubgroup<strong>of</strong> G.Let F1be<strong>the</strong>fixedfield<strong>of</strong> HC1<br />

and L1<strong>the</strong>fixedfield<strong>of</strong> C1.Lemma15.1appliesto<strong>the</strong>extension K/F1.Thus<strong>the</strong>rearefields<br />

A1, . . ., Arlyingbetween F1and L1andquasi­characters χA1 , . . ., χArsuchthat isequivalentto<br />

Theinductionassumption<strong>the</strong>nimpliesthat<br />

Ind(W K/F1 , W K/E, χ E/F)<br />

⊕ r i=1 Ind(WK/F1 , WK/Ai , χAi ).<br />

∆(χ E/F, ψ E/F) λ(E/F1, ψ F1/F) (15.1)


Chapter15 240<br />

isequalto<br />

Thus<br />

r<br />

i=1 ∆(χAi , ψ Ai/F) λ(Ai/F1, ψ F1/F). (15.2)<br />

Inducing<strong>the</strong>first<strong>of</strong><strong>the</strong>setworepresentationsfrom W K/F1 to W K/F,weobtain<br />

isequivalentto<br />

Ind(W K/F, W K/E, ψ E/F).<br />

⊕µ∈T Ind(W K/F, W K/Fµ , µ′ χ Fµ/F) (15.3)<br />

Werecallthat<strong>the</strong>reexistsurjectivehomomorphisms<br />

⊕ r i=1 Ind(WK/F, WK/Ai , χAi ). (15.4)<br />

τ K/F,L1/F : W K/F −→ W L1/F<br />

τ K/Ai,L1/Ai : W K/Ai −→ W L1/Ai<br />

τ K/Fµ,L1/Fµ : W K/Fµ −→ W L1/Fµ<br />

whosekernelsareallequalto<strong>the</strong>commutatorsubgroup W c K/L1 <strong>of</strong> WK/L1 . Moreover<strong>the</strong><br />

diagrams<br />

and<br />

W K/Ai −→ W L1/Ai<br />

↓ ↓<br />

W K/F −→ W L1/F<br />

W K/Fµ −→ W L1/Fµ<br />

↓ ↓<br />

W K/F −→ W L1/F<br />

maybesupposedcommutative. Since W c K/L1 liesin<strong>the</strong>kernel<strong>of</strong> χAi and µ′ χ Fµ/F <strong>the</strong><br />

equivalence<strong>of</strong>(15.3)and(15.4)amountsto<strong>the</strong>equivalence<strong>of</strong><br />

and<br />

⊕µ∈TInd(W L1/F, W L1/Fµ , µ′ χ Fµ/F)<br />

⊕ r i=1Ind(WL1/F, WL1/Ai , χAi ).


Chapter15 241<br />

Theinductionassumptionappliedto<strong>the</strong>extension L1/Fimpliesthat<br />

r<br />

i=1 ∆(χAi , ψ Ai/F) λ(Ai/F, ψF)<br />

isequalto<br />

<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F) λ(Fµ/F, ψF).<br />

Italsoimpliesthat<br />

λ(Ai/F, ψF) = λ(Ai/F1, ψ F1/F) λ(F1/F, ψF) [Ai:F1] .<br />

Since <br />

i [Ai : F1] = [E : F1]<br />

weinferfrom<strong>the</strong>equality<strong>of</strong>(15.1)and(15.2)that<br />

isequalto<br />

∆(χ E/F,ψ E/F) λ(E/F1, ψ F1/F) λ(F1/F, ψF) [E:F1]<br />

<br />

µ∈T ∆(µ′ χ Fµ/F, ψ Fµ/F) λ(Fµ/F, ψF).<br />

Taking χF = 1t<strong>of</strong>ind<strong>the</strong>value<strong>of</strong><br />

λ(E/F1, ψ F1/F) λ(F1/F, ψF) [E:F1]<br />

and<strong>the</strong>nsubstituting<strong>the</strong>resultinto<strong>the</strong>equationandcancelling<strong>the</strong>commonfactorsweobtain<br />

<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemma.<br />

Nowsupposethat Hcontainsanormalsubgroup H1 = {1}whichliesin<strong>the</strong>centralizer<br />

<strong>of</strong> C. H1isanormalsubgroup<strong>of</strong> Gif,asweareassuming, G = HC. K1,<strong>the</strong>fixedfield<strong>of</strong><br />

H1,contains Eandall<strong>the</strong>fields Fµ.Lemma15.1toge<strong>the</strong>rwith<strong>the</strong>argumentjustappliedto<br />

L1showsthat<br />

Ind(W K1/F, W K1/E, χE)<br />

isequivalentto<br />

⊕µ∈TInd(W K1/F,W K1/Fµ , µ′ χ Fµ/F).<br />

Inthiscase<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmafollowsfrom<strong>the</strong>inductionassumptionappliedtoK1/F.<br />

Wehavefinallytosupposethat G = HC, Ccontainsnopropersubgroupinvariant<br />

under H,and Hcontainsnonormalsubgrouplyingin<strong>the</strong>centralizer<strong>of</strong> C. Inparticular<br />

H ∩C = {1}.If Zis<strong>the</strong>centralizer<strong>of</strong> C<strong>the</strong>n Z = (Z ∩H)Cand Z ∩Hisanormalsubgroup<br />

<strong>of</strong> H.Consequently Z = C.If Disanormalsubgroup<strong>of</strong> Gand Ddoesnotcontain C<strong>the</strong>n<br />

D ∩ C = {1}.<br />

Thisimpliesthat Discontainedin Z.Thus Discontainedin Cand D = {1}.If H = {1}<strong>the</strong><br />

assertion<strong>of</strong><strong>the</strong>lemmaisthat<strong>of</strong><strong>the</strong>thirdandfourthmainlemmas.If H = {1}<strong>the</strong>n G = C<br />

and Ciscyclic<strong>of</strong>primeordersothat<strong>the</strong>assertionisthat<strong>of</strong><strong>the</strong>firstmainlemma.


Chapter16 242<br />

Chapter Sixteen.<br />

Definition <strong>of</strong> <strong>the</strong> λ Functions<br />

Inthisand<strong>the</strong>nextthreeparagraphs,wetakeafixedGaloisextension K/F,assume<br />

thatTheorem2.1isvalidforallGaloisextensions K ′ /F ′ with F ⊆ F ′ ⊆ K ′ ⊆ Kand<br />

[K ′ : F ′ ] < [K : F],andprovethatitisvalidfor K/Fitself. Thefirststepistodefineand<br />

establishsomesimpleproperties<strong>of</strong><strong>the</strong>functionwhichwillserveas<strong>the</strong> λ­function.<br />

Lemma 16.1<br />

Suppose<br />

E/F ′ −→ λ(E/F ′ , ψF ′)<br />

isaweak λ­functionon P0(K ′ /F ′ ).If σ ∈ G(K ′ /F ′ )let<br />

Then<br />

E σ = {σ −1 (α) | α ∈ E}.<br />

λ(E σ /F ′ , ψF ′) = λ(E/F ′ , ψF ′).<br />

If µisacharacter<strong>of</strong> G(K/E)let µ σ be<strong>the</strong>character<strong>of</strong> G(K/E σ )definedby<br />

AccordingtoLemma13.2<br />

Therepresentation<br />

µ σ (ρ) = µ(σρσ −1 ).<br />

∆(µ σ , ψ E σ /F ′) = ∆(µ, ψ E/F ′).<br />

Ind(G(K ′ /F ′ ), G(K ′ /E), µ)<br />

actson<strong>the</strong>space U<strong>of</strong><strong>functions</strong> ϕon G(K ′ /F ′ )satisfying<br />

ϕ(ρτ) = µ(ρ) ϕ(τ)<br />

forall τin G(K ′ /F ′ )andall ρin G(K ′ /E).Themap ϕ −→ ψwith<br />

ψ(τ) = ϕ(στ)


Chapter16 243<br />

isaG(K ′ /F ′ )isomorphism<strong>of</strong> Uwith<strong>the</strong>spaceonwhich<br />

Ind(G(K ′ /F ′ ), G(K ′ /E σ ), µ σ )<br />

acts.Thus<strong>the</strong>tworepresentationsareequivalent.<br />

If<br />

isequivalentto<br />

<strong>the</strong>n<br />

isequivalentto<br />

⊕ r i=1 Ind(G(K′ /F ′ ), G(K ′ /Ei), µi)<br />

⊕ s j=1Ind(G(K ′ /F ′ ), G(K ′ /Fj), νj)<br />

⊕ r i=1 Ind(G(K′ /F ′ ), G(K ′ /E σ i ), µσ i )<br />

⊕ s j=1 Ind(G(K′ /F ′ ), G(K ′ /F σ j ), νσ j )<br />

and,with<strong>the</strong>conventions<strong>of</strong><strong>the</strong>fourthparagraph,<br />

isequalto<br />

Since<br />

and<br />

r<br />

s<br />

Weconcludethat r<br />

isequalto<br />

Ino<strong>the</strong>rwords<br />

i=1 (χE σ i , ψ E σ i /F ′) λ(Eσ i /F ′ , ψF ′)<br />

j=1 ∆(χF σ j , ψ F σ j /F ′) λ(F σ j /F ′ , ψF ′).<br />

∆(χF σ j , ψ F σ j /F ′) = ∆(χFj , ψ Fj/F ′)<br />

∆(χE σ i , ψ E σ i /F ′) = ∆(χEi , ψ Ei/F ′).<br />

s<br />

i=1 ∆(χEi , ψ Ei/F ′) λ(Eσ i /F ′ , ψF ′)<br />

j=1 ∆(χFj , ψ Fj/F ′) λ(F σ j /F ′ , ψF ′).<br />

E/F ′ −→ λ(E σ /F ′ , ψF ′)<br />

isaweakλ­functionon P0(K ′ /F ′ ).Lemma16.1followsfrom<strong>the</strong>uniqueness<strong>of</strong>such<strong>functions</strong>.<br />

Wereturnto<strong>the</strong>problem<strong>of</strong>definingaλ­functionon P0(K/F). Chooseanon­trivial<br />

abeliannormalsubgroup C<strong>of</strong> G = G(K/F)andlet Lbe<strong>the</strong>fixedfield<strong>of</strong> C. If Eisany


Chapter16 244<br />

fieldlyingbetween Fand Klet Hbe<strong>the</strong>correspondingsubgroup<strong>of</strong> G. Choose<strong>the</strong>set T<br />

<strong>of</strong>charactersand<strong>the</strong>fields Fµasin<strong>the</strong>previousparagraph. Since Fµ ⊆ L<strong>the</strong>numbers<br />

λ(Fµ/F, ψF)aredefined.<br />

Lemma 16.2<br />

Suppose F ⊆ E ⊆ K1 ⊂ = Kwith K1/Fnormalsothat λ(E/F, ψF)isdefined.Then<br />

λ(E/F, ψF) = <br />

µ∈T ∆(µ′ , ψ Fµ/F) λ(Fµ/F, ψF).<br />

Let K1be<strong>the</strong>fixedfield<strong>of</strong> H1.If H1 ∩ C = {1}wemayenlarge K1andreplace H1by<br />

H1 ∩C.Thuswemaysupposethatei<strong>the</strong>r H1iscontainedin Cor H1 ∩C = {1}.Inei<strong>the</strong>rcase<br />

H1iscontainedin<strong>the</strong>centralizer<strong>of</strong> C. Wesawin<strong>the</strong>previousparagraphthatunder<strong>the</strong>se<br />

circumstance<br />

Consequently<br />

Ingeneral,wedefine<br />

Ind(W K1/F, W K1/E, 1) ≃ ⊕µ∈TInd(W K1/F, W K1/Fµ , µ′ ).<br />

λ(E/F, ψF) = <br />

λ(E/F, ψF) = <br />

µ∈T ∆(µ′ , ψ Fµ/F) λ(Fµ/F, ψF).<br />

µ∈T ∆(µ′ , ψ Fµ/F) λ(Fµ/F, ψF)<br />

if E/Fisin P0(K/F) Tis,<strong>of</strong>course,notalwaysuniquelydetermined.Wemayreplaceany<br />

µin Tby µ σ with σin H.Then Hµand Gµarereplacedby σ −1 Hµσand σ −1 Gµσwhile Fµis<br />

replacedby F σ µ and µ′ isreplacedby (µ ′ ) σ .Since<br />

∆(µ ′ , ψ Fµ/F) λ(Fµ/F, ψF) = ∆((µ ′ ) σ , ψ F σ µ /F) λ(F σ µ /F, ψF)<br />

<strong>the</strong>number λ(E/F, ψF)doesnotdependon T. A priori,itmaydependon Cbutthatis<br />

unimportantsince Cisfixedand,<strong>the</strong>uniquenesshavingbeenproved,weareinterestedonly<br />

in<strong>the</strong>existence<strong>of</strong>aλ­function.<br />

Weshallneedonlyoneproperty<strong>of</strong><strong>the</strong>functionjustdefined.<br />

Lemma 16.3


Chapter16 245<br />

If F ⊆ E ⊆ E ′ ⊆ K<strong>the</strong>n<br />

If E = F<strong>the</strong>n<br />

andif E = F<br />

λ(E ′ /F, ψF) = λ(E ′ /E, ψ E/F) λ(E/F, ψF) [E′ :E] .<br />

λ(E ′ /E, ψ E/F) = λ(E ′ /F, ψF)<br />

λ(E ′ /E, ψ E/F)<br />

is<strong>the</strong>value<strong>of</strong><strong>the</strong> λ­function<strong>of</strong> P(K/E),whichisdefinedbyassumption,at E ′ /E.Since<br />

λ(F/F, ψF) = 1<br />

<strong>the</strong>assertionisclearif E = F.Itisalsoclearif E = E ′ .<br />

Let Ebe<strong>the</strong>fixedfield<strong>of</strong> Hasbeforeandlet F ′ be<strong>the</strong>fixedfield<strong>of</strong> HC. Wesuppose<br />

that H = G.Lemma4.5and<strong>the</strong>inductionassumptionimplythat<br />

Therelation<br />

impliesthat<br />

λ(Fµ/F, ψF) = λ(Fµ/F ′ , ψ F ′ /F) λ(F ′ /F, ψF) [Fµ:F ′ ] .<br />

[E : F ′ ] = [Fµ : F ′ ]<br />

λ(E/F, ψF) = λ(E/F ′ , ψ F ′ /F) λ(F ′ /F, ψF) [E:F ′ ] .<br />

Thereisasimilarformulafor λ(E ′ /F, ψF).If F ′ = F<strong>the</strong>inductionassumptionimpliesthat<br />

Since<br />

λ(E ′ /E, ψ E/F) λ(E/F ′ , ψ F ′ /F) [E′ :E] = λ(E ′ /F ′ , ψF ′ /F).<br />

[E ′ : F ′ ] = [E ′ : E] [E : F ′ ]<br />

<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmaisprovedsimplybymultiplyingbothsides<strong>of</strong>thisequationby<br />

