15.08.2013 Views

Measurement of the coherence time of the Light from a Quasi ...

Measurement of the coherence time of the Light from a Quasi ...

Measurement of the coherence time of the Light from a Quasi ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M<strong>Measurement</strong> t <strong>of</strong> f <strong>the</strong> th<br />

<strong>coherence</strong> <strong>time</strong> <strong>of</strong> <strong>the</strong> <strong>Light</strong><br />

<strong>from</strong> a <strong>Quasi</strong>-<strong>the</strong>rmal Source


Chaotic light<br />

(<strong>the</strong>rmal cavity, filament lamp)<br />

The different atoms are excited by an<br />

electrical discharge and emit <strong>the</strong>ir radiation<br />

independently <strong>of</strong> one ano<strong>the</strong>r.<br />

The shape <strong>of</strong> an emission line is determined<br />

by <strong>the</strong> statistical spread in atomic velocities<br />

and <strong>the</strong> random occurrence <strong>of</strong> collisions.<br />

Δ Δνν <br />

1<br />

Generally,<br />

Δ Δνν = − 12 ττ c <br />

τ<br />

τ c ≤<br />

10 s<br />

c


collision τ2 collision τ1 collision<br />

Lorentzian<br />

lineshape<br />

collision-broadened lli i b d d li light h source<br />

Gaussian<br />

lineshape<br />

Doppler broadening light source


Used rotating ground glass disk<br />

(surface roughness: 9㎛)<br />

Q<strong>Quasi</strong>-<strong>the</strong>rmal i th l SSource<br />

It has property <strong>of</strong> chaos light, but<br />

<strong>coherence</strong> <strong>time</strong> is longer than<br />

chaos light. g<br />

τc <strong>of</strong> <strong>the</strong> quasi-<strong>the</strong>rmal source<br />

can be changed by controlling<br />

<strong>the</strong> velocity y v <strong>of</strong> <strong>the</strong> motor driving g<br />

<strong>the</strong> glass disk.<br />

τ =<br />

c<br />

σ σ (surface ( roughness) g )<br />

v<br />

(rotating speed)


I (, tT) is <strong>the</strong> mean intensity that falls on <strong>the</strong> phototube during<br />

<strong>the</strong> period <strong>from</strong> t to t+T, <strong>the</strong>n,<br />

1 t+ T<br />

I ( t t, T ) = ∫ I ( t ) dt dt′<br />

T ∫t<br />

The probability <strong>of</strong> detecting n number <strong>of</strong> photons during <strong>time</strong> duration<br />

T is<br />

P ( T ) = P ( t, T )<br />

n n<br />

n<br />

⎡⎣⎡ζζI (, t T ) T⎤⎦⎤<br />

=<br />

⎣ ⎦<br />

exp ⎡ ⎡ζI( t, T) T ⎤<br />

n!<br />

⎣ ⎦<br />

This result is Known as <strong>the</strong> Mandel formula. ζ<br />

(efficiency <strong>of</strong> detector)


So Mean number <strong>of</strong> photocounts is<br />

∞<br />

∑<br />

= 0<br />

n = nPP ( T ) = ζζ I ( t, TT T) ) T = ζζIT<br />

IT<br />

n<br />

n<br />

And <strong>the</strong> second moment <strong>of</strong> <strong>the</strong> distribution given by<br />

∞<br />

2 2<br />

n ∑ ∑nPT<br />

n ( ) ζζI ( tTT , ) ζζI(<br />

( tTT , )<br />

n=<br />

0<br />

= = + ⎡ ⎣ ⎤ ⎦<br />

= n + ⎣⎡ζI(, t T) T⎦⎤<br />

2<br />

The variance <strong>of</strong> <strong>the</strong> photocount distribution is <strong>the</strong>refore<br />

2 2 2<br />

2 2 ( ) ( 2 2<br />

Δ n = n − n = n + ζ T I(, t T) −I<br />

)<br />

2


Line width γ(1/ τ )<br />

= Lorentzian lineshape function<br />

Its second order <strong>coherence</strong> function is, is<br />

(2) −2γ<br />

τ<br />

g ( τ ) = 1+<br />

e<br />

The average <strong>of</strong> integration <strong>time</strong> T is<br />

c<br />

T T<br />

1<br />

∫∫<br />

−2γγ t −t<br />

− = ∫∫ 2<br />

1 2<br />

T<br />

2<br />

(2) ( )<br />

2 1<br />

g (0) 1 e dtdt<br />

0 0<br />

1 −2γT<br />

= ⎡e + 2γT −1⎤<br />

2 2<br />

2γ<br />

T ⎣ ⎦<br />

g<br />

(2)<br />

(0)<br />

=<br />

I(, t T)<br />

I<br />

2


( )<br />

2<br />

2 n −2γT<br />

Δ n = n + ⎡e + 2γT −1⎤<br />

2 2<br />

2 2γγ T ⎣ ⎦<br />

T > τ c<br />

T ττ<br />

c<br />

( )<br />

2<br />

Δ n = n + n<br />

( ) 2 n<br />

n n<br />

2<br />

2<br />

T τ c<br />

Δ = + ( )<br />

γT<br />

2<br />

Δ n =<br />

n


<strong>Measurement</strong> <strong>time</strong> : T Redline: pulse<br />

T T T T T T T T T T<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Photocount<br />

10,000 <strong>time</strong>s<br />

t


<strong>Measurement</strong> <strong>time</strong> : T (fixed: 10 μs) =4<br />

Voltage change (velocity <strong>of</strong> <strong>the</strong> motor driving) :<br />

τc change


Variance <strong>of</strong> ( ) by <strong>the</strong> velocity v<br />

2<br />

Variance <strong>of</strong> ( Δ n n)<br />

by <strong>the</strong> velocity v<br />

v (rotating speed) (m/s)


T=50 T 50 μs<br />

T=30 μs<br />

T=20 μs<br />

τ<br />

c<br />

σ( = 9 μm)<br />

v<br />

= ( )<br />

2 τ c n<br />

Δ n = n +<br />

T<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!