18.08.2013 Views

Brazil Tech Day 2008 - Portal Texas Instruments - Brasil

Brazil Tech Day 2008 - Portal Texas Instruments - Brasil

Brazil Tech Day 2008 - Portal Texas Instruments - Brasil

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Battery Charging Design Considerations<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Jinrong (John) Qian, Ph. D.<br />

Distinguished Member of <strong>Tech</strong>nical Staff<br />

Battery Management Applications Manager<br />

<strong>Texas</strong> <strong>Instruments</strong><br />

1


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Longer<br />

Battery Life<br />

Smaller Size<br />

& Weight<br />

Battery Power Management<br />

Safety (bq26100)<br />

Longer cycle life and runtime<br />

Faster and cooler charging<br />

Smaller size and lighter weight<br />

2


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Agenda<br />

• Li-Ion Battery Characteristics and Charging Requirements<br />

• Battery Charging Front-End (CFE) Protector<br />

• Power Path Management Battery Charger<br />

• 3MHz switching mode USB battery charger<br />

• Low EMI 1-2A Synchronous Switching Li-Ion Battery Charger<br />

• 1-4 Cell Li-Ion battery switching charge controller<br />

• Summary<br />

3


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Battery Chemistries<br />

• Primary battery: Non-rechargeable (Alkaline)<br />

• Secondary battery: Rechargeable<br />

• NiCd: 1.0V to 1.5V<br />

• NiMH: 1.0V to 1.5V<br />

• Li-Ion<br />

LiCoO2 - Coke: 3.0V to 4.1V<br />

LiCoO2 - Graphite: 3.0V to 4.2V<br />

LiMnO4 - Graphite: 3.0V to 4.4V<br />

LiFePO4 - Graphite: 2.0V to 3.6V<br />

4


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

NiMH Battery Charge Characteristics<br />

dT<br />

dt<br />

-∆V<br />

1 C<br />

0.5 C<br />

• Constant current<br />

• Cell voltage drop<br />

• Cell temperature Increase<br />

• Charge termination: -∆V, dT/dt, safety timer<br />

0.1 C<br />

1 C<br />

0.5 C 0.1 C<br />

C BAT R BAT<br />

5


1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

NiMH Self-Discharge Characteristics<br />

Capacity mAh<br />

45 0 C<br />

0 10 20 30 40 50 60 70<br />

Time: <strong>Day</strong>s<br />

• Self-Discharge 2.5%/day at 25C<br />

• Higher T, Higher Self-discharge<br />

15 0 C<br />

25 0 C<br />

35 0 C<br />

6


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Advantages and Limitations: NiMH Battery<br />

Advantages:<br />

• Fast and simple charge: constant current charge<br />

• 50-100% more capacity/energy than NiCd<br />

• No transportation regulation<br />

• Lower cost than Li-Ion, but 20% more expensive than NiCd<br />

Disadvantages<br />

• High self-discharge at high temperature (30% per month)<br />

• Voltage depression. Cathode material changes into inactive crystalline<br />

form when stored in charged state.<br />

• Prevention – discharge regularly.<br />

• Repair: Charge/discharge several times to 0.7V. For cases of severe<br />

capacity loss, keep at 0.7V for prolonged time (24 hrs)<br />

7


Performance<br />

bq2002<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

NiMH/NiCd Battery Charger<br />

bq24400<br />

bq2000<br />

bq2005<br />

bq2004<br />

• Simple switching charge controller<br />

• Termination: PVD, ∆T/ ∆t<br />

• Integrated closed loop current control<br />

• Low-cost charger termination controller<br />

• Termination: PVD, -∆V, ∆T/ ∆t<br />

• Controls current-limited or constant current supply<br />

Cost<br />

• Sequential fast charge of 2<br />

battery packs<br />

• Discharge-before-charge option<br />

• Termination: PVD, -∆V, ∆T/ ∆t<br />

• Dual LED status display<br />

• Charges NiCd/NiMH and Li-Ion<br />

• Termination: PVD, ∆T/ ∆t for NiCd/NiMH,<br />

minimum current for Li-Ion<br />

Switching<br />

Current-<br />

Limited<br />

8


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion Battery Characteristics and<br />