λ(F ′ /F, ψF) [E′ :F ′ ] .<br />

Nowsupposethat G = HCand H ∩ C = {1}. Let E ′ be<strong>the</strong>fixedfield<strong>of</strong> H ′ andlet<br />

F ′ be<strong>the</strong>fixedfield<strong>of</strong> H ′ C = G ′ .Eachcharacter<strong>of</strong> H ′ maybeidentifiedwithacharacter<strong>of</strong>


Chapter16 246<br />

CE ′/N K/E ′CKandeachcharacter<strong>of</strong> G ′ maybeidentifiedwithacharacter<strong>of</strong> CF ′/N K/F ′CK.<br />

Anycharacter χE ′<strong>of</strong> H′ maybeextendedtoacharacter χF ′<strong>of</strong> G′ bysetting<br />

if ρ ∈ H ′ and σ ∈ C.Then<br />

χF ′(ρσ) = χ E ′ (ρ)<br />

χE ′ = χ E ′ /F ′.<br />

ItfollowsfromLemma15.1that<strong>the</strong>rearefields<strong>of</strong> Fi(E ′ ), 1 ≤ i ≤ m(E ′ ),lyingbetween F ′<br />

and Landcharacters µ Fi(E ′ )suchthat<br />

isequivalentto<br />

Ind(W K/F ′, W K/E ′, χE ′)<br />

⊕ m(E′ )<br />

i=1 Ind(W K/F ′, W K/Fi(E ′ ), µ Fi(E ′ )χ Fi(E ′ )/F ′).<br />

If E = E ′ sothat F = F ′ <strong>the</strong>inductionassumptionimpliesthat<br />

isequalto m(E ′ )<br />

∆(χE ′, ψ E ′ /F) λ(E ′ /F ′ , ψ F ′ /F)<br />

i=1 ∆(µ Fi(E ′ )χ Fi(E ′ )/F ′, ψ Fi(E ′ )/F) λ(Fi(E)/F ′ , ψ F ′ /F).<br />

Wehaveseenthat<strong>the</strong>lemmaisvalidforanypair E ′ , Eforwhich HC = G.Inparticular,<br />

itisvalidfor<strong>the</strong>pair E ′ , F ′ and<strong>the</strong>pairs Fi(E ′ ), F ′ .Multiplying<strong>the</strong>equalityjustobtained<br />

by<br />

λ(F ′ /F, ψF) [E′ :F ′ ]<br />

weseethat<br />

isequalto<br />

m(E ′ )<br />

∆(χE ′, ψ E ′ /F) λ(E ′ /F, ψF) (16.1)<br />

i=1 ∆(µ Fi(E ′ )χ Fi(E ′ )/F ′, ψ Fi(E ′ )/F) λ(Fi(E ′ )/F, ψF). (16.2)<br />

If F ′ = F<strong>the</strong>equality<strong>of</strong>(16.1)and(16.2),forasuitablechoice<strong>of</strong><strong>the</strong>fields Fi(E ′ ),resultsfrom<br />

Lemma15.1,Lemma15.3,and<strong>the</strong>definition<strong>of</strong><br />

λ(E ′ /F, ψF).<br />

Inanycase<strong>the</strong>equalityisvalidforallfieldslyingbetween Eand K.


Chapter16 247<br />

Suppose E1, . . ., Er, E ′ 1 , . . ., E′ s aresuchfields, χEi isacharacter<strong>of</strong> CEi /N K/Ei CK, χE ′ j<br />

isacharacter<strong>of</strong> C E ′ j /N K/E ′ j CK,and<br />

isequivalentto<br />

Then r<br />

⊕ r i=1Ind(WK/E, WK/Ei , χEi )<br />

⊕ s j=1Ind(W K/E, W K/E ′ j , χE ′ j ).<br />

i=1 [Ei : E] = s<br />

and,by<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocess,<br />

isequivalentto<br />

j=1 [E′ j<br />

⊕ r i=1 ⊕ m(Ei)<br />

k=1 Ind(W K/F, W K/Fk(Ei), µ Fk(Ei) χ Fk(Ei)/Fi )<br />

⊕ s j=1 ⊕m(E′<br />

j )<br />

ℓ=1 Ind(WK/F, WK/Fℓ(E ′ j ), µ Fℓ(E ′ j ) χFℓ(E ′ j )/F ′ j ).<br />

: E] (16.3)<br />

If Eiis<strong>the</strong>fixedfield<strong>of</strong> Hiand E ′ j<strong>the</strong>fixedfield<strong>of</strong> H′ j<strong>the</strong>n Fiand F ′ jare<strong>the</strong>fixedfields<strong>of</strong> HiCand H ′ jC.Thisequivalenceand<strong>the</strong>inductionassumptionfor L/Fimplythat<br />

isequalto<br />

r<br />

s<br />

i=1<br />

j=1<br />

m(Ei)<br />

k=1 ∆(µ Fk(Ei) χ Fk(Ei)/Fi , ψ Fk(Ei)/F) λ(Fk(Ei)/F, ψF)<br />

m(E ′<br />

j )<br />

ℓ=1 ∆(µ Fℓ(E ′ j ) χ Fℓ(E ′ j )/F ′ j , ψ Fℓ(E ′ j )/F) λ(Fℓ(E ′ j<br />

)/F, ψF).<br />

Thisequality,<strong>the</strong>equality<strong>of</strong>(16.1)and(16.2),and<strong>the</strong>relation(16.3)implythat<br />

isequalto<br />

Consequently<br />

r<br />

s<br />

i=1 ∆(χEi , ψ Ei/F) λ(Ei/F, ψF) λ(E/F, ψF) −[Ei:E]<br />

j=1 ∆(χ E ′ j , ψ E ′ j /F) λ(E ′ j /F, ψF) λ(E/F, ψF) −[E′<br />

E ′ −→ λ(E ′ /F, ψF) λ(E/F, ψF) −[E′ :E]<br />

isaweak λ­functionon P0(K/E).Thelemma<strong>of</strong>uniquenessimpliesthat<br />

λ(E ′ /F, ψF) λ(E/F, ψF) −[E′ :E] = λ(E ′ /E, ψE/F).<br />

j :E] .


Chapter16 248<br />

Thisis,<strong>of</strong>course,<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemma.<br />

Atthispoint,wehaveproved<strong>the</strong>lemmawhenvarioussupplementaryconditionsare<br />

satisfied.Beforeprovingit,ingeneral,wemakeanobservation.Suppose<br />

F ⊆ E ⊆ E ′ ⊆ E ′′ ⊆ K<br />

and<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmaisvalidfor E ′′ /E ′ and E ′ /E.Then<br />

and<br />

Moreover,byinduction,<br />

λ(E ′′ /F, ψF) = λ(E ′′ /E ′ , ψ E ′ /F) λ(E ′ /F, ψF) [E′′ :E ′ ]<br />

λ(E ′ /F, ψF) = λ(E ′ /E, ψ E/F) λ(E/F, ψF) [E′ :E] .<br />

λ(E ′′ /E, ψ E/F) = λ(E ′′ /E ′ , ψ E ′ /F) λ(E ′ /E, ψ E/F) [E′′ :E ′ ] .<br />

Theassertionfor E ′′ /Eisobtainedbysubstituting<strong>the</strong>secondrelationin<strong>the</strong>firstandsimplifyingaccordingto<strong>the</strong>third.<br />

If<strong>the</strong>lemmaisfalseingeneral,choseamongstall<strong>the</strong>extensionsin P(K/F)forwhichit<br />

isfalseone E ′ /Eforwhich [E ′ : E]isaminimum.Let Ebe<strong>the</strong>fixedfield<strong>of</strong> Hand E ′ that<br />

<strong>of</strong> H ′ .Accordingto<strong>the</strong>previousdiscussion G = HC, H ∩ C = {1},and<strong>the</strong>rearen<strong>of</strong>ields<br />

lyingbetween Eand E ′ . If H ′ ∩ C = H ∩ C,whichisanormalsubgroup<strong>of</strong> G,<strong>the</strong>fields<br />

F, E,and E ′ arecontainedin<strong>the</strong>fixedfield<strong>of</strong> H ∩ Cand<strong>the</strong>assertionisaconsequence<strong>of</strong><br />

<strong>the</strong>inductionassumption.Thus H ′ isapropersubgroup<strong>of</strong> H ′ (H ∩ C).Because<strong>the</strong>reareno<br />

intermediatefields H = H ′ (H ∩ C).<br />

Aswehaveseen<strong>the</strong>rearefields E1, . . ., Erlyingbetween Eand<strong>the</strong>fixedfield K1<strong>of</strong><br />

, . . ., µErsuchthat H ∩ Candcharacters µE1<br />

isequivalentto<br />

Then<br />

λ(E ′ /E, ψ E/F) = r<br />

Ind(W K/E, W K/E ′, 1)<br />

⊕ r i=1Ind(WK/E, WK/Ei , µEi ).<br />

By<strong>the</strong>inductionassumption,appliedto K1/F,<br />

i=1 ∆(µEi , ψ Ei/E) λ(Ei/E, ψ E/F).<br />

λ(Ei/E, ψ E/F) λ(E/F, ψF) [Ei:E] = λ(Ei/F, ψF).


Chapter16 249<br />

Thus<br />

isequalto<br />

λ(E ′ /E, ψ E/F) λ(E/F, ψF) [E′ :E]<br />

r<br />

Moreover,by<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocess,<br />

isequivalentto<br />

i=1 ∆(µEi , ψ Ei/E) λ(Ei/F, ψF). (16.4)<br />

Ind(W K/F, W K/E ′, 1) (16.5)<br />

⊕ r i=1Ind(WK/F, WK/Ei , µEi ). (16.6)<br />

<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand,<strong>the</strong>rearefields F1, . . ., Fscontainedin Landcharacters νF1 , . . ., νFssuch that(16.5)isequivalentto<br />

⊕ s j=1Ind(WK/F, WK/Fj , νFj ) (16.7)<br />

andsuchthat,bydefinition,<br />

λ(E ′ /F, ψF) = s<br />

j=1 ∆(νFj , ψ Fj/F) λ(Fj/F, ψF). (16.8)<br />

Since<strong>the</strong>representations(16.6)and(16.7)areequivalent<strong>the</strong>inductionassumption,appliedto<br />

K1/F,showsthat(16.4)isequalto<strong>the</strong>rightside<strong>of</strong>(16.8).Thisisacontradiction.


Chapter17 250<br />

Chapter Seventeen.<br />

A Simplification.<br />

Weshalluse<strong>the</strong>symbol Ωtodenoteanorbitin<strong>the</strong>set<strong>of</strong>quasi­characters<strong>of</strong> CKunder<br />

<strong>the</strong>action<strong>of</strong> G(K/F)or,whatis<strong>the</strong>same,under<strong>the</strong>action<strong>of</strong> W K/F on CKbymeans<strong>of</strong><br />

innerautomorphisms. If χKisaquasi­character<strong>of</strong> CKitsorbitwillbedenoted Ω(χK). If<br />

ρisarepresentation<strong>of</strong> W K/F<strong>the</strong>restriction<strong>of</strong> ρto CKis<strong>the</strong>directsum<strong>of</strong>one­dimensional<br />

representations.Let S(ρ)be<strong>the</strong>collection<strong>of</strong>quasi­characterstowhich<strong>the</strong>seone­dimensional<br />

representationscorrespond.<br />

Suppose<br />

Let W K/Fbe<strong>the</strong>disjointunion<br />

Define<strong>the</strong>function ϕiby<br />

ρ = Ind(W K/F, W K/E, χE).<br />

m<br />

i=1 W K/Ewi.<br />

ϕi(wwj) = 0 w ∈ W K/E, j = i<br />

ϕi(wwi) = χE(τ K/Ew) w ∈ W K/E.<br />

{ϕ1, . . ., ϕm}isabasisfor<strong>the</strong>space<strong>of</strong><strong>functions</strong><strong>of</strong>which ρacts.If a ∈ CK<strong>the</strong>n<br />

wwja = w(wjaw −1<br />

j )wj<br />

and wjaw −1<br />

j belongsto CKwhich,<strong>of</strong>course,liesin W K/E.Thus<br />

if σiis<strong>the</strong>image<strong>of</strong> wiin G(K/F).Thus<br />

Suppose E1, . . ., Er, E ′ 1 , . . ., E′ s<br />

χE ′ j isaquasi­character<strong>of</strong> E′ j .Let<br />

ρ(a)ϕi = χE(τ K/E(wiaw −1<br />

i ))ϕi = χ σi<br />

K/E (a)ϕi<br />

S(ρ) = Ω(χ K/E).<br />

liebetween Fand K, χEi isaquasi­character<strong>of</strong> Ei,and<br />

ρi = Ind(WK/F, WK/Ei , χEi )


Chapter17 251<br />

andlet<br />

Suppose ρiactson Viand ρ ′ j<br />

ρ ′ j = Ind(W K/F, W K/E ′ j , χ E ′ j ).<br />

′ actson V j .Thedirectsum<strong>of</strong><strong>the</strong>representations ρiactson<br />

V = ⊕ r i=1 Vi<br />

and<strong>the</strong>directsum<strong>of</strong><strong>the</strong>representations ρ ′ j actson<br />

Let<br />

V ′ = ⊕ s ′<br />

j=1V j .<br />

VΩ = ⊕ {i | χK/Ei ∈Ω}Vi<br />

V ′ Ω = ⊕ {i | χK/E ′ ∈Ω}V<br />

j<br />

′<br />

j .<br />

Anyisomorphism<strong>of</strong> Vwith V ′ whichcommuteswith<strong>the</strong>action<strong>of</strong> W K/Ftakes VΩto V ′ Ω .<br />

and<br />

If χ K/Ei ∈ Ω(χK)<strong>the</strong>reisaσin G(K/F)suchthat χK = χ σ K/Ei .Then<br />

ρi ≃ Ind(W K/F, W K/E σ i , χ σ Ei )<br />

∆(χEi , ψ Ei/F) λ(Ei/F, ψF) = ∆(χ σ Ei , ψ E σ i /F) λ(E σ i /F, ψF).<br />

WeconcludethatTheorem2.1isaconsequence<strong>of</strong><strong>the</strong>followinglemma.<br />

Lemma 17.1<br />

Suppose χKisaquasi­character<strong>of</strong> CK.Suppose E1, . . ., Er, E ′ 1 , . . ., E′ s<br />

and K, χEi isaquasi­character<strong>of</strong> CEi , χE ′ j isaquasi­character<strong>of</strong> CE ′ j ,and<br />

isequivalentto<br />

If χ K/Ei = χ K/E ′ j = χKforall iand j<strong>the</strong>n<br />

ρ = ⊕ r i=1Ind(WK/F, WK/Ei , χEi )<br />

ρ ′ = ⊕ s j=1 Ind(W K/F, W K/E ′ j , χ E ′ j ).<br />

r<br />

i=1 ∆(χEi , ψ Ei/F) λ(Ei/F, ψF)<br />

liebetween F


Chapter17 252<br />

isequalto<br />

s<br />

j=1 ∆(χ E ′ j , ψ E ′ j /F), λ(E ′ j<br />

/F, ψF).<br />

Let F(χK)be<strong>the</strong>fixedfield<strong>of</strong><strong>the</strong>isotropygroup<strong>of</strong> χK.Let ρacton Vandlet ρ ′ acton<br />

V ′ .Let<br />

V (χK) = {v ∈ V | ρ(a)v = χK(a)v forall a in CK}.<br />

Define V ′ (χK)inasimilarfashion. Itisclearthatanyisomorphism<strong>of</strong> V with V ′ which<br />

commuteswith<strong>the</strong>action<strong>of</strong> W K/Ftakes V (χK)to V ′ (χK).Thegroup W K/F(χK)leavesboth<br />

V (χK)and V ′ (χK)invariantanditsrepresentationson<strong>the</strong>setwospacesareequivalent.<br />

Let<br />

Ind(WK/F, WK/Ei , χEi )<br />

actson Vianddefine Vi(χK)in<strong>the</strong>obviousmanner.Then<br />

Defining V ′<br />

j<br />

V (χK) = ⊕ r i=1 Vi(χK).<br />

and V ′<br />

j (χK)inasimilarmanner,wehave<br />

V ′ (χK) = ⊕ s ′<br />

j=1V j (χK).<br />

Itisclearthat<strong>the</strong>representation<strong>of</strong> WK/F(χK)on Vi(χK)isequivalentto<br />

Thus<br />

isequivalentto<br />

Ind(WK/F(χK), WK/Ei , χEi ).<br />

⊕ r i=1Ind(WK/F(χK), WK/Ei , χEi )<br />

⊕ s j=1 Ind(W K/F(χK), W K/E ′ j , χE ′ j ).<br />

If F(χK) = F<strong>the</strong>assertion<strong>of</strong><strong>the</strong>lemmafollowsfrom<strong>the</strong>inductionassumptionandLemma<br />

16.3.


