14.08.2013 Views

The number of points in a matroid with no n-point line as a minor

The number of points in a matroid with no n-point line as a minor

The number of points in a matroid with no n-point line as a minor

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE NUMBER OF POINTS IN A MATROID WITH<br />

NO n-POINT LINE AS A MINOR<br />

JIM GEELEN AND PETER NELSON<br />

Abstract. For any positive <strong>in</strong>teger l we prove that if M is a<br />

simple <strong>matroid</strong> <strong>with</strong> <strong>no</strong> (l + 2)-po<strong>in</strong>t l<strong>in</strong>e <strong>as</strong> a m<strong>in</strong>or and <strong>with</strong><br />

sufficiently large rank, then |E(M)| ≤ qr(M) −1<br />

q−1 , where q is the<br />

largest prime power less than or equal to l. Equality is atta<strong>in</strong>ed<br />

by projective geometries over GF(q).<br />

1. Introduction<br />

Kung [5] proved the follow<strong>in</strong>g theorem.<br />

<strong>The</strong>orem 1.1. For any <strong>in</strong>teger l ≥ 2, if M is a simple <strong>matroid</strong> <strong>with</strong><br />

<strong>no</strong> U2,l+2-m<strong>in</strong>or, then |E(M)| ≤ lr(M) −1<br />

l−1 .<br />

<strong>The</strong> above bound is tight <strong>in</strong> the c<strong>as</strong>e that l is a prime power and<br />

M is a projective geometry. In fact, among <strong>matroid</strong>s <strong>of</strong> rank at le<strong>as</strong>t<br />

4, projective geometries are the only <strong>matroid</strong>s that atta<strong>in</strong> the bound;<br />

see [5]. <strong>The</strong>refore, the bound is <strong>no</strong>t tight when l is <strong>no</strong>t a prime power.<br />

We prove the follow<strong>in</strong>g bound that w<strong>as</strong> conjectured by Kung [5,4].<br />

<strong>The</strong>orem 1.2. Let l ≥ 2 be a positive <strong>in</strong>teger and let q be the largest<br />

prime power less than or equal to l. If M is a simple <strong>matroid</strong> <strong>with</strong> <strong>no</strong><br />

U2,l+2-m<strong>in</strong>or and <strong>with</strong> sufficiently large rank, then |E(M)| ≤ qr(M) −1<br />

q−1 .<br />

<strong>The</strong> c<strong>as</strong>e where l = 6 w<strong>as</strong> resolved by Bon<strong>in</strong> and Kung <strong>in</strong> [2].<br />

We will also prove that the only <strong>matroid</strong>s <strong>of</strong> large rank that atta<strong>in</strong><br />

the bound <strong>in</strong> <strong>The</strong>orem 1.2 are the projective geometries over GF(q);<br />

see Corollary 4.2.<br />

A <strong>matroid</strong> M is round if E(M) can<strong>no</strong>t be partitioned <strong>in</strong>to two sets<br />

<strong>of</strong> rank less than r(M). We prove <strong>The</strong>orem 1.2 by reduc<strong>in</strong>g it to the<br />

follow<strong>in</strong>g result.<br />

Date: June 4, 2010.<br />

1991 Mathematics Subject Cl<strong>as</strong>sification. 05B35.<br />

Key words and phr<strong>as</strong>es. <strong>matroid</strong>s, growth rate, m<strong>in</strong>ors.<br />

This research w<strong>as</strong> partially supported by a grant from the Natural Sciences and<br />

Eng<strong>in</strong>eer<strong>in</strong>g Research Council <strong>of</strong> Canada.<br />

1


2 GEELEN AND NELSON<br />

<strong>The</strong>orem 1.3. For each prime power q, there exists a positive <strong>in</strong>teger n<br />

such that, if M is a round <strong>matroid</strong> <strong>with</strong> a PG(n − 1, q)-m<strong>in</strong>or but <strong>no</strong><br />

U 2,q 2 +1-m<strong>in</strong>or, then ɛ(M) ≤ qr(M) −1<br />

q−1 .<br />

For any <strong>in</strong>teger l ≥ 2, there is an <strong>in</strong>teger k such that 2 k−1 < l ≤ 2 k .<br />