Charging Requirements<br />

9


Cell Capacity mAh<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

• Source: TIAX LLC, Portable Power 2005 Li-Ion Battery Tutorial, and Boston Power, Florida battery seminar, 2007<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

18650 Li-Ion Cell Capacity Development Trend<br />

1992 1994 1996 1998 2000 2002 2004 2006<br />

• 18650: Cylindrical, 65mm length, 18mm diameter<br />

• 8% yearly capacity increase over last 15 years<br />

• NB makers are using 2400mA, 2600mAh<br />

18650 Cell<br />

18mm<br />

65mm<br />

10


500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Wh/kg<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Energy Density Development for Li-Ion Cells<br />

Gravimetric Density<br />

100<br />

1994 1996 1998 2000 2002 2004 2006<br />

7%<br />

80<br />

6%<br />

Ali Madani, “An overview of the European Li-Ion battery R&D” Florida Battery seminar 2007<br />

200<br />

160<br />

120<br />

• 6-7% annual energy density increase<br />

40<br />

0<br />

Wh/L<br />

Volumetric Density<br />

1994 1996 1998 2000 2002 2004 2006<br />

11


Cathode<br />

+<br />

Positive<br />

electrode<br />

LiCoO 2<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Battery Electrical Equivalent Circuit<br />

Electrolyte<br />

Separator<br />

Battery AC model<br />

Anode<br />

-<br />

Negative<br />

electrode<br />

Graphite<br />

Constant current discharge,<br />

transient effect<br />

ON<br />

I . R BAT<br />

OFF<br />

Capacitor<br />

Capacitor + resistor<br />

Battery<br />

Battery DC model<br />

C BAT R BAT<br />

12


Voltage, V<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

0<br />

Load current: 0.2C<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Battery Chemical Capacity<br />

3.6V (Battery rated voltage)<br />

EDV=3.0V/cell<br />

1 2 3 4 5 6<br />

Capacity, Ah Qmax Battery Capacity: 1C<br />

Discharge rate 1C:<br />

Current to completely discharge a<br />

battery in one hour<br />

Example:<br />

2200mAh battery,<br />

1C discharge rate: 2200mA, 1 hr<br />

0.5C rate: 1100mA, 2hrs<br />

C BAT R BAT<br />

• Battery capacity (Qmax) : Amount of charge can be extracted from the fully charged<br />

cell to the end of discharge voltage (EDV).<br />

• EDV is mini. voltage acceptable for the application or for battery chemistry<br />

13


Battery Voltage (V)<br />

4.2<br />

3.6<br />

3.0<br />

2.4<br />

EDV<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

I•R BAT<br />

+ - I<br />

OCV RBAT + -<br />

Useable Capacity Quse<br />

V=OCV - I*R BAT<br />

Open Circuit Voltage<br />

(OCV)<br />

Quse<br />

Qmax<br />

• EDV will be reached earlier for higher discharge current.<br />

• Useable capacity Quse < Qmax Q use<br />

Q max<br />

14


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion 18650 Discharge Characteristics<br />

EDV<br />

ΔV1<br />

1/5C<br />

2C<br />

What’s battery DC impedance at SOC=50%?<br />

(3.8V-3.4V)/3A=130mΩ<br />

1C<br />

ΔV2<br />

ΔV = ΔI R BAT<br />

15


Li-Ion 18650 Temperature Discharge Profile<br />

Self-heat Effect (Internal impedance decrease when T increase)<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

16


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion Storage Characteristics<br />

Capacity %<br />

40 0 C 200 C<br />

60 0 C<br />

0 0 C<br />

0 2 4 6 8 10 12<br />

Storage Time: Month<br />

• 2-3% Self-discharge per month at 20 0 C<br />

• Self-discharge rate doubles for every 10 0 C<br />

17


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Safety and Thermal Stability<br />