Chapter18 253<br />

Chapter Eighteen.<br />

Nilpotent Groups.<br />

InthisparagraphweproveLemma17.1assumingthatF = F(χK)andthatG = G(K/F)<br />

isnilpotent.<br />

Lemma 18.1<br />

Suppose Disanormalsubgroup<strong>of</strong> G<strong>of</strong>primeorder ℓwhichiscontainedin<strong>the</strong>center<br />

<strong>of</strong> G.Let Mbe<strong>the</strong>fixedfield<strong>of</strong> D.Suppose F ⊆ E ⊆ Kand χEisaquasi­character<strong>of</strong> CE.<br />

Supposealsothat F(χ K/E) = F.<br />

(a)Therearefields F1, . . ., Frcontainedin Mandquasi­characters χF1 , . . ., χFrsuchthat χK/Fi = χK/Eandsuchthat isequivalentto<br />

Ind(W K/F, W K/E, χE)<br />

⊕ r i=1Ind(WK/F, WK/Fi , χFi ).<br />

(b)IfTheorem2.1isvalidforallGaloisextensionsK ′ /F ′ in P(K/F)with[K ′ : F ′ ] < [K : F]<br />

<strong>the</strong>n<br />

∆(χE, ψ E/F) λ(E/F, ψF)<br />

isequalto<br />

r<br />

i=1 ∆(χFi , ψ Fi/F) λ(Fi/F, ψF).<br />

Weprove<strong>the</strong>lemmabyinductionon [K : F].Let Hbe<strong>the</strong>subgroup<strong>of</strong> Gcorresponding<br />

to E;let G ′ = HDandlet F ′ be<strong>the</strong>fixedfield<strong>of</strong> G ′ . If F ′ = F<strong>the</strong>inductionassumption<br />

impliesthat<strong>the</strong>rearefields F1, . . ., Frcontainedin Mandquasi­characters χF1 , . . ., χFrsuch that χK/Fi = χK/Eforeach iandsuchthat<br />

isequivalentto<br />

Ind(W K/F, W K/E, χE)<br />

⊕ r i=1Ind(WK/F ′, WK/Fi , χFi ).


Thefirstpart<strong>of</strong><strong>the</strong>lemmafollowsfrom<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocess.Thesecond<br />

partfollowsfromLemma16.3and<strong>the</strong>assumedvalidity<strong>of</strong>Theorem2.1for<strong>the</strong>extension<br />

K/F ′ .<br />

Wesupposenowthat G = HD. Supposethat Hcontainsanormalsubgroup H1<strong>of</strong> G<br />

whichisdifferentfrom {1}andsupposethat,if K1is<strong>the</strong>fixedfield<strong>of</strong> H1, F(χK1/E) = F.<br />

If M1is<strong>the</strong>fixedfield<strong>of</strong> H1D<strong>the</strong>n,accordingto<strong>the</strong>inductionassumption,<strong>the</strong>rearefields<br />

F1, . . ., Frcontainedin M1andquasi­characters χF1 , . . ., χFrsuchthat andsuchthat<br />

isequivalentto<br />

Itfollowsimmediatelythat<br />

andthat<br />

isequivalentto<br />

χ K1/Fi = χ K1/E<br />

Ind(W K1/F, W K1/E, χE)<br />

⊕ r i=1Ind(WK1/F, WK1/Fi , χFi ).<br />

χ K/Fi = χ K/E<br />

Ind(W K/F, W K/E, χE)<br />

⊕ r i=1Ind(WK/F, WK/Fi , χFi ).<br />

Theequality<strong>of</strong>(b)isaconsequence<strong>of</strong><strong>the</strong>assumedvalidity<strong>of</strong>Theorem2.1for K1/F.<br />

Weassumenowthat G = HDandthatif H1isanormalsubgroup<strong>of</strong> Hdifferentfrom<br />

{1}withfixedfield K1<strong>the</strong>field F(χ K1/E)isnot F.If w1belongsto W K/Eand w2belongsto<br />

W K/M<strong>the</strong>n<br />

Let χK = χ K/E.Since F(χK) = F<br />

χK(w1w2w −1<br />

w1w2w −1<br />

1 w−1 2 ∈ CK.<br />

1 w−1<br />

−1<br />

2 ) = χK(w2w1 w−1 2 w1) = χK(w −1<br />

1 w−1 2 w1w2) = χK(w −1 −1<br />

2 w1w2w1 ).<br />

Denote<strong>the</strong>commonvalue<strong>of</strong><strong>the</strong>expressionsby ω(w1, w2).Then ω(v1w1, w2)isequalto<br />

Therightsideis<br />

χK(v1w1w2w −1<br />

1 v−1<br />

1 w−1 2<br />

−1 −1<br />

) = χK(w2 w1w2w1 v−1 1 w−1 2 v1w2).<br />

ω(v1, w2) ω(w1, w2).


Chapter18 255<br />

In<strong>the</strong>sameway ω(w1, v2w2)is<br />

whichequals<br />

χK(w1v2w2w −1<br />

1 w−1 2 v−1 2<br />

Ifei<strong>the</strong>r w1or w2belongto CK,wehave<br />

Thus,foreach w2,<br />

) = χK(w −1<br />

ω(w1, v2) ω(w1, w2).<br />

ω(w1, w2) = 1.<br />

w1 −→ ω(w1, w2)<br />

1 v−1<br />

−1<br />

2 w1v2w2w1 w−1 2 w1)<br />

isahomomorphism<strong>of</strong> H = W K/E/CKinto C ∗ and,foreach w1,<br />

w2 −→ ω(w1, w2)<br />

isahomomorphism<strong>of</strong> D = W K/M/CKinto C ∗ .If wbelongsto W K/F<strong>the</strong>n<br />

ω(ww1w −1 , ww2w −1 ) = ω(w1, w2).<br />

Thus<strong>the</strong>reisanormalextension K1containing Esuchthat<br />

W K/K1 = {w1 | ω(w1, w2) = 1 forall w1 ∈ W K/M}.<br />

But F(χ K1/E)willbe Fsothat K1mustbe K.<br />

Itfollowsimmediatelythat Hisisomorphictoasubgroup<strong>of</strong><strong>the</strong>dualgroup<strong>of</strong> D.Thus<br />

H = {1}or Hiscyclic<strong>of</strong>order ℓ. Inei<strong>the</strong>rcase Hmustliein<strong>the</strong>centralizer<strong>of</strong> Dsothat<br />

E/Fisnormaland G(E/F)isisomorphicto D.If H = {1}<strong>the</strong>n χEmaybeextendedfrom<br />

CE = CKtoaquasi­character<strong>of</strong> W E/F.Ino<strong>the</strong>rwords,<strong>the</strong>reisaquasi­character χF<strong>of</strong> CF<br />

suchthat χE = χ E/F.Then<br />

Ind(W K/F, W K/E, χE)<br />

isequivalentto<br />

⊕ µF ∈S(E/F) Ind(W K/F, W K/F, µFχF).<br />

Suppose H = {1}.Since W K/M/CKiscyclic<strong>the</strong>reisaquasi­character χM<strong>of</strong> CMsuch<br />

that χK = χ K/M. If w1belongsto W K/Elet χw1 be<strong>the</strong>character<strong>of</strong> W K/Mor,whatis<strong>the</strong><br />

same,<strong>of</strong> CMdefinedby<br />

χw1 (w2) = ω(w1, w2)


Chapter18 256<br />

andif w2belongsto W K/Mlet<br />

Clearly<br />

and<br />

χw2 (w1) = ω(w1, w2).<br />

{χw1 | w1 ∈ W K/E} = S(K/M)<br />

{χw2 | w2 ∈ W K/M} = S(K/E).<br />

If σ1is<strong>the</strong>image<strong>of</strong> w1in Hand σ2<strong>the</strong>image<strong>of</strong> w2in D<strong>the</strong>n<br />

and<br />

χ σ2<br />

E (w1) = χE(w2w1w −1<br />

2 w−1<br />

1 w1) = χ −1<br />

w2 (w1) χE(w1)<br />

χ σ1<br />

M (w2) = χM(w1w2w −1<br />

1 w−1<br />

2 w2) = χw1 (w2) χM(w2).<br />

Let W K/Fbe<strong>the</strong>disjointunion<br />

ℓ<br />

i=1 W K/Evi<br />

with viin W K/M.Define<strong>the</strong>function ϕion W K/Fby<br />

if w ∈ W K/Eand j = iandby<br />

if w ∈ W K/E.Then<br />

isabasisfor<strong>the</strong>space Uonwhich<br />

ϕi(wvj) = 0<br />

ϕi(wvi) = χE(w)<br />

{ϕi | 1 ≤ i ≤ ℓ}<br />

Ind(W K/F, W K/E, χE)<br />

acts.Let ψi, 1 ≤ i ≤ ℓbe<strong>the</strong>function W K/Fdefinedby<br />

ψi(w2w1) = χM(w2)χ σ(vi)<br />

E (w1)<br />

if w1belongsto W K/Eand w2belongsto W K/M.Here σ(vi)is<strong>the</strong>image<strong>of</strong> viin G(K/F).It<br />

isnecessary,buteasy,toverifythat ψiiswell­defined.Thecollection<br />

{ψi | 1 ≤ i ≤ ℓ}


Chapter18 257<br />

isabasisfor<strong>the</strong>space Vonwhich<br />

Ind(W K/F, W K/M, χM)<br />

acts.Itiseasilyverifiedthat<strong>the</strong>isomorphism<strong>of</strong> Uwith V whichsends χM(vi)ϕito ψiisan<br />

isomorphism.Thus<br />

Ind(W K/F, W K/E, χE) ≃ Ind(W K/F, W K/M, χM).<br />

Thistakescare<strong>of</strong><strong>the</strong>firstpart<strong>of</strong><strong>the</strong>lemma.<br />

Whe<strong>the</strong>r H = {1}ornot,<br />

isequivalentto<br />

Ind(WK/F, WK/E, 1)<br />

⊕ µF ∈S(E/F) Ind(W K/F, W K/F, µF).<br />

If H = 1wemayapplyTheorem2.1to E/Ftoseethat<br />

λ(E/F, ψF) = <br />

µF ∈S(E/F) ∆(µF, ψF).<br />

If H = {1}thisequalityisjust<strong>the</strong>definition<strong>of</strong><strong>the</strong>leftside.Inthiscase<strong>the</strong>secondpart<strong>of</strong><strong>the</strong><br />

lemmaassertsthat<br />

∆(χE, ψ E/F) <br />

µF ∈S(E/F) ∆(µF, ψF) (18.1)<br />

isequalto<br />

<br />

µF ∈S(E/F) ∆(µFχF, ψF)<br />

where χE = χ E/F.Thisisaconsequence<strong>of</strong><strong>the</strong>firstmainlemma.If H = {1},Theorem2.1<br />

appliedto M/F,showsthat<br />

λ(M/F, ψF) = <br />

µF ∈S(M/F) ∆(µF, ψF)<br />

and<strong>the</strong>secondpart<strong>of</strong><strong>the</strong>lemmaassertsthat(18.1)isequalto<br />

∆(χM, ψ M/F) <br />

Thisisaconsequence<strong>of</strong><strong>the</strong>secondmainlemma.<br />

µF ∈S(M/F) ∆(µF, ψF).<br />

Anon­trivialnilpotentgroupalwayscontainsasubgroup Dsatisfying<strong>the</strong>conditions<strong>of</strong><br />

<strong>the</strong>previouslemma.Lemma17.1isclearif K = F.If K = Fand G(K/F)isnilpotentitisa<br />

consequence<strong>of</strong><strong>the</strong>followinglemma.


Chapter18 258<br />

Lemma 18.2<br />

Suppose K/F isnormalandTheorem2.1isvalidforallnormalextensions K ′ /F ′ in<br />

P(K/F)with [K ′ : F ′ ] < [K : F]. Suppose F ⊆ M ⊂ = Kand M/F isnormal. Suppose<br />

E1, . . ., Er,<br />

E ′ 1, . . ., E ′ sliebetween Fand M, χEiisaquasi­character<strong>of</strong> CEi , χE ′ j isaquasi­character<strong>of</strong><br />

CE ′ j ,and<br />

⊕ r i=1Ind(WK/F, WK/Ei , χEi )<br />

isequivalentto<br />

Then r<br />

isequalto<br />

Therepresentation<br />

s<br />

⊕ s j=1 Ind(W K/F, W K/E ′ j , χ E ′ j ).<br />

i=1 ∆(χEi , ψ Ei/F) λ(Ei/F, ψF)<br />

j=1 ∆(χE ′ j , ψ E ′ j /F) λ(E ′ j<br />

canbeobtainedbyinflating<strong>the</strong>representation<br />

Ind(WK/F, WK/Ei , χEi )<br />

Ind(WM/F, WM/Ei , χEi )<br />

/F, ψF).<br />

from W M/Fto W K/F.Asimilarremarkappliesto<strong>the</strong>representationsinducedfrom<strong>the</strong> χE ′ j .<br />

Thus<br />

isequivalentto<br />

⊕ r i=1Ind(WM/F, WM/Ei , χEi )<br />

⊕ s j=1Ind(W M/F, W M/E ′ j , χE ′ j ).<br />

ApplyingTheorem2.1to<strong>the</strong>extension M/Fweobtain<strong>the</strong>lemma.