<strong>The</strong>refore, if q is the largest prime power less than or equal to l, then<br />

l < 2q. So, to prove <strong>The</strong>orem 1.2, it would suffice to prove the weaker<br />

version <strong>of</strong> <strong>The</strong>orem 1.3 where U 2,q 2 +1 is replaced by U2,2q+1. With this<br />

<strong>in</strong> m<strong>in</strong>d, we f<strong>in</strong>d the stronger version somewhat surpris<strong>in</strong>g.<br />

We further reduce <strong>The</strong>orem 1.3 to the follow<strong>in</strong>g result.<br />

<strong>The</strong>orem 1.4. For each prime power q there exists an <strong>in</strong>teger n such<br />

that, if M is a round <strong>matroid</strong> that conta<strong>in</strong>s a U2,q+2-restriction and a<br />

PG(n − 1, q)-m<strong>in</strong>or, then M conta<strong>in</strong>s a U 2,q 2 +1-m<strong>in</strong>or.<br />

<strong>The</strong> follow<strong>in</strong>g conjecture, if true, would imply all <strong>of</strong> the results above.<br />

Conjecture 1.5. For each prime power q, there exists a positive <strong>in</strong>teger<br />

n such that, if M is a round <strong>matroid</strong> <strong>with</strong> a PG(n − 1, q)-m<strong>in</strong>or<br />

but <strong>no</strong> U 2,q 2 +1-m<strong>in</strong>or, then M is GF(q)-representable.<br />

<strong>The</strong> conjecture may hold <strong>with</strong> n = 3 for all q. Moreover, the<br />

conjecture may also hold when “round” is replaced by “vertically 4connected”.<br />

2. Prelim<strong>in</strong>aries<br />

We <strong>as</strong>sume that the reader is familiar <strong>with</strong> <strong>matroid</strong> theory; we use<br />

the <strong>no</strong>tation and term<strong>in</strong>ology <strong>of</strong> Oxley [6]. A rank-1 flat <strong>in</strong> a <strong>matroid</strong><br />

is referred to <strong>as</strong> a po<strong>in</strong>t and a rank-2 flat is a l<strong>in</strong>e. A l<strong>in</strong>e is long if it<br />

h<strong>as</strong> at le<strong>as</strong>t 3 <strong>po<strong>in</strong>ts</strong>. <strong>The</strong> <strong>number</strong> <strong>of</strong> <strong>po<strong>in</strong>ts</strong> <strong>in</strong> M is de<strong>no</strong>ted ɛ(M).<br />

Let M be a <strong>matroid</strong> and let A, B ⊆ E(M). We def<strong>in</strong>e ⊓M(A, B) =<br />

rM(A) + rM(B) − rM(A ∪ B); this is the local connectivity between<br />

A and B. This def<strong>in</strong>ition is motivated by geometry. Suppose that<br />

M is a restriction <strong>of</strong> PG(n − 1, q) and let FA and FB be the flats <strong>of</strong><br />

PG(n − 1, q) that are spanned by A and B respectively. <strong>The</strong>n FA ∩ FB<br />

h<strong>as</strong> rank ⊓M(A, B). We say that two sets A, B ⊆ E(M) are skew if<br />

⊓M(A, B) = 0.<br />

We let U(l) de<strong>no</strong>te the cl<strong>as</strong>s <strong>of</strong> <strong>matroid</strong>s <strong>with</strong> <strong>no</strong> U2,l+2-m<strong>in</strong>or. Our<br />

pro<strong>of</strong> <strong>of</strong> <strong>The</strong>orem 1.2 relies heavily on the follow<strong>in</strong>g result <strong>of</strong> Geelen<br />

and Kabell [3, <strong>The</strong>orem 2.1].<br />

<strong>The</strong>orem 2.1. <strong>The</strong>re is an <strong>in</strong>teger-valued function α(l, q, n) such that,<br />

for any positive <strong>in</strong>tegers l, q, n <strong>with</strong> l ≥ q ≥ 2, if M ∈ U(l) is a <strong>matroid</strong><br />

<strong>with</strong> ɛ(M) ≥ α(l, q, n)q r(M) , then M conta<strong>in</strong>s a PG(n−1, q ′ )-m<strong>in</strong>or for<br />

some prime-power q ′ > q.