OCV=4.3V<br />

Thermal<br />

Runaway<br />

• Active metallic lithium is deposited on anode @ overcharged.<br />

• Rapid temperature increase can happen @ overcharged or shorted<br />

• Increased temperature can accelerate degradation, cause thermal run-away, and<br />

battery explosion<br />

18


4.2<br />

3.9<br />

Battery Voltage (V)<br />

0.2C<br />

3.6 I • R<br />

3.3<br />

3.0<br />

2.7<br />

2.4<br />

5C<br />

EDV<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

High Discharge Rate and Safety Battery<br />

Battery Capacity<br />

• High internal resistance causes large I • R drop<br />

• EDV is reached too early, reducing useable capacity<br />

• 5 to 20 min full discharge (12C to 3C rate)<br />

• Low Internal Impedance<br />

• Main Applications<br />

– Power tools<br />

– E-bike<br />

1C<br />

ΔQ<br />

+<br />

C BAT RBAT<br />

+ - I<br />

VOCV V=V 0CV - I*R BAT<br />

-<br />

19


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

High Safety Battery<br />

• Fine-tune the cell for either high discharge rate or high capacity.<br />

10C rate discharge are available with Ni/Co/Mn hybrid cathodes)<br />

• Example: A123 Systems company: 26650A LiFePO4,<br />

– Safety: 350°C Thermal Runaway<br />

– 10 mΩ at 1 Hz<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

T = 25 o C<br />

Discharge Capacity %<br />

25 o C, 2.3-A charge/discharge<br />

45 o C, 3-A charge/5-A discharge<br />

60 o C, 3-A charge/5-A discharge<br />

0 0.5 1.0 1.5 2.0 2.5<br />

0<br />

0 200 400 600 800 1000<br />

Capacity (Ah)<br />

http://www.a123systems.com<br />

Cycle<br />

100<br />

80<br />

60<br />

40<br />

20<br />

20


Pack+<br />

SMD<br />

SMC<br />

Pack-<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Basic Battery Pack Electronics<br />

RT<br />

SMBus<br />

Gas Gauge IC<br />

Over Voltage<br />

Under Voltage<br />

Temp Sensing<br />

Voltage ADC<br />

Discharge<br />

MOSFET<br />

Chemical Fuse Q1 Q2<br />

bq20z90<br />

Current ADC<br />

LDO<br />

I 2 C<br />

AFE<br />

OCP<br />

Cell<br />

Balancing<br />

bq29330<br />

Charge<br />

MOSFET<br />

Second<br />

Safety<br />

OVP IC<br />

bq29412A<br />

Sense<br />

Resistor<br />

• Measurement: Current, Voltage, and Temperature<br />

• Fuel Gauge bq20zxx: Remaining Capacity, Run-Time, Health condition<br />

• Analog Front End (AFE)<br />

R s<br />

21


Pre-charge<br />

4.2V/Cell<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

I CHARGE<br />

3.0V/Cell<br />

I PRECHARGE<br />

Li-Ion Charge CC-CV Profile<br />

Fast-charge<br />

Pre-charge Timer Safety Timer<br />

Pre-charge Timer Safety Timer<br />

Constant Voltage<br />

Battery Voltage<br />

Taper Current<br />

I TERMINATION<br />

• Constant Current: 20-30% charging time, 70-80% capacity<br />

• Constant Voltage: 70-80% charging time, 20-30% capacity<br />

22


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Charge Voltage Affects Battery Service Life<br />

4.35V<br />

4.3V<br />

• 10-20% more capacity with 4.35V than 4.2V<br />

• Over charging shortens battery cycle life<br />

4.2V<br />

4.25V<br />

23


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Battery Capacity at Different Charge Voltage<br />

Battery Voltage (V)<br />

4.2<br />

4.0<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

3.0<br />

2.8<br />

2.6<br />

Discharge Current: 500mA<br />

0 30 60 90 120<br />

Time (Minute)<br />

• 800mAh @4.1V, 10% less than @4.2V<br />

• 875mAh @ 4.2V<br />

4.2V<br />

4.1V<br />

24


Charge Current<br />

Current should be limited to 1C rate to prevent overheating<br />

and resulting accelerated degradation.<br />

“Factors that affect cycle-life and possible degradation mechanisms of<br />

a Li-ion cell based on LiCoO2”, Journal of Power Sources 111 (2002) 130-136<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Charge Current vs Battery Degradation<br />