Chapter19 259<br />

Chapter Nineteen.<br />

Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Main Theorem.<br />

WeshallfirstproveLemma17.1when<strong>the</strong>reisaquasi­character χF <strong>of</strong> CF suchthat<br />

χK = χ K/F.Implicitin<strong>the</strong>statement<strong>of</strong><strong>the</strong>followinglemmaasinthat<strong>of</strong>Lemma17.1,is<strong>the</strong><br />

assumptionthatTheorem2.1isvalidforallpairs K ′ /F ′ in P(K/F)forwhich [K ′ : F ′ ] <<br />

[K : F].Recallthatwehavefixedanon­trivialabeliannormalsubgroup C<strong>of</strong> G = G(K/F)<br />

andthat Lisitsfixedfield.<br />

Lemma 19.1<br />

Suppose F ⊆ E ⊆ K, χFisaquasi­character<strong>of</strong> CF, χEisaquasi­characterif CE,and<br />

, 1 ≤ i ≤ r,<br />

χ K/E = χ K/F.Therearefields F1, . . ., Frcontainedin Landquasi­characters χFi<br />

suchthat χK/Fi<br />

isequivalentto<br />

and<br />

isequalto<br />

= χK/F,<br />

r<br />

Ind(W K/F, W K/E, χE)<br />

⊕ r i=1Ind(WK/F, WK/Fi , χFi )<br />

∆(χE, ψ E/F) λ(E/F, ψF)<br />

i=1 ∆(χFi , ψ Fi/F) λ(Fi/F, ψF).<br />

Weprove<strong>the</strong>lemmabyinductionon [K : F].Let Ebe<strong>the</strong>fixedfield<strong>of</strong> Handlet F ′ be<br />

<strong>the</strong>fixedfield<strong>of</strong> HC.If F ′ = F<strong>the</strong>n,byinduction,<strong>the</strong>rearefields F1, . . ., Frlyingbetween<br />

F ′ and Landquasi­characters χF1 , . . ., χFr suchthat χ K/Fi = χ K/Fand<br />

isequivalentto<br />

Ind(WK/F ′, WK/E, χE)<br />

⊕ r i=1Ind(WK/F ′, WK/Fi , χFi ).<br />

Inthiscase<strong>the</strong>lemmafollowsfrom<strong>the</strong>transitivity<strong>of</strong><strong>the</strong>inductionprocess,<strong>the</strong>assumed<br />

validity<strong>of</strong>Theorem2.1for K/F ′ andLemma16.3.


Chapter19 260<br />

Wesupposehenceforththat G = HC. Thereisacharacter θEin S(K/E)suchthat<br />

χE = θEχ E/F. θEmayberegardedasacharacter<strong>of</strong> H. If H ∩ C = {1}wemaydefinea<br />

character θF<strong>of</strong> Gbysetting<br />

θF(hc) = θE(h)<br />

if hisin Hand cisin C. θFmayberegardedasacharacter<strong>of</strong> CFand θE = θ E/F.Replacing<br />

χFby θF χFwesupposethat χE = χ E/F.Thenin<strong>the</strong>notation<strong>of</strong>Lemma15.1,wemaytake<br />

andif Fi = Fµ,<br />

{F1, . . ., Fr} = {Fµ | µ ∈ T }<br />

χFi = µ′ χ Fµ/F.<br />

Theassertions<strong>of</strong><strong>the</strong>lemmaareconsequences<strong>of</strong>Lemmas15.1and15.3.<br />

Wesupposenownotonlythat G = HCbutalsothat H ∩ C = {1}. Let Sbe<strong>the</strong>set<br />

<strong>of</strong>charactersin S(K/L)whoserestrictionto H ∩ Cagreeswith<strong>the</strong>restriction<strong>of</strong> θE. Sis<br />

invariantunder<strong>the</strong>action<strong>of</strong> Hon S(K/L).If νbelongsto Slet ϕνbe<strong>the</strong>functionon W K/F<br />

definedby<br />

ϕν(wv) = χE(w) χ L/F(v) ν(v)<br />

if wisin W K/Eand visin W K/L. νisacharacter<strong>of</strong> Candmay<strong>the</strong>reforeberegardedasa<br />

character<strong>of</strong> W K/Lor<strong>of</strong> CL.Itiseasytoverifythat ϕνiswell­defined.If<br />

<strong>the</strong>n<br />

ρ = Ind(W K/F, W K/E, χE)<br />

{ϕν | ν ∈ S}<br />

isabasisfor<strong>the</strong>space<strong>of</strong><strong>functions</strong>onwhich ρacts.If wbelongsto W K/E<br />

ρ(w)ϕν = χE(w)ϕν ′<br />

with ν ′ = νσ−1is σis<strong>the</strong>image<strong>of</strong> win G(K/F).If vbelongsto WK/L ρ(v)ϕν = χ L/F(v) ν(v)ϕν.<br />

Thusif Risanorbitin Sunder<strong>the</strong>action<strong>of</strong> H,<strong>the</strong>space<br />

VR = <br />

ν∈R Cϕν<br />

isinvariantunder W K/Fand ρis<strong>the</strong>directsum<strong>of</strong>itsrestrictionsto<strong>the</strong>spaces VR.


Chapter19 261<br />

If µbelongsto Rlet Hµbe<strong>the</strong>isotropygroup<strong>of</strong> µ,let Gµ = HµC,andlet Fµbe<strong>the</strong>fixed<br />

field<strong>of</strong> Gµ.Extend µtoacharacter µ ′ <strong>of</strong> Gµbysetting<br />

µ ′ (hc) = θE(h) µ(c)<br />

if hisin Hµand cisin C. µ ′ ,whichiseasilyseentobewell­defined,mayberegardedasa<br />

character<strong>of</strong> W K/Fµ <strong>of</strong> CFµ .Let W K/Fbe<strong>the</strong>disjointunion<br />

s<br />

i=1 W K/Fµ wi<br />

with wiin W K/Eandlet σibe<strong>the</strong>image<strong>of</strong> wiin G(K/F).Let ϕibe<strong>the</strong>function<strong>of</strong> W K/F<br />

definedby<br />

Thecollection<br />

ϕi(wwj) = 0 w ∈ WK/Fµ , j = i<br />

ϕi(wwi) = µ ′ (w)χFµ/F(w) w ∈ WK/Fµ .<br />

{ϕi | 1 ≤ i ≤ s}<br />

isabasisfor<strong>the</strong>space Vµonwhich<strong>the</strong>representation<br />

acts.Let<br />

If wbelongsto W K/L<br />

σµ = Ind(W K/F, W K/Fµ , µ′ χ Fµ/F)<br />

ψi = χE(wi)ϕi.<br />

σµ(w)ψi = µ σi (w) χL/F(w)ψi.<br />

If wbelongsto W K/Eand wjw = vwiwith vin W K/Fµ <strong>the</strong>n<br />

σµ(w)ψi = χE(w)ψj.<br />

Thus<strong>the</strong>isomorphism<strong>of</strong> Vµwith VRwhichtakes ψito ϕµ σ i commuteswith<strong>the</strong>action<strong>of</strong><br />

W K/F.If Tisaset<strong>of</strong>representativesfor<strong>the</strong>orbitsin S<br />

ρ ≃ ⊕µ∈Tσµ.<br />

If K1is<strong>the</strong>fixedfield<strong>of</strong> H ∩ C<strong>the</strong>n K1/Fisnormaland ρis<strong>the</strong>inflationto W K/F<strong>of</strong><br />

Ind(W K1/F, W K1/E, χE) (19.1)


Chapter19 262<br />

and σµis<strong>the</strong>inflation<strong>of</strong><br />

Thus<strong>the</strong>representation(19.1)isequivalentto<br />

ApplyingTheorem2.1to K1/Fweseethat<br />

isequalto<br />

Ind(W K1/F, W K1/Fµ , µ′ χ Fµ/F).<br />

⊕µ∈TInd(W K1/F,W K1/Fµ , µ′ χ Fµ/F).<br />

<br />

∆(χE, ψ E/F) λ(E/F, ψF)<br />

µ∈T (µ′ χ Fµ/F, ψ Fµ/F) λ(Fµ/F, ψF).<br />

If<strong>the</strong>reisaquasi­character χFsuchthat χK = χK/F,Lemma17.1followsfromLemma 18.2and<strong>the</strong>lemmajustproved. Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>Theorem2.1wehavetoprove<br />

Lemma17.1when F = F(χK), Gisnotnilpotent,and<strong>the</strong>reisnoquasi­character χF<strong>of</strong> CF<br />

suchthat χK = χK/F.Inthiscasenone<strong>of</strong><strong>the</strong>fields E1, . . ., Er, E ′ 1, . . ., E ′ sisequalto Fand<br />

Theorem2.1maybeappliedto K/Eiand K/E ′ j .<br />

Lemma 19.2<br />

Suppose Aand Bliebetween Fand K.Suppose χAand χBarequasi­characters<strong>of</strong> CA<br />

and CBrespectively.TherearefieldsA1, . . ., Amlyingbetween AandK,fieldsB1, . . ., BmlyingbetweenBandK,elementsσ1,<br />

. . ., σminG,andquasi­charactersχA1 , . . ., χAm , χB1 , . . ., χBm<br />

suchthat Bi = A σi<br />

i , χBi = χσi<br />

Ai ,andsuchthat<strong>the</strong>tensorproduct<br />

isequivalentto<br />

andto<br />

Let<br />

Ind(W K/F, W K/A, χA) ⊗ Ind(W K/F, W K/B, χB)<br />

⊕ m i=1Ind(WK/F, WK/Ai , χAi )<br />

⊕ m i=1Ind(WK/F, WK/Bi , χBi ).<br />

ρ = Ind(W K/F, W K/A, χA)<br />

σ = Ind(W K/F, W K/B, χB).


Chapter19 263<br />

Let αbe<strong>the</strong>restriction<strong>of</strong> σto W K/Aand β<strong>the</strong>restriction<strong>of</strong> ρto W K/B.ByLemma2.3<br />

and<br />

Let W K/Fbe<strong>the</strong>disjointunion<br />

ρ ⊗ σ ≃ Ind(W K/F, W K/A, χA ⊗ α)<br />

ρ ⊗ σ ≃ Ind(W K/F, W K/B, χB ⊗ β).<br />

m<br />

i=1 W K/AwiW K/B.<br />

If Uiis<strong>the</strong>space<strong>of</strong><strong>functions</strong>in U,<strong>the</strong>spaceonwhich ρacts,whicharezerooutside<strong>of</strong><strong>the</strong><br />

doublecoset W K/AwiW K/B<strong>the</strong>n Uiisinvariantunder β.Define<strong>the</strong>field Bibydemanding<br />

that<br />

W K/Bi = W K/B ∩ w −1<br />

i W K/Awi.<br />

If σiis<strong>the</strong>image<strong>of</strong> wiin G(K/F)let χ ′ Bi<br />

<strong>of</strong><strong>functions</strong>onwhich<br />

Ind(WK/B, WK/Bi , χ′ Bi )<br />

be<strong>the</strong>restriction<strong>of</strong> χσi<br />

A to W K/Bi .If U ′ i is<strong>the</strong>space<br />

acts,<strong>the</strong>map<strong>of</strong> Uito U ′ i whichsends ϕto<strong>the</strong>function ϕ′ definedby<br />

ϕ ′ (w) = ϕ(wiw)<br />

if wisin W K/Bisanisomorphismwhichcommuteswith<strong>the</strong>action<strong>of</strong> W K/B.Thus<br />

and,if χBi = χ Bi/B χ ′ Bi ,<br />

β ≃ ⊕ m i=1 Ind(W K/B, W K/Bi , χ′ Bi )<br />

χB ⊗ β ≃ ⊕ m i=1Ind(WK/B, WK/Bi , χBi ).<br />

Similarconsiderationsapplyif<strong>the</strong>roles<strong>of</strong> Aand Bareinterchanged.Thedoublecoset<br />

decompositionbecomes<br />

m<br />

i=1 WK/Bw −1<br />

i WK/A and<br />

W K/Ai = W K/A ∩ wiW K/Bw −1<br />

i = wiW K/Bi w−1<br />

i .<br />

Thus Bi = A σi<br />

i .Itisalsoclearthat χBi = χσi<br />

Ai .


Chapter19 264<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma17.1weuseBrauer’s<strong>the</strong>oremin<strong>the</strong>followingform.<br />

Therearefields F1, . . ., Fnlyingbetween Fand Ksuchthat G(K/Fk)isnilpotentforeach k,<br />

characters χFk <strong>of</strong> CFk /N K/Fk CK,andintegers m1, . . ., mnsuchthat<br />

1 ≃ ⊕ n k=1mk Ind(WK/F, WK/Fk , χFk ).<br />

Sinceweareassumingthat Gisnotnilpotentnone<strong>of</strong><strong>the</strong> Fkareequalto Fandwemayapply<br />

Theorem2.1toeach<strong>of</strong><strong>the</strong>extensions K/Fk.<br />

Weshallapply<strong>the</strong>previouslemmawith A = Ei, B = Fkandwith A = E ′ j , B = Fk. m<br />

and Bℓwillbedenoted<br />

willbedenotedby m(ik)or m ′ (jℓ). Aℓwillbedenotedby Eikℓor E ′ jkℓ<br />

by Fikℓor F ′ jkℓ .Observethat<br />

isequalto<br />

andthat<br />

isequalto<br />

∆(χEikℓ , ψ Eikℓ/F λ(Eikℓ/F, ψF) (19.2)<br />

∆(χFikℓ , ψ Fikℓ/F) λ(Fikℓ/F, ψF) (19.3)<br />

∆(χ E ′ jkℓ , ψ E ′ jkℓ /F) λ(E ′ jkℓ /F, ψF) (19.4)<br />

∆(χF ′ jkℓ , ψ F ′ jkℓ /F) λ(F ′ jkℓ /F, ψF). (19.5)<br />

χEi mayberegardedasaone­dimensionalrepresentation<strong>of</strong> W K/Ei andassuchis<br />

equivalentto<br />

Therefore<br />

and<br />

isequalto<br />

n<br />

k=1<br />

⊕ n k=1 ⊕m(ik)<br />

ℓ=1 mk Ind(WK/Ei , WK/Eikℓ , χEikℓ ).<br />

m(ik)<br />

1 = n<br />

k=1<br />

m(ik)<br />

ℓ=1 mk [Eikℓ : Ei]<br />

∆(χEi , ψ Ei/F)<br />

ℓ=1 {∆(χEikℓ , ψ Eikℓ/F) λ(Eikℓ/Ei, ψ Ei/F)} mk .<br />

Multiplyingboth<strong>of</strong><strong>the</strong>seexpressionsby λ(Ei/F, ψF),weseethat<br />

∆(χEi , ψ Ei/F) λ(Ei/F, ψF) (19.6)