MATROIDS WITH NO U2,n-MINOR 3<br />

<strong>The</strong> follow<strong>in</strong>g result is an important special c<strong>as</strong>e <strong>of</strong> <strong>The</strong>orem 1.4.<br />

Lemma 2.2. If M is a round <strong>matroid</strong> that conta<strong>in</strong>s a U2,q+2-restriction<br />

and a PG(2, q)-restriction, then M h<strong>as</strong> a U 2,q 2 +1-m<strong>in</strong>or.<br />

Pro<strong>of</strong>. Suppose that M is a m<strong>in</strong>imum-rank counterexample. Let<br />

L, P ⊆ E(M) such that M|L = U2,q+2 and M|P = PG(2, q). If M<br />

h<strong>as</strong> rank 3, then we may <strong>as</strong>sume that E(M) = P ∪ {e}. S<strong>in</strong>ce M|P is<br />

modular, e is <strong>in</strong> at most one long l<strong>in</strong>e <strong>of</strong> M. <strong>The</strong>n, s<strong>in</strong>ce |P | = q 2 +q+1,<br />

we have ɛ(M/e) ≥ q 2 + 1 and, hence, M h<strong>as</strong> a U 2,q 2 +1-m<strong>in</strong>or. This contradiction<br />

implies that r(M) > 3. S<strong>in</strong>ce M is round, there is an element<br />

e that is spanned by neither L <strong>no</strong>r P . Now M/e is round and conta<strong>in</strong>s<br />

both M|L and M|P <strong>as</strong> restrictions. This contradicts our choice <strong>of</strong><br />

M. <br />

<strong>The</strong> b<strong>as</strong>e c<strong>as</strong>e <strong>of</strong> the follow<strong>in</strong>g lemma is essentially proved <strong>in</strong><br />

[3, Lemma 2.4].<br />

Lemma 2.3. Let λ ∈ R. Let k and l ≥ q ≥ 2 be positive <strong>in</strong>tegers, and<br />

let A and B be disjo<strong>in</strong>t sets <strong>of</strong> elements <strong>in</strong> a <strong>matroid</strong> M ∈ U(l) <strong>with</strong><br />

⊓M(A, B) ≤ k and ɛM(A) > λq rM (A) . <strong>The</strong>n there is a set A ′ ⊆ A that<br />

is skew to B and satisfies ɛM(A ′ ) > λl −k q rM (A ′ ) .<br />

Pro<strong>of</strong>. By possibly contract<strong>in</strong>g some elements <strong>in</strong> B − clM(A), we may<br />

<strong>as</strong>sume that A spans B and thus that rM(B) = ⊓M(A, B). When<br />

k = 1, this means B h<strong>as</strong> rank 1. We resolve this b<strong>as</strong>e c<strong>as</strong>e first.<br />

Let e be a <strong>no</strong>n-loop element <strong>of</strong> B. We may <strong>as</strong>sume that A is m<strong>in</strong>imal<br />

<strong>with</strong> ɛM(A) > λq rM (A) , and that E(M) = A∪{e}. Let W be a flat <strong>of</strong> M<br />

<strong>no</strong>t conta<strong>in</strong><strong>in</strong>g e, such that rM(W ) = r(M)−2. Let H0, H1, . . . , Hm be<br />

the hyperplanes <strong>of</strong> M conta<strong>in</strong><strong>in</strong>g W , <strong>with</strong> e ∈ H0. <strong>The</strong> sets {Hi − W :<br />

1 ≤ i ≤ m} are a disjo<strong>in</strong>t cover <strong>of</strong> E(M) − W . Additionally, the<br />

<strong>matroid</strong> si(M/W ) is isomorphic to the l<strong>in</strong>e U2,m+1, so we k<strong>no</strong>w that<br />

m ≤ l.<br />

By the m<strong>in</strong>imality <strong>of</strong> A, we get ɛM(H0 ∩ A) ≤ λq r(M)−1 , so<br />