1.1C<br />

1.0C<br />

1.3C<br />

1.5C<br />

2.0C<br />

25


Charge Voltage<br />

• 4.1V for Coke Based Anode (1990’s)<br />

• 4.2V for Graphite Anode<br />

• 4.4V for LiNiMnCoO2 cathode.<br />

• 3.6V for LiFePO4 cathode<br />

• Charging lower voltage improves cycle life and safety<br />

Charge Current<br />

• ≤ 1C rate; preferred 0.7C to prevent overheating and resulting<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion Battery Charging Requirements<br />

accelerated degradation<br />

26


Battery charging Temperature Qualification<br />

0°C to 45°C. Charging at higher temperature results in accelerated<br />

aging<br />

Low-Voltage Battery Pack Charge<br />

Pre-charge current: < 0.1C for VCELL < 3.0V<br />

Charging Termination<br />

In Constant Voltage Mode, Charge current < 0.1C<br />

Charge Timer<br />

3-5 hrs.<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion Charging Requirements (Cont.)<br />

27


1C<br />

0.5C<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

New Charging Requirements for Portable EEs<br />

MAX. Charging Current<br />

#1<br />

#2<br />

T1 T2 T3 T4 T5<br />

100 0 C<br />

0C 450C500C600C 4.25V<br />

4.15V<br />

4.10V<br />

Note: LiCoO 2 Type Battery Cell<br />

• Low charge current or voltage @ low temperature<br />

• Low charge voltage @ high temperature<br />

MAX. Charging Voltage<br />

#2<br />

#1<br />

T1 T2 T3 T4 T5<br />

100 0 C<br />

0C 450C500C600C 28


Battery Charging Front-End (CFE) Protector<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

29<br />

29


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Battery Charging System Requirements<br />

• Safety and Reliability<br />

• Adapter Hot Plug-in<br />

• Adapter Reverse Input to the charger<br />

• Short Circuit and Overcharging Protection<br />

30


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Cellular Phone Charger Interface<br />

AC 100-240 V 50/60 Hz<br />

DC 5 V, 0.31 A<br />

• USB type A connector from adapter output<br />

• Terminal to the portable device could be different<br />

USB<br />

5V<br />

Data<br />

Clock<br />

GND<br />

Adapter<br />

V+<br />

D+<br />

D-<br />

GND<br />

31


Causes of System Failure Due to Input Power<br />

Input Over Voltage<br />

• Wrong Adapter or After-Market Adapter<br />

• Transformer–Rectifier Adapters (un-regulated)<br />

• Hot Plug Event<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

ADAPTER<br />

V INCIN<br />

Battery<br />

Charger<br />

SYSTEM<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

Adapter Voltage (V)<br />

5-V/500-mA UNREGULATED<br />

5-V/500-mA REG<br />

0<br />

0 0.5 1.0 1.5 2.0<br />

Adapter Current (A)<br />

32


120 AC<br />

220 AC<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Hot Plug In Test Setup and Equivalent Circuit<br />

V i<br />

Oscillation conditions:<br />

R + ESR < 2<br />

i<br />

L<br />

C<br />

i<br />

IN<br />

+<br />

Vi -<br />

1-m Cable<br />

Ri<br />

I IN<br />

Li<br />

C IN<br />

ESR<br />

C IN<br />

V IN<br />

V IN<br />

CHARGER<br />

Charge<br />

Controller<br />

CHARGER<br />

Charge<br />

Controller<br />

Battery<br />

Battery<br />

33


7.5 V<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Reducing Overshoot by Increasing ESR<br />

R C<br />

C IN<br />

C IN = 2×1 μF (0805, X7R)<br />

Overshoot: 50 % to 7.5 V<br />

V IN<br />

I IN<br />

5V<br />

2.95 A<br />

5 V<br />

V IN<br />

bq2406x<br />

Battery<br />

Charger<br />

System<br />

C IN = 2×1 μF (0805,X7R) + 1 Ω<br />

overshoot: 20%, 6.08 V<br />

6.0 V 5 V<br />

• High ESR or external resistor can help reduce voltage overshoot.<br />

I IN<br />

R +<br />

ESR ><br />

V IN<br />

2 A<br />

i<br />

2<br />

L<br />

C<br />

i<br />

34<br />

IN


120V<br />

220V<br />

AC<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Solution: Charge Front End (CFE) Improves Safety<br />