Chapter19 265<br />

isequalto<br />

n<br />

m(ik)<br />

k=1 ℓ=1 {∆(χEikℓ , ψEikℓ/F) λ(Eikℓ/F, ψF)} mk . (19.7)<br />

Thesameargumentestablishesthat<br />

isequalto<br />

n<br />

k=1<br />

m ′ (jk)<br />

ℓ=1<br />

∆(χ E ′ j , ψ E ′ j /F) λ(E ′ j /F, ψF) (19.8)<br />

{∆(χ E ′ jkℓ , ψ E ′ jkℓ /F) λ(E ′ jkℓ /F, ψF)} mk . (19.9)<br />

Wearetryingtoshowthat<strong>the</strong>productover i<strong>of</strong><strong>the</strong>expressions(19.6)isequalto<strong>the</strong><br />

productover j<strong>of</strong><strong>the</strong>expressions(19.8). Itwillbeenoughtoshowthat<strong>the</strong>product<strong>of</strong><strong>the</strong><br />

expressions(19.7)isequalto<strong>the</strong>product<strong>of</strong><strong>the</strong>expressions(19.9).<br />

and<br />

Therepresentations<br />

areequivalent.Therefore<br />

r<br />

i=1<br />

⊕ r i=1 ⊕ m(ik)<br />

ℓ=1 Ind(WK/Fk , WK/Fikℓ , χFikℓ )<br />

⊕ s j=1 ⊕m′ (jk)<br />

ℓ=1 Ind(W K/Fk , W K/F ′ jkℓ , χF ′ jkℓ )<br />

m(ik)<br />

ℓ=1 [Fikℓ : Fk] = s<br />

m<br />

j=1<br />

′ (jk)<br />

[F<br />

ℓ=1<br />

′ jkℓ<br />

Denote<strong>the</strong>commonvalue<strong>of</strong><strong>the</strong>seexpressionsby N(k).Moreover<br />

isequalto<br />

r<br />

s<br />

i=1<br />

j=1<br />

m(ik)<br />

: Fk].<br />

ℓ=1 ∆(χFikℓ , ψ Fikℓ/F) λ(Fikℓ/Fk, ψ Fk/F)<br />

m ′ (jk)<br />

Multiplyingboth<strong>of</strong><strong>the</strong>seexpressionsby<br />

weseethat<br />

isequalto<br />

r<br />

s<br />

i=1<br />

j=1<br />

ℓ=1 ∆(χF ′ jkℓ , ψ F ′ jkℓ /F)λ(F ′ jkℓ/F, ψ Fk/F).<br />

m(ik)<br />

λ(Fk/F, ψF) N(k)<br />

ℓ=1 ∆(χFikℓ , ψ Fikℓ/F) λ(Fikℓ/F, ψF) (19.10)<br />

m ′ (jk)<br />

ℓ=1 ∆(χF ′ jkℓ , ψ F ′ jkℓ /F) λ(F ′ jkℓ/F, ψF). (19.11)<br />

Because<strong>of</strong><strong>the</strong>equality<strong>of</strong>(19.2)and(19.3)<strong>the</strong>productover i<strong>of</strong><strong>the</strong>expressions(19.7)isequal<br />

to<strong>the</strong>productover k<strong>of</strong><strong>of</strong><strong>the</strong> mkthpowers<strong>of</strong><strong>the</strong>expressions(19.10). Theproductover j<br />

<strong>of</strong><strong>the</strong>expressions(19.9)isequalto<strong>the</strong>productover k<strong>of</strong><strong>the</strong> mkthpowers<strong>of</strong><strong>the</strong>expressions<br />

(19.11).Lemma17.1,andwithitTheorem2.1,isnowcompletelyproved.


Chapter20 266<br />

Chapter Twenty.<br />

<strong>Artin</strong> L-<strong>functions</strong>.<br />

Suppose ω isanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong><strong>the</strong>nonarchimedeanlocalfield<br />

F. Let KbeaGaloisextension<strong>of</strong> F andlet σbearepresentation<br />

<strong>of</strong> W K/Fin<strong>the</strong>class ω. Suppose σactson V. Let V 0 be<strong>the</strong>subspace<strong>of</strong> V fixedbyevery<br />

element<strong>of</strong> W 0 K/F .Since W 0 K/F isanormalsubgroup<strong>of</strong> W K/F<strong>the</strong>space V 0 isinvariantunder<br />

WK/Fandon V 0wegetarepresentation σ0 .Since W 0 −1<br />

K/F = τK/F (u0F )<strong>the</strong>class<strong>of</strong> σ0depends onlyon w. σ0breaksupinto<strong>the</strong>directsum<strong>of</strong>1­dimensionalrepresentationscorresponding tounramifiedgeneralizedcharacters µ1, . . ., µr<strong>of</strong> CF.Weset<br />

L(s, w) = r<br />

i=1<br />

1<br />

1 − µi(πF) |πF | s.<br />

Thiswetakeas<strong>the</strong>localfunction. Itisclearthatwhen wisone­dimensional<strong>the</strong>present<br />

definitionagreeswiththat<strong>of</strong><strong>the</strong>introductionandthat<strong>of</strong> ω = ω1 ⊕ ω2.Then<br />

L(s, ω) = L(s, ω1) ⊕ L(s, ω2).<br />

Suppose F ⊆ E ⊆ K, ρisarepresentation<strong>of</strong> W K/E,and<br />

Wehavetoshowthatif θis<strong>the</strong>class<strong>of</strong> ρ<strong>the</strong>n<br />

σ = Ind(W K/F, W K/E, ρ).<br />

L(s, ω) = L(s, θ).<br />

Let ρacton W.Then Vis<strong>the</strong>space<strong>of</strong><strong>functions</strong> fon W K/Fwithvaluesin Wwhichsatisfy<br />

f(uv) = ρ(u)f(v)<br />

for uin W K/Eand vin W K/F.If fliesin V0and uliesin W 0 K/E <strong>the</strong>n<br />

ρ(u)f(v) = f(uv) = f(vv −1 uv) = f(v)<br />

because v −1 liesin W 0 K/F .Thus ftakesvaluesin W 0 .Ino<strong>the</strong>rwords,wemayaswellassume<br />

that W = W 0 .Indeedwemayaswellg<strong>of</strong>ur<strong>the</strong>randassumethat W = W 0 hasdimension<br />

one.


Chapter20 267<br />

Let N E/F πE = επ f<br />

F where εisaunitandchoose w0in W K/Fsothat τ K/Fw0 = πF.<br />

Then w f = u0v0with u0in W 0 K/F and v0in W K/Esuchthat τ K/Ev0 = πE. Clearly, V 0<br />

consists<strong>of</strong><strong>the</strong><strong>functions</strong> fwithvaluesin Wwhichsatisfy f(uw) = f(w)for uin W 0 K/F and<br />

f(uw) = µ(τ K/Eu)f(w)if ρisassociatedto<strong>the</strong>generalizedcharacter µ<strong>of</strong> CE.Takeasbasis<br />

<strong>of</strong> V 0 <strong>the</strong><strong>functions</strong> ϕ0, . . ., ϕf−1definedby<br />

ϕi(uvw j<br />

0 ) = µ(τ K/Ev)δ j<br />

i x<br />

where xisanon­zerovectorin W, ubelongsto W 0 K/F , vbelongsto W K/E, 0 ≤ j < f,and δ j<br />

i<br />

isKronecker’sdelta.Thematrix<strong>of</strong> σ(w0)withrespecttothisbasisis<br />

and<br />

since |πF | f = |πE|.<br />

L(s, ω) =<br />

⎛<br />

0 ·<br />

⎜<br />

1 0<br />

⎜<br />

A = ⎜ 1<br />

⎜<br />

⎝<br />

· ·<br />

. ..<br />

. .. . ..<br />

⎞<br />

µ(τK/Ev0) · ⎟<br />

· ⎟<br />

· ⎠<br />

0 1 0<br />

1<br />

det(I − A |πF | s ) =<br />

1<br />

= L(s, θ)<br />

fs 1 − µ(πE) |πF |<br />

Forarchimedeanfieldsweproceedinadifferentmanner.Ifwewrite ω,aswemay,asa<br />

sum<strong>of</strong>irreduciblerepresentations<strong>the</strong>componentsareuniqueuptoorder.If ω = r i=1 ⊕ωi,<br />

wewillhavetohave<br />

L(s, ω) = r<br />

L(s, ωi).<br />

Thusitisamatter<strong>of</strong>defining L(s, ω)forirreducible ω.If ωisone­dimensionalthiswasdone<br />

in<strong>the</strong>introduction.If ωisnotone­dimensional<strong>the</strong>n Fmustbe R.Let σbearepresentation<br />

<strong>of</strong> W C/Rin<strong>the</strong>class ω. W C/Risanextension<strong>of</strong><strong>the</strong>group<strong>of</strong>order2by C ∗ . Let W C/R =<br />

C × ∪ w0C × . If σactson V <strong>the</strong>reisanon­zerovector xin V andageneralizedcharacter µ<br />

<strong>of</strong> C × suchthat σ(a)x = µ(a)xforall ain C × . Then<strong>the</strong>spacespannedby {x, σ(w0)x}is<br />

invariantand<strong>the</strong>reforeall<strong>of</strong> V.Since Visnotone­dimensional σ(w0)xisnotamultiple<strong>of</strong> x.<br />

Noticethat σ(a)σ(w0)x = σ(w0)σ(w −1<br />

0 aw0)x = µ(a)σ(w0)x.If<br />

i=1<br />

µ(z) = |z| r zm z n<br />

|z| m+n<br />

2


Chapter20 268<br />

with m + n ≥ 0, mn = 0weset<br />

<br />

m+n<br />

−(s+r+<br />

L(s, ω) = 2(2π) 2 ) Γ s + r +<br />

<br />

m + n<br />

.<br />

2<br />

Theinitialchoice<strong>of</strong> µis<strong>of</strong>coursenotuniquelydetermined.Howeverif µ0isonechoice<strong>the</strong><br />

onlyo<strong>the</strong>rchoiceis<strong>the</strong>charactera → µ0(a).Thus<strong>the</strong>resultinglocalL­functionisindependent<br />

<strong>of</strong><strong>the</strong>choice.<br />

Theonlypointtobecheckedisthat<strong>the</strong>localL­functionbehavesproperlyunderinduction.<br />

Wehavetoverifythatif ρisarepresentation<strong>of</strong> C ∗ = W C/Cin<strong>the</strong>class θand<br />

σ = Ind(W C/R, W C/C, ρ)<br />

isin<strong>the</strong>class w<strong>the</strong>n L(s, w) = L(s, θ). Wemayaswellassumethat ρisirreducibleand<br />

<strong>the</strong>reforeone­dimensional.Letitcorrespondto<strong>the</strong>generalizedcharacter ν.If σisirreducible<br />

wecouldchoose<strong>the</strong>generalizedcharacter µabovetobe νand<strong>the</strong>equality<strong>of</strong><strong>the</strong>two L<strong>functions</strong>becomesamatter<strong>of</strong>definition.<br />

If σisirreducibleitbreaksupinto<strong>the</strong>sum<strong>of</strong>two<br />

one­dimensionalrepresentatives.Itfollowseasilythat ν(a) = ν(a)forall a.Thus νis<strong>of</strong><strong>the</strong><br />

form ν(a) = |a| r and<br />

L(s, θ) = 2(2π) −(s+r) Γ(s + r).<br />

If µR = µis<strong>the</strong>generalizedcharacter x → |x| r <strong>of</strong> R × <strong>the</strong>n ν = µ C/Rand,aswesawinchapter<br />

10,<strong>the</strong>representation σisequivalentto<strong>the</strong>directsum<strong>of</strong><strong>the</strong>one­dimensionalrepresentations<br />

correspondingto µandto µ ′ where µ ′ (x) = sgnxµ(x).Thus<br />

L(s, ω) =<br />

<br />

π −1<br />

2 (s+r) Γ<br />

s + r<br />

2<br />

<br />

π −1<br />

2 (s+r+1) Γ<br />

s + r + 1<br />

Therequiredresultisthusaconsequence<strong>of</strong><strong>the</strong>familiarduplicationformula<br />

2 2z−1 Γ(z) Γ(z + 1/2) = π 1/2 Γ(2z).<br />

If Fisaglobalfieldand ωisanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong><br />

F,wedefineasin<strong>the</strong>introduction,<strong>the</strong>global L­functiontobe<br />

L(s, ω) = <br />

p<br />

L(s, ωp).<br />

Irepreatthat<strong>the</strong>productistakenoverallprimes,includingthoseatinfinity.Itisnotdifficult<br />

toseethat<strong>the</strong>productconvergesinahalf­planeRe s > c. <strong>On</strong>eneedonlyverifyitfor ω<br />

2<br />

<br />

.


Chapter20 269<br />

irreducible. ChooseaGaloisextension K<strong>of</strong> Fsothat<strong>the</strong>reisarepresentation σ<strong>of</strong> WK/F in<strong>the</strong>class ω. Therestriction<strong>of</strong> σto CKisequivalentto<strong>the</strong>directsum<strong>of</strong>1­dimensional<br />

representationscorrespondingtogeneralizedcharacters µ (1) , . . ., µ (r) <strong>of</strong> CK.Foreach iand<br />

j<strong>the</strong>reisaσin G(K/F)suchthat µ j (a) ≡ µ i (σ(a)).Then |µ −1<br />

i µj(a)| = |µ i (a−1σ(a))| = 1<br />

because a −1 σ(a)belongsto<strong>the</strong>compactgroup<strong>of</strong> iidèleclasses<strong>of</strong>norm1.Let |µ ′ (a)| = |a| r .<br />

Let νF be<strong>the</strong>generalizedcharacter a → |a| r <strong>of</strong> CF. Replacing σby ν −1<br />

F<br />

⊗ σwereplace<br />

L(s, wp)by L(s − r, wp)and µ (i) by |µ (i) | −1 µ (i) . Thuswemayaswellsupposethatall µ (i)<br />

areordinarycharacters.Since CKis<strong>of</strong>finiteindexin W K/F<strong>the</strong>eigenvalues<strong>of</strong> σ(w)willall<br />

haveabsolute1forany win W K/Fandatanynon­archimedeanprime<strong>the</strong>local L­function<br />

willbe<strong>of</strong><strong>the</strong>form<br />

s<br />

i=1<br />

1<br />

1 − αi |πFp |s<br />

with s ≤ dimwand |αi| = 1, 1 ≤ i ≤ s. Therequiredresultfollowsfrom<strong>the</strong>well­known<br />

factthat<br />

1 1<br />

1 − |πFp |s<br />

convergesfromRe s > 1.Thisproductistakenonlyover<strong>the</strong>non­archimedeanprimes.