ɛM(A − H0) > λ(q − 1)q r(M)−1 .<br />

S<strong>in</strong>ce the hyperplanes H1, . . . , Hm cover E(M) − H0, a majority argument<br />

gives some 1 ≤ i ≤ m such that<br />

ɛM(Hi ∩ A) ≥ 1<br />

m ɛM(A − H0) > λ<br />

l (q − 1)qr(M)−1 .<br />

Sett<strong>in</strong>g A ′ = A ∩ Hi gives a set <strong>of</strong> the required <strong>number</strong> <strong>of</strong> <strong>po<strong>in</strong>ts</strong> that<br />

is skew to e and therefore to B, which is what we want.<br />

Now suppose that the result holds for k = t and consider the c<strong>as</strong>e<br />

that k = t + 1. Let A and B be disjo<strong>in</strong>t sets <strong>of</strong> elements <strong>in</strong> a <strong>matroid</strong>


4 GEELEN AND NELSON<br />

M <strong>with</strong> ⊓M(A, B) ≤ t + 1 and ɛM(A) > λq rM (A) . As mentioned earlier,<br />

we have rM(B) = ⊓M(A, B) ≤ t + 1. Let e be any <strong>no</strong>n-loop element<br />

<strong>of</strong> B. By the b<strong>as</strong>e c<strong>as</strong>e, there exists A ′ ⊆ A that is skew to {e} and<br />

satisfies ɛM(A ′ ) > λl −1 q rM (A ′ ) . S<strong>in</strong>ce e ∈ clM(A ′ ) and rM(B) ≤ t+1, we<br />

have ⊓M(A ′ , B) ≤ t. Now the result follows rout<strong>in</strong>ely by the <strong>in</strong>duction<br />

hypothesis. <br />

<strong>The</strong> follow<strong>in</strong>g two results are used <strong>in</strong> the reduction <strong>of</strong> <strong>The</strong>orem 1.2<br />

to <strong>The</strong>orem 1.3.<br />

Lemma 2.4. Let f(k) be an <strong>in</strong>teger-valued function such that f(k) ≥<br />

2f(k − 1) − 1 for each k ≥ 1 and f(1) ≥ 1. If M is a <strong>matroid</strong> <strong>with</strong><br />

ɛ(M) ≥ f(r(M)) and r(M) ≥ 1, then there is a round restriction N <strong>of</strong><br />

M such that ɛ(N) ≥ f(r(N)) and r(N) ≥ 1.<br />

Pro<strong>of</strong>. We may <strong>as</strong>sume that M is <strong>no</strong>t round and, hence, there is a<br />

partition (A, B) <strong>of</strong> E(M) such that rM(A) < r(M) and rM(B) < r(M).<br />

Clearly rM(A) ≥ 1 and rM(B) ≥ 1. Inductively we may <strong>as</strong>sume that<br />

ɛM(A) < f(rM(A)) and ɛM(B) < f(rM(B)). Thus ɛ(M) ≤ ɛ(M|A) +<br />

ɛ(M|B) ≤ f(rM(A)) + f(rM(B)) − 2 ≤ 2f(r(M) − 1) − 2 < f(r(M)),<br />

which is a contradiction. <br />

Lemma 2.5. Let q ≥ 4 and t ≥ 1 be <strong>in</strong>tegers and let M be a <strong>matroid</strong><br />

<strong>with</strong> ɛ(M) ≥ qr(M) −1<br />

and r(M) ≥ 3t. If M is <strong>no</strong>t round, then either M<br />

q−1<br />

h<strong>as</strong> a U2,q2 +2-m<strong>in</strong>or or there is a round restriction N <strong>of</strong> M such that<br />

r(N) ≥ t and ɛ(N) > qr(N) −1<br />

. q−1<br />

Pro<strong>of</strong>. Let s = r(M) and let f(k) = <br />

q s−k qk−1 . For any k ≥ 1,<br />

2 q−1<br />

<br />

q<br />

<br />

s−k−1 k+1 q − 1<br />

f(k + 1) =<br />

2 q − 1<br />

<br />

q<br />

<br />

s−k−1<br />

><br />

q<br />

2<br />

qk <br />

− 1<br />

q − 1<br />

= 2f(k).<br />

Moreover f(1) ≥ 1 and ɛ(M) ≥ f(r(M)). <strong>The</strong>n, by Lemma 2.4, there<br />

is a round restriction N <strong>of</strong> M such that r(N) ≥ 1 and ɛ(N) ≥ f(r(N)).<br />

S<strong>in</strong>ce M is <strong>no</strong>t round, r(N) < r(M) = s and, hence, ɛ(N) > qr(N) −1<br />

q−1 .