AC<br />

Adapter<br />

C IN<br />

V IN<br />

bq243xx<br />

Charge<br />

Front<br />

End<br />

(CFE)<br />

CFE Provide System Level Protections<br />

• Input Transient Over-Voltage<br />

• Steady state over voltage<br />

• Over-Current Protection, Latch or Hiccup<br />

• Adapter Reverse Polarity<br />

• Battery Over-voltage<br />

bq2408x<br />

Low<br />

Voltage<br />

Charger<br />

Low<br />

Voltage<br />

System<br />

35


• Input over-voltage<br />

• User-programmable input over-current<br />

• Battery over-voltage (EEPROM versions)<br />

• 30V maximum input voltage<br />

• Supports up to 1.5A input current limit<br />


q24316<br />

bq24380<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Summary of bqCFE Protection Features<br />

2x2 mm<br />

4x3 mm<br />

2x2 mm<br />

6.3 5.5<br />

INPUT OVP OCP Battery OVP<br />

Part # Package V OVP V O(REG) t BLANK(OVP) I OCP t BLANK(OCP) BV OVP Counter<br />

bq24300 2x2 mm 10.5 5.5 64 μs 300 mA 5 ms 4.35 HICCUP<br />

bq24304 2x2 mm 10.5 4.5 64 μs 300 mA 5 ms 4.35 HICCUP<br />

bq24305 2x2 mm 10.5 5.0 64 μs 300 mA 5 ms 4.35 HICCUP<br />

bq24314<br />

2x2 mm<br />

4x3 mm<br />

5.8 0 PROG 176 μs 4.35 LATCH<br />

6.8<br />

0<br />

0<br />

PROG<br />

No<br />

176 μs<br />

4.35<br />

4.35<br />

LATCH<br />

Hiccup<br />

bq24381 2x2 mm 7.1 5.0 0 No 4.35 Hiccup<br />

• Latch: After 15 times OCP or OVP, then latch<br />

37


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Power Path Management Battery Charger<br />

38


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Charging with an Active System Load: Issues<br />

+<br />

Adapter<br />

or USB<br />

Charger<br />

I CHG<br />

Charger output current is shared:<br />

I CHG = I BAT + I SYS<br />

Issues:<br />

Safety Timer False Expiration<br />

Termination Detection<br />

I SYS<br />

I BAT<br />

System<br />

39


+<br />

Adapter<br />

or USB<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Issue 1: Pre-charge and Safety Timer Fault<br />

Pre-Charge Mode:<br />

Battery voltage may not reach the fast charge voltage threshold<br />

Pre-charge timer may expire<br />

Solution: keep system off or in low-power mode in pre-charge mode<br />

Drawback: Can not operate the system while charging a deeply<br />

discharged battery simultaneously<br />

I CHG<br />

I SYS<br />

100 mA 80 mA<br />

IBAT Charger 20 mA<br />

System<br />

40


+<br />

Adapter<br />

or USB<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Issue 2: Charge Termination NOT Detected<br />

Charger<br />

I CHG<br />

I BAT<br />

I SYS<br />

Voltage Regulation Mode:<br />

System<br />

If I SYS > I TAPER , Termination is never detected<br />

Solution: current supplement circuit<br />

Current (A)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

I CHG<br />

I BAT<br />

I SYS<br />

20 40 60 80<br />

Time<br />

I TAPER<br />

41


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Power Path Management Battery Charger<br />