Chapter21 270<br />

Chapter Twenty-one.<br />

Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>Functional</strong> <strong>Equation</strong>.<br />

Chooseanon­trivialcharacter ψF<strong>of</strong> AF/F.Beforewecanwritedown<strong>the</strong>factorappearingin<strong>the</strong>functionalequation<strong>of</strong><strong>the</strong>global<br />

L­functionwehavetoverifythat ε(s, ωγ, ψFγ ) = 1<br />

forallbutafinitenumber<strong>of</strong> γ.<br />

Let ωberealizedasarepresentation σ<strong>of</strong> W K/F andlet<strong>the</strong>restriction<strong>of</strong> σto CKbe<br />

equivalentto<strong>the</strong>directsum<strong>of</strong>1­dimensionalrepresentationscorrespondingto<strong>the</strong>generalized<br />

characters µ (1) , . . ., µ (r) .Allbutfinitelymanyprimes pwillsatisfy<strong>the</strong>followingconditions.<br />

(i) pisnon­archimedean.<br />

(ii) n(ψFp ) = 1.<br />

(iii) pdoesnotramifyin K.<br />

(iv) m(µ (i)<br />

P ) = 0forall Pdividing pandall i.<br />

Chooseonesuch pandlet Pdivide p.Correspondingto<strong>the</strong>map K/F −→ KP/Fpisa<br />

map ϕp : WKP/Fp −→ WK/F. ωpis<strong>the</strong>class<strong>of</strong> σp = σ ◦ ϕp.Thekernel<strong>of</strong> σpcontains UKP .<br />

Since KP/Fpisunramified<strong>the</strong>quotient<strong>of</strong> WKP/Fpby UKPisabelianand σpis<strong>the</strong>direct<br />

sum<strong>of</strong>one­dimensionalrepresentations. Let<strong>the</strong>mcorrespondto<strong>the</strong>generalizedcharacters<br />

ν (1)<br />

p , . . ., ν (r)<br />

p <strong>of</strong> CFp .Since τKP/Fptakes UKPonto UFpeach<strong>of</strong><strong>the</strong>secharactersisunramified. Thus<br />

r<br />

ε(s, ωp, ψFp ) =<br />

i=1 ∆<br />

<br />

α s−1 2<br />

Fp ν(i)<br />

p , ψFp<br />

<br />

= 1.<br />

Ifψ ′ Fisano<strong>the</strong>rnon­trivialcharacter<strong>of</strong> AF/F<strong>the</strong>reisaβinF ∗suchthatψ ′ F (x) ≡ ψF(βx).<br />

AccordingtoLemma5.1<br />

Since <br />

<strong>the</strong>function<br />

ε(s, ω, ψFp<br />

isindeedindependent<strong>of</strong> ψF.<br />

p<br />

2 ) = αs−1<br />

Fp (β)det ωp(β) ε(s, ω, ψFp ).<br />

αFp (β)s−1 2 det ωp(β) = |β| s−1 2 det ω(β) = 1<br />

ε(s, ω) = <br />

p ε(s, ωp, ψFp )


Chapter21 271<br />

WecaninferfromTate’s<strong>the</strong>sisnotonlythat L(s, ω)ismeromorphicin<strong>the</strong>wholecomplex<br />

planeif ωisone­dimensionalbutalsothatitsatisfies<strong>the</strong>functionalequation<br />

L(s, ω) = ε(s, ω) L(1 − s, ω)<br />

if ωiscontragredientto ω.Asiswell­known,Lemma2.2<strong>the</strong>nimpliesthat L(s, ω)ismeromorphicin<strong>the</strong>wholecomplexplaneforany<br />

ω.Inanycase,TheoremBistrueforone­dimensional<br />

ωand,grantingthis,wehavetoestablishitingeneral.<br />

Firstweneedalemma.<br />

Lemma 21.1<br />

Suppose Fisaglobalfield, KisaGaloisextension<strong>of</strong> F, Eisafieldlyingbetween Fand<br />

K, χisageneralizedcharacter<strong>of</strong> CEand<br />

σ = Ind(W K/F, W K/E, χ).<br />

If ωis<strong>the</strong>class<strong>of</strong> σand,foreachprime q<strong>of</strong> E, χqis<strong>the</strong>restriction<strong>of</strong> χto CEq<strong>the</strong>nforeach prime p<strong>of</strong> F<br />

<br />

ε(s, ωp, ψFp ) = {ε(s, χq, ψEq/Fp ) ρ (Eq/Fp, ψFp )}.<br />

q|p<br />

Let Pbeaprime<strong>of</strong> Kdividing p.Thefirststepist<strong>of</strong>indaset<strong>of</strong>representativesfor<strong>the</strong><br />

doublecosets W K/E w W KP/Fp . Since CK ⊆ W K/Eisanormalsubgroup<strong>of</strong> W K/Fwecan<br />

factorout CKandmerelyfindaset<strong>of</strong>representativesfor<strong>the</strong>doublecosets<br />

G(K/E)σ G(KP/Fp).<br />

Let P1, . . ., Prbe<strong>the</strong>primes<strong>of</strong> Kdividing pandlet P1divide qiin E. G(K/F)is<strong>the</strong>disjoint<br />

union r<br />

i=1 σiG(KP/Fp)<br />

where σi(P) = Pi.If σiand σjbelongto<strong>the</strong>samedoublecoset qi = qj.Conversely,if qi = qj<br />

<strong>the</strong>reisaρin G(K/E)suchthat ρ(Pi) = Pj.Then ρσi(P) = σj(P)and<br />

ρσi ∈ σj G(KP/Fp).<br />

Thuswemaywrite G(K/F)as<strong>the</strong>disjointunion<br />

<br />

τ∈S<br />

G(K/E)τ G(KP/Fp)


Chapter21 272<br />

sothatif Pdivides qin E<strong>the</strong>collection {τ(q) | τ ∈ S}is<strong>the</strong>collection<strong>of</strong>distinctprimesin E<br />

dividing p.<br />

Foreach τin Schoosearepresentative w(τ)in W K/F.Foreach τin S<strong>the</strong>restriction<strong>of</strong> σ<br />

to W KP/Fp leavesinvariant<strong>the</strong>space<strong>of</strong><strong>functions</strong> fon<strong>the</strong>doublecoset W K/Ew(τ)W KP|Fp<br />

whichsatisfy f(vw) = χ(τ K/E(v))f(w)forall vin W K/E.Therepresentation<strong>of</strong> W KP/Fp on<br />

thisspaceisequivalentto<br />

Ind(W KP/Fp , W KP/E τ q τ , χ′ q τ<br />

if E τ = τ −1 (E)and<br />

Thus<br />

whichis<strong>of</strong>courseequalto<br />

Weset<br />

χ ′ qτ(a) = χ(τ(a)).<br />

<br />

ε(s, ωq, ψFp ) =<br />

τ∈S ε(s, χ′ qτ, ψEτ qτ /Fp ) ρ(Eτ qτ/Fp, ψFp )<br />

<br />

τ∈S ε(s, χq, ψ Eq/Fp ) ρ(Eq/Fp, ψFp ).<br />

ρ(E/F) = <br />

q<br />

<br />

q|p ρ(Eq/Fp, ψFp ).<br />

Theprecedingdiscussiontoge<strong>the</strong>rwithLemma5.1showsthatitdoesnotdependon ψF.<br />

Howeverthatdoesnotreallymattersinceweareabouttoshowthatforanychoice<strong>of</strong> ψFitis<br />

1.Observefirst<strong>of</strong>allthat<strong>the</strong>previouslemmaimpliesimmediatelythatif ωis<strong>the</strong>class<strong>of</strong><br />

<strong>the</strong>n<br />

σ = Ind(W K/F, W K/E, χ)<br />

ε(s, ω) = ε(s, χ) ρ(E/F).<br />

Givenanarbitraryclass ωrealizableasarepresentation<strong>of</strong> WK/F wecanfindfields<br />

E1, . . ., ErlyingbetweenFandK,generalizedcharactersχE1 , . . ., χEr ,andintegersm1, . . ., mr<br />

suchthat r<br />

i=1 ⊕mi Ind(WK/F, WK/Ei , χEi )<br />

isin<strong>the</strong>class ω.Then<br />

ε(s, ω) = r<br />

i=1 {ε(s, χEi )mi ρ(Ei/F) mi }.


Chapter21 273<br />

and<br />

Since<br />

wehave<br />

<strong>On</strong><strong>the</strong>o<strong>the</strong>rhand<br />

because ωcontains r<br />

Consequently<br />

L(s, ω) = r<br />

L(s, ω) = r<br />

i=1<br />

i=1<br />

L(s, χEi )mi<br />

L(s, χ−1<br />

Ei )mi .<br />

L(s, χEi ) = ε(s, χEi ) L(1 − s, χ−1<br />

Ei )<br />

L(s, ω) = r<br />

i=1 ε(s, χEi )mi L(1 − s, ω)<br />

i=1 ⊕mi Ind(W K/F, W K/Ei<br />

r<br />

i=1<br />

ε(s, χEi )mi<br />

, χ−1<br />

Ei ).<br />

dependsonlyon ωandnoton<strong>the</strong>particularwayitiswrittenasasum<strong>of</strong>inducedrepresentations.Thus<br />

r<br />

mi ρ(Ei/F)<br />

i=1<br />

alsodependsonlyon ω.Wecallit H(ω).ItisclearthattoproveTheoremBwehavetoshow<br />

that H(ω) = 1forall ωor,whatis<strong>the</strong>same,that ρ(E/F) = 1forall Eand F.<br />

q ′ .Then<br />

Suppose F ⊆ E ⊆ E ′ .Denote<strong>the</strong>primes<strong>of</strong> Fby p,those<strong>of</strong> Eby q,andthose<strong>of</strong> E ′ by<br />

ρ(E ′ /F) = <br />

p<br />

<br />

ApplyLemma4.5toseethat<strong>the</strong>rightsideequals<br />

<br />

p<br />

<br />

q|p<br />

<br />

q ′ |q<br />

q ′ |p ρ(E′ q ′/Fp, ψFp ).<br />

<br />

′<br />

ρ(E q ′/Eq, ψFq/Fp ) ρ(Eq/Fp, ψFp )[E′ q :Eq] .<br />

Since <br />

[E ′ q ′ : Eq] = [E ′ : E]<br />

thismaybewrittenas<br />

<br />

q<br />

<br />

q ′ |q<br />

q ′ |q ρ(E′ q ′/Eq, ψ Fq/Fp )<br />

<br />

p<br />

<br />

q|p ρ(Eq/Fp, ψFp )<br />

′<br />

[E :E]


Chapter21 274<br />

whichis<strong>of</strong>course<br />

ρ(E ′ /E) ρ(E/F) [E′ :E] . (20.1)<br />

Suppose E/Fisanabelianextensionand ωis<strong>the</strong>class<strong>of</strong><strong>the</strong>representation<strong>of</strong> W E/F<br />

inducedfrom<strong>the</strong>trivialrepresentation<strong>of</strong> CE = W E/E. Then H(ω) = ρ(E/F). <strong>On</strong><strong>the</strong><br />

o<strong>the</strong>rhand, ωis<strong>the</strong>directsum<strong>of</strong> [E : F]one­dimensionalrepresentations; so H(ω) =<br />

ρ(F/F) [E:F] = 1. Itfollowsimmediatelynotonlythat ρ(E/F) = 1if E/Fisabelianbut<br />

alsothat ρ(E/F) = 1if Ecanbeobtainedfrom Fbyasuccession<strong>of</strong>abelianextensions. In<br />

particularif F ⊆ E ⊆ Land L/Fisnilpotent ρ(E/F) = 1.<br />

Observethat(20.1)toge<strong>the</strong>rwithLemma2.2and<strong>the</strong>transitivity<strong>of</strong>inductionimplythat<br />

if ωis<strong>the</strong>class<strong>of</strong><br />

σ = Ind(W K/F, W K/E, ρ)<br />

and θis<strong>the</strong>class<strong>of</strong> ρ<strong>the</strong>n<br />

H(ω) = H(θ) ρ(E/F) dim θ .<br />

Tocomplete<strong>the</strong>pro<strong>of</strong>wewillshowthat H(ω1 ⊗ ω2) = H(ω2) dim ω1 forall ω1and ω2.Taking<br />

ω2 = 1wefind H(ω1) = 1. Itisenoughtoprove<strong>the</strong>equalitywhen ω1and ω2areboth<br />

realizableasrepresentations<strong>of</strong> W K/F and<strong>the</strong>reisafield Elyingbetween Eand Kwith<br />

G(K/E)nilpotentandageneralizedcharacter χEsuchthat ω2is<strong>the</strong>class<strong>of</strong><br />

Ind(W K/F, W K/E, χE).<br />

Then H(ω2) = ρ(E/F). If ρisarepresentationin<strong>the</strong>restriction<strong>of</strong> ω1to W K/E<strong>the</strong>n,by<br />

Lemma2.3, ω1 ⊗ ω2is<strong>the</strong>class<strong>of</strong><br />

Ind(W K/F, W K/E, ρ ⊗ χE).<br />

Let θbe<strong>the</strong>class<strong>of</strong> ρ ⊗ χE. H(θ)is<strong>of</strong><strong>the</strong>form<br />

r<br />

i=1<br />

where E ⊆ Ei ⊆ Kandis<strong>the</strong>refore1.Thus<br />

asrequired.<br />

ρ(Ei/E) mi<br />

H(ω1 ⊗ ω2) = H(θ)ρ(E/F) dim θ = ρ(E/F) dim ω1 .


Chapter22 275<br />

Chapter Twenty-two.<br />

Appendix.<br />

Thereisclearlynotmuchtobesaidabout<strong>the</strong><strong>functions</strong>ε(s, ω, ψF)whenFisarchimedean.<br />

Howeverfornon­archimedean F<strong>the</strong>irpropertiesaremoreobscure.Inthisappendixweshall<br />

describeandprovesomepropertieswhichwerenotneededin<strong>the</strong>pro<strong>of</strong>s<strong>of</strong><strong>the</strong>main<strong>the</strong>orems<br />

ands<strong>of</strong>oundnoplacein<strong>the</strong>mainbody<strong>of</strong><strong>the</strong>paperbutwhichwillbeusedelsewhere.<br />

Thefirststepistodefine<strong>the</strong><strong>Artin</strong>conductor<strong>of</strong> ω. Wefollowawell­troddenpath. If<br />

KisafiniteGaloisextension<strong>of</strong><strong>the</strong>localfield F<strong>the</strong>n W 0 K/Fcontains UKasasubgroup<strong>of</strong><br />

finiteindexandis<strong>the</strong>reforecompact. Itis,infact,amaximalcompactsubgroup<strong>of</strong> WK/F. ChoosethatHaarmeasure dwon WK/Fwhichassigns<strong>the</strong>measure1to W 0 K/F .If fisalocally<br />

constantfunctionon WK/Fand uisanon­negativerealnumberset<br />

<br />

ˆf(u) =<br />

W u<br />

dw<br />

K/F<br />

−1 <br />

W u<br />

{f(1) − f(w)}dw.<br />

K/F<br />

Since W u K/Fisanopensubgroup<strong>of</strong> WK/Fitismeaningfultorestrict dwtoit. ˆ f(u)isbounded,<br />

continuousfrom<strong>the</strong>left,and0for usufficientlylarge. Since W u K/F = W 0 K/Ffor 1 < u ≤ 0<br />

wehave ˆ f(u) = ˆ f(0)forsuch u.Theintegral<br />

iswell­defined.<br />

∞<br />

−1<br />

ˆf(u)du<br />

Therearesomesimplelemmastobeverified.<br />

Lemma 22.1<br />

Suppose F ⊆ K ⊆ Land L/FisalsoaGaloisextension.Define gon W L/Fby g(w) =<br />

f (τL/F ,K/F(w)).Then ˆg(u) = ˆ f(u)forall u.<br />

ThisisimmediatebecausebyLemma6.16, τ L/F,K/Fmaps W u L/F onto W u K/F<br />

Whenwewanttomake<strong>the</strong>roles<strong>of</strong> Kand Fexplicitwewrite ˆ f(u) = ˆ f K/F(u).<br />

Lemma 22.2<br />

forevery u.