MATROIDS WITH NO U2,n-MINOR 5<br />

We may <strong>as</strong>sume that r(N) < t. <strong>The</strong>refore, s<strong>in</strong>ce s ≥ 3t and q ≥ 4,<br />

ɛ(N) ≥ f(r(N))<br />

<br />

q<br />

<br />

s−r(N) r(N) q − 1<br />

=<br />

2 q − 1<br />

<br />

q<br />

<br />

2t r(N) q − 1<br />

≥<br />

2 q − 1<br />

≥ q t<br />

<br />

r(N) q − 1<br />

q − 1<br />

> q r(N)<br />

<br />

r(N) q − 1<br />

q − 1<br />

<br />

r(N) r(N) q + 1 q − 1<br />

≥<br />

q + 1 q − 1<br />

2r(N) q − 1<br />

=<br />

q2 <br />

.<br />

− 1<br />

<strong>The</strong>refore, by <strong>The</strong>orem 1.1, M h<strong>as</strong> a U 2,q 2 +2-m<strong>in</strong>or, <strong>as</strong> required. <br />

3. <strong>The</strong> ma<strong>in</strong> results<br />

We start <strong>with</strong> a pro<strong>of</strong> <strong>of</strong> <strong>The</strong>orem 1.4, which we restate here.<br />

<strong>The</strong>orem 3.1. <strong>The</strong>re is an <strong>in</strong>teger-valued function n(q) such that, for<br />

each prime power q, if M is a round <strong>matroid</strong> that conta<strong>in</strong>s a U2,q+2restriction<br />

and a PG(n(q) − 1, q)-m<strong>in</strong>or, then M h<strong>as</strong> a U 2,q 2 +1-m<strong>in</strong>or.<br />

Pro<strong>of</strong>. Recall that the function α(l, q, n) w<strong>as</strong> def<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 2.1.<br />

Let q be a prime power, let α = α(q2 − 1, q − 1, 3). Let n be an <strong>in</strong>teger<br />

that is sufficiently large so that<br />

q<br />

q−1<br />

n<br />

> αq 5 (q − 1) 2 . We def<strong>in</strong>e<br />

n(q) = n. Suppose that the result fails for this choice <strong>of</strong> n(q) and let<br />

M be a m<strong>in</strong>imum-rank counterexample. Thus M is a round <strong>matroid</strong><br />

hav<strong>in</strong>g a l<strong>in</strong>e L, <strong>with</strong> at le<strong>as</strong>t q + 2 <strong>po<strong>in</strong>ts</strong>, and a m<strong>in</strong>or N isomorphic<br />

to PG(n − 1, q), but M ∈ U(q 2 − 1).<br />

Suppose that N = M/C \ D where C is <strong>in</strong>dependent. If e ∈ C − L,<br />

then M/e is round, conta<strong>in</strong>s the l<strong>in</strong>e L, and h<strong>as</strong> N <strong>as</strong> m<strong>in</strong>or — contrary<br />

to our choice <strong>of</strong> M. <strong>The</strong>refore C ⊆ L and, hence, r(M) ≤ r(N) + 2 ≤<br />

n + 2.<br />

Let X = E(M) − L. By our choice <strong>of</strong> n, we have ɛ(M|(X − D)) ≥<br />

q n −1<br />

q−1 −(q2 +1) = q 3 qn−3 −1<br />

q−1 +q ≥ qn−1 > q 4 α(q−1) n+2 ≥ q 4 α(q−1) rM (X) .<br />

By Lemma 2.3, there is a flat F ⊆ X − D <strong>of</strong> M that is skew to L and<br />

satisfies ɛ(M|F ) ≥ α(q − 1) rM (F ) . S<strong>in</strong>ce F is skew to L, F is also skew