Adapter<br />

+<br />

-<br />

Q1<br />

Controller<br />

Powering System<br />

Q2<br />

• System power supplied from adapter through Q1<br />

• Charge current controlled by Q2<br />

• Ideal topology when powering system and charging battery<br />

simultaneously is a requirement<br />

• Separates charge current path from system current path<br />

• No interaction between charge current and system current<br />

C1<br />

Charging<br />

Battery<br />

System<br />

42


Adapter<br />

+<br />

-<br />

I ADP<br />

Q1<br />

Controller<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Power Path Management: Potential Issues<br />

Q2<br />

V OUT<br />

I BAT<br />

System Current<br />

C1<br />

Charging<br />

Battery<br />

Input current : I ADP = I BAT + I SYS<br />

Issues:<br />

• Input voltage collapses<br />

I SYS<br />

System<br />

I SYS<br />

V OUT<br />

I CHG<br />

I SYS + I CHG<br />

Adapter current limit<br />

Solution 1:<br />

Design the AC adapter at maximum I SYS + I CHG , HIGH COST<br />

Adapter<br />

voltage<br />

collapses<br />

I ADP<br />

Time<br />

43


+<br />

Adapter -<br />

+<br />

or USB<br />

1.15 VDPPM -<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Voltage Based Dynamic Power Path Management (DPPM)<br />

I ADP<br />

Q2<br />

V OUT<br />

I CHG<br />

I SYS<br />

C1<br />

System<br />

Bus voltage drop causes system reset<br />

DPPM function :<br />

Reduces the charge current when<br />

the system voltage is VDPPM “Finds” maximum adapter power<br />

Battery Supplement Mode<br />

I SYS<br />

I ADP AC adapter current limit<br />

I CHG<br />

V OUT<br />

VDPPM<br />

DPPM<br />

Mode<br />

System Voltage<br />

V BAT<br />

Time<br />

44


103AT<br />

TS<br />

2.5V<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

-<br />

+<br />

-<br />

+<br />

0.5V Hot<br />

Temperature Qualification<br />

0 0 C – 45 0 C<br />

Cold Temp Fault<br />

100uA<br />

bq2403x<br />

Hot Temp Fault<br />

RT1<br />

RT2<br />

RT1 and RT2 calculation from the Temp sense software<br />

TS<br />

X 0 C – Y 0 C<br />

Cold Temp Fault<br />

2.5V<br />

-<br />

+<br />

-<br />

+<br />

0.5V Hot<br />

http://focus.ti.com/docs/toolsw/folders/print/tempsense-sw.html<br />

100uA<br />

bq2403x<br />

Hot Temp Fault<br />

45


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Thermal Fold-back Function<br />

This internal thermal limit (~125°C) can be reached<br />

Increased Input voltage – Higher Power Dissipation<br />

Large System Load - Higher Power Dissipation VIN Low Battery Voltage at High Charge Level - Higher Power Dissipation<br />

High Ambient Temperatures – Reduces PWR DISS needed to Reach Thermal Limit<br />

The thermal foldback loop reduces the charge current , in order to<br />

keep the IC junction temperature under control and avoid damage<br />

Safety timer duration is increased.<br />

Charge termination is disabled<br />

ICHG<br />

T j = 125 0 C<br />

Time<br />

I CHG_THRM<br />

46


USB<br />

Voltage Based Dynamic Power-Path Management Charger<br />

Adapter<br />

C1 C2<br />

• OUT: 4.4 V for bq24032A; 6.0 V for bq24030<br />

• Dynamically reduces the charge rate to maximize adapter to system current<br />

• Regulate junction temperature at 125°C by reducing charge current<br />

• Dynamically increase the safety timer based on real charge current<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Vcc<br />

