17.08.2013 Views

Objectives

Objectives

Objectives

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

GONIOMETRY and VIDEOGRAMMETRY<br />

in (Sports) Biomechanics<br />

<strong>Objectives</strong><br />

Center for Sensory-Motor Sensory Motor Interaction<br />

Anvendt Biomekanik<br />

Uwe Kersting – Lecture 03 - 2008<br />

• Basic working principles of goniometers<br />

• Considerations how to apply them<br />

• How to interpret data gained<br />

• Basic principles of photogrammetry<br />

• 2dimensional video technique<br />

• Discuss advantages and disadvantages<br />

• Apply both techniques in running (practice<br />

examples)<br />

© Uwe Kersting, 2008<br />

Contents<br />

1. From movement to data – a general<br />

concept<br />

2. Goniometry: techniques & limitations<br />

3. Goniometer application<br />

4. Fundamentals of photogrammetry<br />

5. Planar kinematics<br />

6. Summary<br />

1<br />

2<br />

3<br />

1


© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Biomechanics<br />

Da Vinci: Mechanics is the paradise of<br />

mathematical sciences because by<br />

means of it one comes to the fruits of<br />

mathematics. (1452 – 1519)<br />

Hatze (1971): Biomechanics is the science,<br />

which studies structures and functions<br />

of biological systems using knowledge<br />

and methods of mathematics.<br />

Newton’s laws etc.<br />

Biomechanics = Science of the<br />

effects of forces on human body<br />

system<br />

• Movements of segments of interest<br />

• Muscles as the actuators<br />

--------<br />

• Kinematics = movement of segments<br />

or total body<br />

• Kinetics = forces acting on segments<br />

or the total body<br />

© Uwe Kersting, 2008<br />

A sport biomechanist‘s job<br />

or one possible way to go<br />

• Description<br />

• Analysis<br />

• Interpretation<br />

• Suggest a change<br />

• Re-evaluate<br />

• Teach / train the changes if<br />

effective<br />

How?<br />

4<br />

5<br />

6<br />

2


© Uwe Kersting, 2008<br />

Sensor<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Goniometer essentials<br />

Goniometer:<br />

uniaxial<br />

‚parallax‘<br />

multiaxial<br />

digital, analog<br />

Measurement chain<br />

Amplifier AD converter Computer Storage medium<br />

SIGNAL<br />

The digital frontier<br />

Figure 1: Measurement chain.<br />

software<br />

printer<br />

monitor<br />

Goniometer essentials<br />

Fulcrum of goniometer = fulcrum of<br />

joint!<br />

REPORT<br />

REPORT<br />

7<br />

8<br />

9<br />

3


© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Rearfoot goniometer<br />

Jumps in athletics<br />

Planar motions? – fundamentals of modelling +<br />

biomechanical accessability<br />

L1: TAKEOFF<br />

DISTANCE<br />

TAKEOFF<br />

ACCURACY<br />

v<br />

© Uwe Kersting, 2008<br />

BODY<br />

POSITION<br />

Long jump analysis<br />

(i.e. partial distance model)<br />

TAKEOFF<br />

HEIGHT<br />

PHYSIQUE<br />

TAKEOFF<br />

SPEED<br />

DISTANCE<br />

L2: FLIGHT<br />

DISTANCE<br />

TAKEOFF<br />

ANGLE<br />

AIR<br />

RESISTANCE<br />

ACTIONS<br />

ON<br />

LANDING<br />

BODY<br />

POSITION<br />

L3: LANDING<br />

DISTANCE<br />

10<br />

11<br />

PHYSIQUE<br />

12<br />

4


v<br />

© Uwe Kersting, 2006<br />

Biomechanical analysis...<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

L1 L2 L3<br />

Technique analysis<br />

5<br />

We use models for<br />

- simplification<br />

- representation/mapping<br />

- reduction<br />

- subjectivation<br />

• Define phases of movement<br />

• Identify factors of importance<br />

• Identify criteria to assess techniques<br />

Historical perspective<br />

simple models<br />

Historical perspective<br />

Aristotle (384 - 322 B.C.)<br />

De Motu Animalum<br />

„If a man would walk in the sunshine in parallel<br />

to a wall the line, which his head describes<br />

would not move in a straight line. It would<br />

follow a zig-zag pattern; going down when he<br />

flexes and moving upwards when he<br />

straightens.“<br />

13<br />

14<br />

15<br />

5


© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Measure directly or use images?<br />