6 GEELEN AND NELSON<br />

to C. <strong>The</strong>refore M|F = N|F and hence M|F is GF(q)-representable.<br />

<strong>The</strong>n, by <strong>The</strong>orem 2.1, M|F h<strong>as</strong> a PG(2, q)-m<strong>in</strong>or. <strong>The</strong>refore there is<br />

a set Y ⊆ F such that (M|F )/Y conta<strong>in</strong>s a PG(2, q)-restriction. Now<br />

M/Y is round, conta<strong>in</strong>s a (q + 2)-po<strong>in</strong>t l<strong>in</strong>e, and conta<strong>in</strong>s a PG(2, q)restriction.<br />

<strong>The</strong>n, by Lemma 2.2, M h<strong>as</strong> a U 2,q 2 +1-m<strong>in</strong>or. <br />

Now we will prove <strong>The</strong>orem 1.3 which we reformulate here. <strong>The</strong><br />

function n(q) w<strong>as</strong> def<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 3.1.<br />

<strong>The</strong>orem 3.2. For each prime power q, if M is a round <strong>matroid</strong> <strong>with</strong><br />

a PG(n(q) − 1, q)-m<strong>in</strong>or but <strong>no</strong> U 2,q 2 +1-m<strong>in</strong>or, then ɛ(M) ≤ qr(M) −1<br />

q−1 .<br />

Pro<strong>of</strong>. Let M be a m<strong>in</strong>imum-rank counterexample. By Lemma 2.2,<br />

r(M) > n(q). Let e ∈ E(M) be a <strong>no</strong>n-loop element such that M/e<br />

h<strong>as</strong> a PG(n − 1, q)-m<strong>in</strong>or. Note that M/e is round. <strong>The</strong>n, by the<br />

. By <strong>The</strong>orem 3.1, each l<strong>in</strong>e <strong>of</strong> M<br />

conta<strong>in</strong><strong>in</strong>g e h<strong>as</strong> at most q + 1 <strong>po<strong>in</strong>ts</strong>. Hence ɛ(M) ≤ 1 + qɛ(M/e) ≤<br />

qr(M)−1 −1<br />

1+q<br />

= q−1<br />

qr(M) −1<br />

. This contradiction completes the pro<strong>of</strong>. <br />

q−1<br />

m<strong>in</strong>imality <strong>of</strong> M, ɛ(M/e) ≤ qr(M)−1 −1<br />

q−1<br />

We can <strong>no</strong>w prove our ma<strong>in</strong> result, <strong>The</strong>orem 1.2, which we restate<br />

below.<br />

<strong>The</strong>orem 3.3. Let l ≥ 2 be a positive <strong>in</strong>teger and let q be the largest<br />

prime power less than or equal to l. If M is a <strong>matroid</strong> <strong>with</strong> <strong>no</strong> U2,l+2m<strong>in</strong>or<br />

and <strong>with</strong> sufficiently large rank, then ɛ(M) ≤ qr(M) −1<br />

q−1 .<br />

Pro<strong>of</strong> <strong>of</strong> <strong>The</strong>orem 1.2. When l is a prime-power, the result follows from<br />

<strong>The</strong>orem 1.1. <strong>The</strong>refore we may <strong>as</strong>sume that l ≥ 6 and, hence, q ≥ 5.<br />

Recall that n(q) is def<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 3.1 and α(l, q − 1, n) is def<strong>in</strong>ed<br />

<strong>in</strong> <strong>The</strong>orem 2.1. Let n = n(q) and let k be an <strong>in</strong>teger that is sufficiently<br />

large so that<br />

k q<br />

q−1<br />

≥ qα(l, q − 1, n). Thus, for any k ′ ≥ k, we get<br />

qk′ −1<br />

q−1 ≥ qk′ −1 k ≥ α(l, q − 1, n)(q − 1) ′<br />

. Let M ∈ U(l) be a <strong>matroid</strong> <strong>of</strong><br />

rank at le<strong>as</strong>t 3k such that ɛ(M) > qr(M) −1<br />

. By Lemma 2.5, M h<strong>as</strong> a<br />

q−1<br />

round restriction N such that we have r(N) ≥ k and ɛ(N) > qr(N) −1<br />

q−1<br />

α(l, q−1, n)(q−1) r(N) . By <strong>The</strong>orem 2.1, N h<strong>as</strong> a PG(n(q)−1, q ′ )-m<strong>in</strong>or<br />