Chapter22 276<br />

Suppose F ⊆ E ⊆ Kand gisafunctionon W K/Esatisfying g(wzw −1 ) = g(z)forall z<br />

and win W K/E.Regard W K/Easasubgroup<strong>of</strong> W K/Fandset<br />

If NE/F πEisaunittimes π f E/F<br />

F<br />

∞<br />

−1<br />

f(w) = <br />

and P δ E/F<br />

E<br />

ˆf K/F(u)du = f E/F<br />

z∈W K/E\W K/F<br />

∞<br />

g(z −1 wz).<br />

is<strong>the</strong>different<strong>of</strong> E/F<br />

−1<br />

ˆg K/E(u)du + f E/Fδ E/Fg(1).<br />

Let dw K/Fbe<strong>the</strong>normalizedHaarmeasureon W K/Fandlet dw K/Ebe<strong>the</strong>normalized<br />

Haarmeasureon W K/E.<strong>On</strong> W K/E<br />

dw K/E = [W 0 K/F : W 0 K/E ]dw K/F.<br />

Supposeatfirstthat g(1) = 0.Denotealsoby g<strong>the</strong>functionon W K/Fwhichequals<strong>the</strong>given<br />

gon W K/Ebutis0outside<strong>of</strong> W K/E.Then<br />

Since W u K/F ∩ W K/E = W v K/E if v = ψ E/F(u)<br />

Recallthat<br />

Moreover<br />

ˆf K/F(u) = [W K/F : W K/E] ˆg K/F(u).<br />

ˆg K/F(u) = −[W 0 K/F : W u K/F ]<br />

= − [W 0 K/F : W u K/F ]<br />

[W 0 K/F : W 0 K/E ]<br />

=<br />

1<br />

[W 0 K/F : W 0 K/E ]<br />

<br />

W u<br />

K/F<br />

<br />

W v<br />

K/E<br />

f E/F = [W K/F : W K/E]<br />

[W 0 K/F : W 0 K/E ].<br />

g(w)dw K/F<br />

g(w)dw K/E<br />

[W 0 K/F : W u K/F ]<br />

[W 0 K/E : W v K/E ] ˆg K/E(v).<br />

[W 0 K/F : W u K/F ]<br />

[W 0 K/E : W v K/E ] = [W 0 K/F : W u K/F U0 K ]<br />

[W 0 K/E : W v K/E U0 K ] · [U0 K : U0 K ∩ W u K/F ]<br />

[U 0 K : U0 K ∩ W v K/E ]


Chapter22 277<br />

and U 0 K ∩ W u K/F = U0 K ∩ W v K/E .ByLemma6.11<strong>the</strong>firstterminthisproductisequalto<br />

if G = G(K/F)and H = G(K/E).But<br />

and<br />

while<br />

Thus<br />

∞<br />

−1<br />

[G 0 : G u ]<br />

[H 0 : H v ]<br />

[G 0 : G u ] = ψ ′ K/F (u)<br />

[H 0 : H v ] = ψ ′ K/E (v)<br />

ψ ′ K/F (u) = ψ′ K/E (v)ψ′ E/F (u).<br />

ˆf K/F(u)du = f E/F<br />

= f E/F<br />

∞<br />

−1<br />

∞<br />

−1<br />

ˆg K/E(ψ E/F(u)) ψ ′ E/F (u)du<br />

ˆg K/E(v)dv.<br />

Tocomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong><strong>the</strong>lemma,wehavetoshowthatif g(w) = 1sothat ˆg K/E(u) ≡ 0<br />

<strong>the</strong>n ∞<br />

Inthiscase<br />

−1<br />

ˆf K/F(u) = [G : H] −<br />

ˆf K/F(u)du = f E/F δ E/F.<br />

[G : H]<br />

[G 0 : H 0 ]<br />

if v = ψ E/F(u).Aftersomesimplerearrangingthisbecomes<br />

Thefactor<br />

[G : H]<br />

[G u : 1] {[Gu : 1] − [H v : 1]} =<br />

and,fromparagraphIV.2<strong>of</strong> [ ],<br />

∞<br />

1<br />

[G 0 : G u ]<br />

[H 0 : H v ]<br />

[G : H]<br />

[G u : 1] {([Gu : 1] − 1) − ([H v : 1] − 1)}.<br />

[G : H]<br />

[G u : 1] = [G : G0 ]<br />

[H : 1] ψ′ K/F (u)<br />

([G u : 1] − 1)ψ ′ K/F (u)du =<br />

∞<br />

−1<br />

([Gx : 1] − 1)dx = δ K/F


Chapter22 278<br />

while ∞<br />

−1<br />

Thus ∞<br />

because<br />

([H v : 1] − 1) ψ ′ K/F (u)du =<br />

−1<br />

∞<br />

−1<br />

([H v : 1] − 1) ψ ′ K/E (v)dv = δ K/E.<br />

ˆf K/F(u)du = [G : G0 ]<br />

[H : 1] (δ K/F − δ K/E) = f E/F δ E/F<br />

δ K/F = δ K/E + [H0 : 1] δ E/F.<br />

Suppose ωisanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong> Fand σisa<br />

representation<strong>of</strong> WK/Fin<strong>the</strong>class<strong>of</strong> ω.Let fσbe<strong>the</strong>character<strong>of</strong> σ.ItfollowsfromLemma<br />

22.1that<strong>the</strong>value<strong>of</strong> ∞<br />

ˆfσ(u)du<br />

−1<br />

dependsonlyon ωandnoton σ.Wecallit<strong>the</strong>order<strong>of</strong> ωanddenoteitby m(ω).Since ˆ fσ(u)is<br />

clearlynon­negativeforall uandvanishesidenticallyifandonlyif W 0 K/F iscontainedin<strong>the</strong><br />

kernel<strong>of</strong> σ,<strong>the</strong>order m(ω)isalwaysnon­negativeandequalszeroifandonlyif<strong>the</strong>kernel<strong>of</strong><br />

eachrealization σ<strong>of</strong> ωcontains W 0 K/F .<br />

Lemma 22.3<br />

(a)If ω = ω1 ⊕ ω2<strong>the</strong>n m(ω) = m(ω1) + m(ω2).<br />

(b)If<br />

<strong>the</strong>n<br />

(c) m(ω)isanon­negativeinteger.<br />

ω = Ind(W K/F, W K/E, ν)<br />

m(ω) = f E/Fm(ν) = f E/F δ E/F dimν.<br />

Thefirstpropertyisimmediate.Thesecondisaconsequence<strong>of</strong>Lemma22.2. Toverify<br />

<strong>the</strong>thirdwemerelyhavetoshowthat m(ω)isintegral. If ω = µ ⊕ νand<strong>the</strong>assertionis<br />

trueforanytwo<strong>of</strong> µ, νand ωitistruefor<strong>the</strong>third. Thisobservation,toge<strong>the</strong>rwithpart<br />

(b)andLemma2.2,showsthatitisenoughtoverify(c)when ωis<strong>the</strong>one­dimensionalclass<br />

correspondingtoageneralizedcharacter χF<strong>of</strong> CF.Todothisweshowthat m(ω) = m(χF).<br />

If f(a) = χF(a)for ain CF = WF/F<strong>the</strong>n ˆ f(u) = ˆ f(m)for m − 1 < u ≤ mand<br />

<br />

{1 − χF(a)}da.<br />

ˆf(m) = [U 0 F : Um F ]<br />

U m F


Chapter22 279<br />

Therightsideis1if m < m(χF)and0if m ≥ m(χF).Thus<br />

m(ω) =<br />

m(χF )−1<br />

−1<br />

du = m(χF).<br />

Thefunction ω −→ m(ω)ischaracterizedby(a)and(b)toge<strong>the</strong>rwith<strong>the</strong>factthat<br />

m(ω) = m(χF)if ωis<strong>the</strong>class<strong>of</strong> χF.<br />

Lemma 22.4<br />

If ωisanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong><strong>the</strong>non­archimedean<br />

localfield Fand ψFisanon­trivialadditivecharacter<strong>of</strong> Fset m ′ (ω) = m(ω) +n(ψF) dimω.<br />

Thereisanon­zerocomplexconstant a(ω)suchthat,asafunction<strong>of</strong> s,<br />

ε(s, ω, ψF) = a(ω) |πF | m′ (ω)s .<br />

If ω = µ ⊕ νand<strong>the</strong>lemmaistrueforanytwo<strong>of</strong> µ, ν,and ω,itistruefor<strong>the</strong>third.<br />

ApplyingLemma2.2weseethatitisenoughtoverifyitwhen ωcontainsarepresentation<br />

Then<br />

Clearly<br />

But<br />

∆(α s−1<br />

2<br />

αE<br />

Ind(W K/F, W K/E, χE).<br />

ε(s, ω, ψF) = ∆(α s−1<br />

2<br />

E χE, ψ E/F) ρ(E/F, ψF).<br />

E χE, ψE/F) = α s−1<br />

<br />

2<br />

E π m(χE)+δE/F E<br />

<br />

π m(χE)+δ E/F<br />

E<br />

π n(ψF)<br />

<br />

F = αF NE/F and<strong>the</strong>argumenton<strong>the</strong>rightis<strong>the</strong>product<strong>of</strong>aunitand<br />

Thelemmafollows.<br />

π f E/F(m(χE)+δ E/F)+n(ψF ) dim ω<br />

F<br />

π n(ψF)<br />

<br />

F ∆(χE, ψE/F). π m(χE)+δ E/F<br />

E<br />

= π m′ (ω)<br />

F .<br />

π n(ψF<br />

<br />

)<br />

F<br />

Thenextlemmaisra<strong>the</strong>rtechnicalandtoproveitwewillhavetouse<strong>the</strong>notationsand<br />

results<strong>of</strong>paragraphs8and9.<br />

Lemma 22.5


Chapter22 280<br />

Let ωbeanequivalenceclass<strong>of</strong>representations<strong>of</strong><strong>the</strong>Weilgroup<strong>of</strong><strong>the</strong>non­archimedean<br />

localfield F and m1apositiveinteger. Thereisapositiveinteger m2suchthatif χF and<br />

µ1, . . ., µrwith r = dimω,aregeneralizedcharacters<strong>of</strong> CF and m(χF) ≥ m2, m(µi) ≤<br />

m1, 1 ≤ i ≤ r,while r<br />

i=1 µi = detω<br />

<strong>the</strong>nforanynon­trivialadditivecharacter ψF<br />

ε(s, χF ⊗ σ, ψF) = r<br />

i=1 ε(s, µiχF, ψF).<br />

Choose,asastart, m2 ≥ 2m1+1.If µFisageneralizedcharacter<strong>of</strong> CFand m(µF) ≤ m1<br />

while m(χF) ≥ m2<strong>the</strong>n m(µFχF) = m(χF) = m. Let n = n(ψF)andchoose γsothat<br />

OFγ = P m+n<br />

F . If β = β(χF)wemaychoose β(µFχF) = β. AppealingtoLemmas8.1and<br />

9.4weseethat<br />

Inparticular<br />

r<br />

If ω = µ ⊕ ν<strong>the</strong>n<br />

ε(s, µFχF,ψF) = ∆(α s−1 2<br />

F µFχF, ψF)<br />

= (α s−1 2<br />

F µF)<br />

<br />

γ<br />

∆(χF, ψF).<br />

β<br />

i=1 ε(s, µiχF,ψF) = α r(s−1<br />

F<br />

2 )<br />

<br />

γ<br />

detω<br />

β<br />

<br />

γ<br />

β<br />

{∆(χF, ψF)} r .<br />

ε(s, χF ⊗ ω, ψF) = ε(s, χF ⊗ µ, ψF) ε(s, χF ⊗ ν, ψF)<br />

andallthreetermsaredifferentfromzero.Thusif<strong>the</strong>lemmaistruefortwo<strong>of</strong> µ, νand ωitis<br />

truefor<strong>the</strong>third.UsingLemma2.2onceagain,weseethatitisenoughtoprove<strong>the</strong>lemma<br />

when<strong>the</strong>reisanintermediatefield Eandageneralizedcharacter µE<strong>of</strong> CEsuchthat ωis<strong>the</strong><br />

class<strong>of</strong><br />

Ind(W K/F, W K/E, µE).<br />

Then χF ⊗ ωis<strong>the</strong>class<strong>of</strong><br />

and<br />

Ind(W K/F, W K/E, µE χ E/F)<br />

ε(s, χF ⊗ ω, ψF) = ∆(α s−1<br />

2<br />

E µEχ E/F, ψ E/F) ρ(E/F, ψF).<br />

Therearetwosimplelemmaswhichweneedbeforewecanproceedfur<strong>the</strong>randwe<br />

digresstoprove<strong>the</strong>m.


Chapter22 281<br />

Lemma 22.6<br />

Let Ebeaseparableextension<strong>of</strong> F.If missufficientlylarge<br />

if e E/Fis<strong>the</strong>index<strong>of</strong>ramification<strong>of</strong> Fin E.<br />

ψ E/F(m − 1) + 1 = me E/F − δ E/F<br />

Suppose F ⊆ E ⊆ Kwhere K/FisGaloisand<strong>the</strong>assertionistruefor K/Fand K/E.<br />

Subtracting1frombothsides<strong>of</strong><strong>the</strong>equation,applying ψ K/E,and<strong>the</strong>nadding1,weobtain<br />

<strong>the</strong>equivalentequation<br />

Byassumption,<strong>the</strong>leftsideequals<br />

and<strong>the</strong>rightsideequals<br />

ψ K/F(m − 1) + 1 = ψ K/E(me E/F − δ E/F − 1) + 1.<br />

me K/F − δ K/F<br />

(me E/F − δ E/F)e K/E − δ K/E.<br />

Since e K/F = e K/Ee E/Fand δ K/F = δ K/E + e K/Eδ E/F<strong>the</strong>setwoexpressionsareequaland<br />

wehaveonlytoprove<strong>the</strong>lemmaforGaloisextensions.<br />

Suppose F ⊆ K ⊆ Land L/Fand K/FareGalois.Supposealsothat<strong>the</strong>lemmaistrue<br />

for L/Kand K/F.Then<br />

ψ L/F(m − 1) + 1 = ψ L/F(ψ K/F(m − 1)) + 1<br />

= ψ L/F(me K/F − δ K/F − 1) + 1<br />

= (me K/F − δ K/F) e L/K − δ L/K<br />

= me L/F − δ L/F<br />

asbefore. Thus,ifweuseinduction,weneedonlyverify<strong>the</strong>lemmadirectlyforaGalois<br />

extension K/F<strong>of</strong>primedegree.<br />

WeapplyLemma6.3.If K/Fisunramified, e K/F = 1and δ K/F = 0while ψ K/F(m −<br />

1) = m − 1; so<strong>the</strong>relationfollows. If K/F isramified<strong>the</strong>reisaninteger tsuchthat<br />

δ K/F = ([K : F] − 1)(t + 1)while ψ K/F(m − 1) + 1 = [K : F]m − ([K : F] − 1)(t + 1)for<br />

m − 1 ≥ t.Since e K/F = [K : F]<strong>the</strong>relationfollowsagain.