Pros and cons?<br />

Historical perspective<br />

Technical realisation:<br />

camera obscura<br />

Also described and<br />

used by Aristotle,<br />

Kepler<br />

First technical<br />

drawings by<br />

Leonardo DaVinci<br />

(1490)<br />

© Uwe Kersting, 2008<br />

b<br />

Improvements<br />

Optics of light beams, inclusion of lenses,<br />

photographic recording<br />

Focal length = „distance of lense centre to the<br />

location where incoming parallel beams cross“<br />

For a standard photo camera (24 * 36 mm): f = 50<br />

mm represents a ‘normal’ view<br />

16<br />

17<br />

18<br />

6


© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Multiple exposure<br />

Eadweard Muybridge<br />

(1830 – 1904)<br />

Multiple exposure & viewpoints<br />

Central plane<br />

Object<br />

Image<br />

Central plane<br />

Object<br />

19<br />

20<br />

Image<br />

21<br />

7


© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Caution! - on two levels<br />

‚Fish eye-effect‘<br />

Caution! - on two levels<br />

‚Waterfall-effect‘<br />

Lens correction<br />

Freeze!<br />

22<br />

23<br />

24<br />

8


Braune and Fischer<br />

(~ 1900)<br />

Scaling the on the<br />

imaging plane<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Simpler approach<br />

is possible<br />

Examples of sports techniques<br />

Pole vault<br />

Example II, choice of perspective!<br />

25<br />

26<br />

27<br />

9


© Uwe Kersting, 2008<br />

Partial heights<br />

model<br />

(transferable<br />

to many<br />

movements)<br />

(Hay, 1978)<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Example III<br />

H<br />

Use a model<br />

Partial heights model: factors<br />

28<br />

29<br />

30<br />

10


© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Summary<br />

Aim of biomechanical investigation<br />

is to:<br />

describe movement and explain how<br />

it works<br />

reduce trial and error approaches<br />

in coaching and teaching.<br />

There are obvious limitations<br />

There are big advantages<br />

Optics<br />

How to measure the size of an object on an image?<br />

© Uwe Kersting, 2008<br />

Calibration for 2D<br />

Reference measurement (calibration)<br />

If the movement plane is parallel to the<br />

imaging plane a distance measure is<br />

sufficient to calibrate the set-up.<br />

If the movement plane is aligned<br />

obliquely we need a 4-point<br />

calibration. Common digitisation<br />

software includes this option.<br />

31<br />

32<br />

33<br />

11


Limitation of 2D<br />

analyses to planar<br />

motion and correct<br />

camera positioning<br />

...?...<br />

© Uwe Kersting, 2008<br />

Alignment<br />

Example: Track and Field - Side view<br />

Camera on the stands<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

e<br />

γ<br />

τ<br />

δ + τ = β<br />

δ<br />

Track<br />

34<br />

35<br />

36<br />

12


© Uwe Kersting, 2008<br />

Cinematography<br />

24 images per second<br />

(std.)<br />

Low cam – 800 images<br />

per second<br />

Mechanical shutter<br />

1/10 000 s<br />

- lighting!<br />

‘by hand’ digitisation<br />

© Uwe Kersting, 2008<br />

Limitation:<br />

25 or 50 Hz<br />

time<br />

resolution<br />

© Uwe Kersting, 2008<br />

Video technique<br />

Image construction out of lines<br />

Camera chip<br />

digital<br />

Video<br />

Video technique<br />

Digitisation; frame grabber board<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6 .<br />

7 .<br />

12 3 4 5 6 7 . . .<br />

Video image<br />

analog<br />

Video<br />

37<br />

38<br />

39<br />

13


© Uwe Kersting, 2008<br />

Recording on tape<br />

Video resolutions: in time: 50/60 Hz<br />

180 – 600 lines<br />

Electronic shutters<br />

Frame grabber boards<br />

< 512 * < 512<br />

Digital cameras – recording to tape or disk<br />

‚Megapixel‘ Images<br />

1024 * 1024<br />

Vicon MX = 4 Mpixel<br />

© Uwe Kersting, 2008<br />

© Uwe Kersting, 2008<br />

Rules for practice<br />

• Use 2D for one-plane motions<br />

• Align properly<br />

• Have athletes wearing suitable clothes<br />

• Use markers if possible<br />

• Use longest possible focal length<br />

• Use shortest possible exposure time<br />

• Adjust lighting<br />

• Make sure all the movement gets covered,<br />

but don‘t waste image area<br />

Summary<br />

Goniometers allow continuous recording of<br />

joint angles (1D + 2D) – reference<br />

measurement required<br />

Photographic techniques allow for a<br />

quantification of kinematic<br />

characteristics.<br />

Basic optical principles were applied to<br />

estimate limitations.<br />

One-plane motion can be quantified from in<br />

plane and out of plane camera positions.<br />

40<br />

41<br />

42<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!