for some q ′ > q − 1. If q ′ > q, then q ′ + 1 ≥ l + 2, so this projective<br />

geometry h<strong>as</strong> a U2,l+2-m<strong>in</strong>or, contradict<strong>in</strong>g our hypothesis. We may<br />

therefore conclude that q ′ = q, so N h<strong>as</strong> a PG(n(q) − 1, q)-m<strong>in</strong>or. Now<br />

we get a contradiction by <strong>The</strong>orem 3.2. <br />


MATROIDS WITH NO U2,n-MINOR 7<br />

4. Extremal Matroids<br />

In this section, we prove that the extremal <strong>matroid</strong>s <strong>of</strong> large rank for<br />

<strong>The</strong>orem 1.2 are projective geometries. We need the follow<strong>in</strong>g result<br />

to recognize projective geometries; see Oxley [6, <strong>The</strong>orem 6.1.1].<br />

Lemma 4.1. Let M be a simple <strong>matroid</strong> <strong>of</strong> rank n ≥ 4 such that every<br />

l<strong>in</strong>e <strong>of</strong> M conta<strong>in</strong>s at le<strong>as</strong>t three <strong>po<strong>in</strong>ts</strong> and each pair <strong>of</strong> disjo<strong>in</strong>t l<strong>in</strong>es<br />

<strong>of</strong> M is skew. <strong>The</strong>n M is isomorphic to PG(n − 1, q) for some prime<br />

power q.<br />

We can <strong>no</strong>w prove our extremal characterization.<br />

Corollary 4.2. Let l ≥ 2 be a positive <strong>in</strong>teger and let q be the largest<br />

prime power less than or equal to l. If M is a simple <strong>matroid</strong> <strong>with</strong><br />

<strong>no</strong> U2,l+2-m<strong>in</strong>or, <strong>with</strong> ɛ(M) = qr(M) −1<br />

q−1 , and <strong>with</strong> sufficiently large rank,<br />

then M is a projective geometry over GF(q).<br />

Pro<strong>of</strong>. Kung [5] proved the result for the c<strong>as</strong>e that l is a prime-power.<br />

<strong>The</strong>refore we may <strong>as</strong>sume that l ≥ 6 and, hence, q ≥ 5. By <strong>The</strong>orem<br />

1.2, there is an <strong>in</strong>teger k1 such that, if M is a <strong>matroid</strong> <strong>with</strong> <strong>no</strong><br />

U2,l+2-m<strong>in</strong>or and <strong>with</strong> r(M) ≥ k1, then ɛ(M) ≤ qr(M) −1<br />

q−1 . Recall that<br />

n(q) is def<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 3.1 and α(l, q, n) is def<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 2.1.<br />

Let k2 be large e<strong>no</strong>ugh so that<br />

k = max(k1, k2).<br />

k2 q<br />

q−1 ≥ qα(l, q − 1, n(q) + 2), and<br />

Let M ∈ U(l) be a simple <strong>matroid</strong> <strong>of</strong> rank at le<strong>as</strong>t 3k such that<br />

ɛ(M) = qr(M) −1<br />

. If M is <strong>no</strong>t round, then, by Lemma 2.5, M h<strong>as</strong> a<br />

q−1<br />

round restriction N such that r(N) ≥ k and ɛ(N) > qr(N) −1<br />

, contrary<br />

q−1<br />

to <strong>The</strong>orem 1.2. Hence M is round.<br />

From the def<strong>in</strong>ition <strong>of</strong> k2, we get ɛ(M) ≥ α(l, q−1, n(q)+2)(q−1) r(M) ,<br />

so by <strong>The</strong>orem 2.1, M h<strong>as</strong> a PG(n(q) + 1, q)-m<strong>in</strong>or. <strong>The</strong>refore, by<br />