R4<br />

R5<br />

R6<br />

R7<br />

High: 500 mA<br />

Low: 100 mA<br />

D1<br />

D2<br />

D3<br />

D4<br />

R1<br />

R2<br />

AC<br />

USB<br />

STAT1<br />

STAT2<br />

USBPG<br />

ACPG<br />

ISET2<br />

ISET1<br />

TMR<br />

VSS<br />

Q1<br />

Q3<br />

Q2<br />

bq2403x<br />

OUT<br />

OUT<br />

OUT<br />

CE<br />

BAT<br />

BAT<br />

TS<br />

LDO<br />

PSEL<br />

DPPM<br />

High<br />

Enable<br />

3.3 V/20 mA<br />

High: AC<br />

Low: USB<br />

R3<br />

System Load<br />

C3<br />

10 µF<br />

103AT<br />

C4<br />

RT1<br />

RT2<br />

47


Dual Input<br />

Adapter<br />

/USB<br />

Single<br />

Input<br />

bqTINY TM -II<br />

$0.80 bq24020<br />

7V IN –1A<br />

2 Status Pins<br />

Temp Sensor<br />

3x3 QFN<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion Linear Charger Portfolio<br />

bqHYBRID<br />

7V IN –1A<br />

2 Status Pins<br />

Temp Sensor<br />

Integrated DC/DC<br />

Converter (300mA)<br />

3.5x4.5 QFN<br />

bq24080/1 $0.80<br />

bq24010 bq24060<br />

7V IN –1A<br />

2 Status Pins<br />

3x3 QFN<br />

bq2501x<br />

bqTINY TM -I<br />

18V IN –1A<br />

2 Status Pins<br />

3x3 QFN<br />

bqTINY TM -III<br />

bq2403x<br />

18V IN –1.5A<br />

2 Status Pins<br />

DPPM<br />

Thermal Regulation<br />

3.5x4.5 QFN<br />

bqTPOD<br />

26V IN –1A<br />

2 Status Pins<br />

LDO Mode<br />

Thermal Regulation<br />

Input OVP<br />

3x3 QFN<br />

bqMicro-Lite<br />

bq24085/6/7<br />

26V IN –0.75A<br />

2 Status Pins<br />

LDO Mode<br />

Thermal Regulation<br />

Input OVP<br />

3x3 QFN<br />

bqTINY TM -III<br />

Bq24070/1<br />

18V IN –1.5A<br />

2 Status Pins<br />

DPPM<br />

Thermal Regulation<br />

3.5x4.5 QFN<br />

48


Fully Integrated Switch-Mode Li-Ion Battery Charger with Full<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

USB Compliance and USB-OTG Support<br />

49


Voltage budget:<br />

• Low power mode: 4.4V to 5.25V<br />

• High power mode: 4.75V to 5.25V<br />

• Bus-powered hub: < 350mV drop<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

USB Voltage and Current Budget<br />

Current budget:<br />

• Suspend mode: < 0.5mA/2.5mA<br />

• Low power mode: < 100mA<br />

• High power mode: < 500mA<br />

All USB devices must follow these electrical specification.<br />

50


+<br />

V IN<br />

Adapter<br />

LOSS<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Power Loss in Linear Battery Charger<br />

Linear<br />

Charger<br />

V BAT<br />

( V ) IN −VBAT<br />

ICHG<br />

P =<br />

•<br />

• Simple and low cost.<br />

• Highest power dissipation from pre-charge to fast charge mode transition.<br />

• Ideal for low charge current < 800mA.<br />

• Thermal issue for ≥ 800mA charge current.<br />

• For high charge current applications (Portable DVD, PMP)<br />

I CHG<br />

4<br />

3<br />

2<br />

1<br />

0<br />

PLOSS (Watt) VIN=5.5V 1.24A<br />

(1800mAh Li-Ion)<br />

700mA<br />

(1000mAh battery)<br />

2.4 2.7 3 3.3 3.6 3.9 4.2<br />

VBAT (V)<br />

51


500 mA<br />

+ USB<br />

500 mA<br />

+ USB<br />

V IN<br />

V IN<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Linear<br />

Charger<br />

Charge<br />

Controller<br />

Switching Charger<br />

Fast USB Battery Charging<br />

I CHG = 500 mA<br />

L<br />

Battery<br />

C<br />

I CHG =?<br />

Charge Current (A)<br />

V BAT<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Switching Charger<br />

Linear Charger<br />

0.4<br />

2.4 2.8 3.2 3.6 4.0<br />

Battery Voltage (V)<br />

• 500-mA Current Limit<br />

• 40% more charge current<br />

• Full use of USB Power<br />

• Short battery charging time<br />

V IN<br />

I CHG = • η • 500mA<br />

V BAT<br />

52


Efficiency (%)<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

Switch Mode Charger<br />

45<br />

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Charger Comparison: Efficiency<br />