Chapter22 282<br />

If n = n(ψF)<strong>the</strong>n<br />

n ′ = n(ψ E/F) = n e E/F + δ E/F.<br />

Thusif missufficientlylargeand m ′ = ψ E/F(m − 1) + 1<br />

andif OFγ = P m+n<br />

F<br />

asinparagraph8.<br />

Lemma 22.7<br />

m ′ + n ′ = (m + n) e E/F<br />

<strong>the</strong>n OEγ = P m′ +n ′<br />

E .Wedefine<br />

P ∗ E/F (x) = P ∗ E/F (x; γ, γ)<br />

If m1isagivenpositiveinteger<strong>the</strong>nfor msufficientlylarge<br />

P ∗ E/F (x) ≡ x (mod Pm1<br />

E ).<br />

Asinparagraph8,let dbe<strong>the</strong>integralpart<strong>of</strong> m<br />

2 , d′ <strong>the</strong>integralpart<strong>of</strong> m′<br />

2 ,andlet<br />

m = 2d + ε, m ′ = 2d ′ + ε ′ . P ∗ E/F (x)dependsonlyon<strong>the</strong>residue<strong>of</strong> xmodulo Pd F andis<br />

onlydeterminedmodulo P d′<br />

E .Recallthatif<br />

for yin P d′ +ε ′<br />

E<br />

<strong>the</strong>n<br />

Toshowthat P ∗ E/F<br />

ψ E/F<br />

P E/F(y) = N E/F(1 + y) − 1<br />

<br />

∗ PE/F (x)y<br />

γ<br />

= ψF<br />

x PE/F(y)<br />

(x) ≡ x (modPm1 E )when missufficientlylarge,wehavetoshowthat<br />

ψF<br />

for yin P m′ −m1<br />

E .Todothisweshowthat<br />

<br />

x PE/F(y)<br />

= ψE/F γ<br />

γ<br />

<br />

xy<br />

γ<br />

P E/F(y) ≡ S E/F(y) (modP m F )<br />

when missufficientlylargeand yisin P m′ −m1<br />

E .<br />

<br />

.


Chapter22 283<br />

Toputitano<strong>the</strong>rway,wehavetoshowthatif K/FisanyGaloisextension<strong>the</strong>assertion<br />

istrueforallintermediatefields E.Forthisweuseinductionon [K : F]toge<strong>the</strong>rwithLemma<br />

3.3.Therearethreefactstoverify:<br />

(i)If E/FisaGaloisextension<strong>of</strong>primedegree<strong>the</strong>n<br />

P E/F(y) ≡ S E/F(y) (modP m F )<br />

when missufficientlylargeand yisin P m′ −m1<br />

E .<br />

(ii)Suppose F ⊆ E ⊆ Kand K/FisGalois.Let G = G(K/F)andlet Ebe<strong>the</strong>fixedfield<br />

<strong>of</strong> H.Suppose H = {1}and G = HCwhere H ∩ C = {1}and Cisanon­trivialabelian<br />

normalsubgroup<strong>of</strong> Gwhichiscontainedineveryo<strong>the</strong>rnon­trivialnormalsubgroup.If<br />

<strong>the</strong>inductionassumptionisvalid<br />

P E/F(y) ≡ S E/F(y) (modP m F )<br />

when missufficientlylargeand yisin P m′ −m1<br />

E .<br />

(iii)Suppose F ⊆ E ⊆ E ′ ⊆ Kand m ′′ = ψ E ′ /F(m − 1) + 1.If,foranychoice<strong>of</strong> m1,<br />

P E/F(y) ≡ S E/F(y) (modP m F )<br />

when missufficientlylargeand yisin P m′ −m1<br />

E<br />

and,foranychoice<strong>of</strong> m ′ 1 ,<br />

P E ′ /E(y) ≡ S E ′ /E(y) (modP m′<br />

E )<br />

when m,or m ′ ,issufficientlylargeand yisin P m′′ −m ′<br />

1<br />

E ′ <strong>the</strong>n,foranychoice<strong>of</strong> m ′ 1 ,<br />

P E ′ /F(y) ≡ S E ′ /F(y) (modP m F )<br />

if missufficientlylargeand yisin P m′′ −m ′<br />

1.<br />

Wefirstverify(i)for E/Funramified.ByparagraphV.2<strong>of</strong>[12]<br />

E ′<br />

P E/F(y) = N E/F(1 + y) − 1 ≡ S E/F(y) (modP m F )<br />

if ybelongsto P d′ +ε ′<br />

E .Inthiscase m = m ′ andwetake m > 2m1sothat m ′ −m1 > d ′ +ε ′ .If<br />

E/Fisramifiedand<strong>of</strong>degree ℓweagainchoose msufficientlylargethat m ′ > 2m1.If m > t<br />

2(m ′ − m1) + (ℓ − 1)(t + 1)<br />

ℓ<br />

≥ m′ + (ℓ − 1)(t + 1)<br />

ℓ<br />

= m


Chapter22 284<br />

sothatbyChapterV<strong>of</strong>[12],<br />

if ybelongsto P m′ −m1<br />

E<br />

P E/F(y) ≡ S E/F(y) + N E/F(y) (modP m F )<br />

. t<strong>of</strong>coursehasitsusualmeaning.Since N E/F(y)belongsto P m′ −m1<br />

F<br />

allwehavetodoisarrangethat m ′ − m1 ≥ m.Since<br />

m ′ − m1 = ℓm − (ℓ − 1) (t + 1) − m1<br />

and ℓ ≥ 2,thiscancertainlybedonebychoosing msufficientlylarge.<br />

Toverify<strong>the</strong>secondfactlet Lbe<strong>the</strong>fixedfield<strong>of</strong> C. Wecanassumethat<strong>the</strong>required<br />

assertionistruefor<strong>the</strong>extension K/L.Let ℓ = ψ L/F(m − 1) + 1and ℓ ′ = ψ K/F(m − 1) + 1.<br />

If missufficientlylargeand H0is<strong>the</strong>inertialgroup<strong>of</strong> H<br />

and<br />

Thus<br />

andif ℓ1 = [H0 : 1]m1<strong>the</strong>n<br />

ℓ = [H0 : 1]m − ([H0 : 1] − 1)<br />

ℓ ′ = [H0 : 1]m ′ − ([H0 : 1] − 1).<br />

P ℓ′ −ℓ1<br />

K<br />

If mand<strong>the</strong>refore ℓissufficientlylarge<br />

P ℓ L ∩ F = Pm F<br />

∩ E = P m′ −m1<br />

E .<br />

P K/L(y) = N K/L(1 + y) − 1 ≡ S K/L(y) (modP ℓ L )<br />

if ybelongsto P ℓ′ −ℓ1<br />

K .Thusif ybelongsto P m′ −m1<br />

E<br />

P E/F(y) = P K/L(y) ≡ S K/L(y) = S E/F(y) (mod P m F ).<br />

Toverify<strong>the</strong>thirdfactwechoose,once m ′ 1<br />

If missufficientlylarge<br />

S E ′ /E<br />

<br />

P −δE ′ /E−m′ 1<br />

E ′<br />

isgiven, m1sothat<br />

<br />

= P −m1<br />

E .<br />

m ′′ = m ′ e E ′ /E − δ E ′ /E


Chapter22 285<br />

andif ybelongsto P m′′ −m ′<br />

1<br />

E ′<br />

Takinginevenlargerifnecessary,wehave<br />

SE ′ /E(y) ∈ P m′ −m1<br />

E .<br />

P E ′ /F(y) ≡ P E/F(P E ′ /E(y))<br />

≡ P E/F(S E ′ /E(y))<br />

≡ S E/F(S E ′ /E(y))<br />

≡ S E ′ /F(y) (modP m F ).<br />

Returningto<strong>the</strong>pro<strong>of</strong><strong>of</strong>Lemma22.5,wechoose<br />

β ′ = β(χ E/F) = P ∗ E/F (β).<br />

If m(χF)and<strong>the</strong>refore m(χ E/F)issufficientlylarge,<br />

∆(α s−1 2<br />

E µE χE/F,ψ E/F) = α s−1 2<br />

E<br />

Both βand β ′ areunitsand<strong>the</strong>refore<br />

α s−1<br />

2<br />

E<br />

<br />

γ<br />

β ′<br />

<br />

= α<br />

If m(χF)issufficientlylarge<br />

1 r− 2<br />

E<br />

<br />

γ<br />

β<br />

β ′ ≡ β<br />

= α s−1<br />

2<br />

F<br />

<br />

γ<br />

β ′<br />

<br />

and µE(β ′ ) = µE(β).Inparagraph5wesawthat<br />

det ω<br />

<br />

γ<br />

= µE<br />

β<br />

<br />

µE<br />

<br />

N E/F<br />

modP m(µE)<br />

E<br />

<br />

γ<br />

β ′<br />

<br />

<br />

γ<br />

β<br />

<br />

<br />

γ<br />

det ιE/F β<br />

<br />

γ<br />

,<br />

β<br />

∆(χ E/F, ψ E/F).<br />

= α r(s−1<br />

2 )<br />

F<br />

<br />

γ<br />

.<br />

β<br />

if ι E/Fis<strong>the</strong>representation<strong>of</strong> W K/Finducedfrom<strong>the</strong>trivialrepresentation<strong>of</strong> W K/E. We<br />

arereducedtoshowingthat<br />

detι E/F<br />

<br />

γ<br />

{∆(χF, ψF)}<br />

β<br />

r = ∆(χE/F, ψE/F) ρ(E/F, ψF) (22.1)<br />

if m(χF)issufficientlylarge.Ofcourse r = [E : F].


Chapter22 286<br />

WhatwedoisshowthatforeachGaloisextension K/F<strong>the</strong>relation(22.1)istrueforall<br />

fields Elyingbetween Kand F.Forthisweuseinductionon [K : F].Let G = G(K/F)and<br />

let Cbeanon­trivialabeliannormalsubgroup<strong>of</strong> G.Let Lbe<strong>the</strong>fixedfield<strong>of</strong> C.Wesawin<br />

Chapter13that<strong>the</strong>rearefields F1, . . ., Fslyingbetween Fand Landgeneralizedcharacters<br />

µ1, . . ., µs<strong>of</strong> CF1 , . . ., CFsrespectivelysuchthat Then<br />

ιE/F ≃ ⊕ s i=1Ind(WK/F, WK/Fi , µi).<br />

χF ⊗ ι E/F ≃ ⊕ s i=1Ind(W K/F, W K/Ei , µi χ Fi/F)<br />

andbyTheorem2.1,<strong>the</strong>MainTheorem,<strong>the</strong>rightside<strong>of</strong>(22.1)isequalto<br />

s<br />

i=1 ∆(µi χ Fi/F, ψ Fi/F) ρ(Fi/F, ψF).<br />

Wejustsawthatif m(χF)issufficientlylargethisisequalto<br />

s<br />

i=1 µi<br />

Since s<br />

<br />

γ s<br />

β i=1 ∆(χFi/F, ψFi/F) ρ(Fi/F, ψF)}.<br />

i=1 [Fi : F] = [E : F]<br />

weseeuponapplying<strong>the</strong>inductionassumptionto L/Fthatthisequals<br />

s<br />

i=1 µi<br />

<br />

γ<br />

det ιFi/F β<br />

<br />

γ<br />

{∆(χF, ψF)}<br />

β<br />

r .<br />

Wecomplete<strong>the</strong>pro<strong>of</strong><strong>of</strong>(22.1)byappealingtoChapter5toseethat<br />

det ι E/F = s<br />

i=1 µidet ι Fi/F.


References 287<br />

References<br />

1. <strong>Artin</strong>,E.,ZurTheorieder L­ReihenmitallgemeinenGruppencharakteren,Collected<br />

Papers,Addison–Wesley<br />

2. <strong>Artin</strong>,E.,Diegruppen<strong>the</strong>oretischeStrukturderDiskriminantenalgebraischerZahlkörper,CollectedPapers,Addison–Wesley<br />

3. <strong>Artin</strong>,E.andTate,J.,ClassFieldTheory,W.ABenjamin,NY<br />

4. Brauer,R.andTate,J,<strong>On</strong><strong>the</strong>characters<strong>of</strong>finitegroups,Ann.<strong>of</strong>Math. 62(1955)<br />

5. Davenport,H.andHasse,H.,DieNullstellenderKongruenzzetafunktioningewissen<br />

zyklischenFällen,Jour.fürMath. 172(1935)<br />

6. Dwork,B.,<strong>On</strong><strong>the</strong><strong>Artin</strong>rootnumber,Amer.Jour.Math. 78(1956)<br />

7. Hall,M.,TheTheory<strong>of</strong>Groups,Macmillan,N.Y.(1959)<br />

8. Hasse,H.,<strong>Artin</strong>scheFührer,<strong>Artin</strong>sche L­FunktionenundGauss’scheSummen<br />

überendlich­algebraischenZahlkörpern,ActaSalmanticensia(1954)<br />

9. Lakkis,K.,DiegaloisschenGauss’schenSummenvonHasse,Dissertation,<br />

Hamburg(1964)<br />

10. Lamprecht,E.,AllgemeineTheoriederGauss’schenSummeninendlichenkommutativen<br />

Ringen,Math.Nach. 9(1953)<br />

11. Mackenzie,E.andWhaples,G.,<strong>Artin</strong>–Schreierequationsincharacteristiczero,Amer.<br />

Jour.Math 78(1956)<br />

12. Serre,J.­P.,Corpslocaux,Hermann.(1962)<br />

13. Tate,J.,FourierAnalysisinNumberFieldsandHecke’sZeta­<strong>functions</strong>,Thesis,<br />

Princeton(1950)<br />

14. Weil,A.,Numbers<strong>of</strong>solutions<strong>of</strong>equationsinfinitefields,Bull.Amer.Math.<br />

Soc. 55(1949)<br />

15. Weil,A.,Surlathéorieducorpsdeclasses,Jour.Math.Soc.Japan, 3(1951)<br />

16. Weil,A.,BasicNumberTheory,Springer­Verlag,(1967)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!