<strong>The</strong>orem 3.1, each l<strong>in</strong>e <strong>in</strong> M h<strong>as</strong> at most q + 1 <strong>po<strong>in</strong>ts</strong>. Consider any<br />

. <strong>The</strong>n<br />

element e ∈ E(M). By <strong>The</strong>orem 1.2, ɛ(M/e) ≤ qr(M)−1 −1<br />

q−1<br />

ɛ(M) ≤ 1 + qɛ(M/e)<br />

<br />

r(M)−1 q − 1<br />

≤ 1 + q<br />

q − 1<br />

= qr(M) − 1<br />

q − 1<br />

= ɛ(M).<br />

<strong>The</strong> <strong>in</strong>equalities above must hold <strong>with</strong> equality. <strong>The</strong>refore each l<strong>in</strong>e <strong>in</strong><br />

M h<strong>as</strong> exactly q + 1 <strong>po<strong>in</strong>ts</strong>.


8 GEELEN AND NELSON<br />

If M is <strong>no</strong>t a projective geometry, then, by Lemma 4.1, there are two<br />

disjo<strong>in</strong>t l<strong>in</strong>es L1 and L2 <strong>in</strong> M such that ⊓M(L1, L2) = 1. Let e ∈ L1.<br />

<strong>The</strong>n L2 spans a l<strong>in</strong>e <strong>with</strong> at le<strong>as</strong>t q + 2 <strong>po<strong>in</strong>ts</strong> <strong>in</strong> M/e. S<strong>in</strong>ce M h<strong>as</strong> a<br />

PG(n(q) + 1, q)-m<strong>in</strong>or, M/e conta<strong>in</strong>s a PG(n(q) − 1, q)-m<strong>in</strong>or; see [1,<br />

Lemma 5.2]. This contradicts <strong>The</strong>orem 3.1. <br />

Ack<strong>no</strong>wledgements<br />

We thank the referees for their careful read<strong>in</strong>g <strong>of</strong> the manuscript and<br />

for their useful comments.<br />

References<br />

[1] J. Geelen, B. Gerards, G. Whittle, On Rota’s conjecture and excluded<br />

m<strong>in</strong>ors conta<strong>in</strong><strong>in</strong>g large projective geometries, J. Comb<strong>in</strong>.<br />

<strong>The</strong>ory Ser. B 96 (2006), 405-425.<br />

[2] J.E. Bon<strong>in</strong>, J.P.S. Kung, <strong>The</strong> <strong>number</strong> <strong>of</strong> <strong>po<strong>in</strong>ts</strong> <strong>in</strong> a comb<strong>in</strong>atorial<br />

geometry <strong>with</strong> <strong>no</strong> 8-po<strong>in</strong>t-l<strong>in</strong>e m<strong>in</strong>ors, Mathematical essays<br />

<strong>in</strong> ho<strong>no</strong>r <strong>of</strong> Gian-Carlo Rota, Cambridge, MA (1996), 271-284,<br />

Progr. Math., 161, Birkhäuser Boston, Boston, MA, (1998).<br />

[3] J. Geelen, K. Kabell, Projective geometries <strong>in</strong> dense <strong>matroid</strong>s, J.<br />

Comb<strong>in</strong>. <strong>The</strong>ory Ser. B 99 (2009), 1-8.<br />

[4] J. Geelen, J.P.S. Kung, G. Whittle, Growth rates <strong>of</strong> m<strong>in</strong>or-closed<br />

cl<strong>as</strong>ses <strong>of</strong> <strong>matroid</strong>s, J. Comb<strong>in</strong>. <strong>The</strong>ory Ser. B 99 (2009), 420-427.<br />

[5] J.P.S. Kung, Extremal <strong>matroid</strong> theory, <strong>in</strong>: Graph Structure <strong>The</strong>ory<br />

(Seattle WA, 1991), Contemporary Mathematics, 147, American<br />

Mathematical Society, Providence RI, 1993, pp. 21–61.<br />

[6] J. G. Oxley, Matroid <strong>The</strong>ory, Oxford University Press, New York,<br />

1992.<br />

Department <strong>of</strong> Comb<strong>in</strong>atorics and Optimization, University <strong>of</strong> Waterloo,<br />

Waterloo, Canada

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!