Vin=5V, Iin=0.5A<br />

Linear Mode Charger<br />

Battery Voltage (V)<br />

Switch Mode Charger<br />

Fs=3Meg Hz<br />

L=1uH<br />

DCR=0.1 ohm<br />

Rsns=0.068 ohm<br />

Linear Mode Charger<br />

V<br />

EffLinear<br />

=<br />

V<br />

100%<br />

Switch mode charger:<br />

• Higher efficiency<br />

• More suitable for power limited source application, e.g. USB battery charging<br />

BAT<br />

IN<br />

53


Temperature (°C)<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Charger Comparison: Temperature<br />

Vin=5V, Iin=0.5A<br />

Linear Mode Charger<br />

Switch-Mode Charger<br />

Battery Voltage (V)<br />

Switch-mode charger:<br />

• Lower temperature<br />

• Higher safety and reliability<br />

Assume ambient temperature<br />

25°C<br />

Thermal impedance is 75°C/W<br />

for 2x2 size QFN package<br />

T ⋅ P + T<br />

j<br />

= RθJA<br />

loss<br />

am<br />

54


SCL<br />

SDA<br />

10k<br />

STAT<br />

OTG<br />

USB<br />

VAUX<br />

HOST<br />

10k<br />

10k<br />

10k<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

BQ2415x Typical Application Circuit<br />

C1<br />

1uF<br />

C2<br />

4.7uF<br />

VBUS<br />

PMID<br />

SCL<br />

SDA<br />

STAT<br />

OTG<br />

Q1<br />

Q2<br />

bq2415x<br />

Q3<br />

SW<br />

BOOT<br />

PGND<br />

SGND<br />

CSIN<br />

CSOUT<br />

AUXPWR<br />

VREF<br />

L1 1uH<br />

C4<br />

10nF<br />

C7<br />

1uF<br />

R1 0.068 C3 10uF<br />

C6<br />

1uF<br />

C5<br />

0.1uF<br />

• Internal input current sensing<br />

• Input current limiting: current loop<br />

• Charge in constant current and constant voltage mode<br />

• Automatic termination with internal safety timer<br />

• Boost mode operation for USB OTG<br />

55


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

bq24150 Specifications and Features<br />

• Input voltage ABS Max 20 V<br />

• Switching frequency: 3 MHz with 0% to 99.5% duty cycle<br />

• Programmable charge parameters by I 2 C interface<br />

• Boost<br />

• Charge current up to 1.25A<br />

• Charge voltage: 3.5—4.42V, step 20mV<br />

• Termination current<br />

• Support USB OTG<br />

• PWM and PFM mode boost operation for high efficiency<br />

• Complete protection<br />

• Package: 20 Pins 2.0X2.0 mm WCSP<br />

56


USB<br />

Q1<br />

I IN<br />

Temp<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Battery Charge Control Loop<br />

Q2<br />

PWM<br />

Q3<br />

L1 1uH<br />

I BAT<br />

V BAT<br />

• Charge voltage regulation: 0.5% (25ºC), 1% (0-125ºC)<br />

• Charge current regulation: 5%<br />

• Input current regulation: 5%<br />

• Temperature regulation: 125ºC, 165ºC shut down<br />

R1 0.068 C3 10uF<br />

57


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

USB-OTG Support<br />

58


Host (Master)<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

USB On-The-Go Defines a New Connection Paradigm<br />

OTG is for this applications<br />

Device (Slave)<br />

USB 2.0 has<br />

no definition<br />

between<br />

slave to slave<br />

• USB OTG provides a STANDARD USB connection for mobile devices.<br />

59


USB OTG Voltage range:<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

USB OTG Voltage and Current Budget<br />

• 4.4V to 5.25V for 0-100mA range, same as USB 2.0 low power mode<br />

USB OTG Current range:<br />

• 8mA ≤ Current supplied ≤ 100mA<br />

USB OTG Application Power:<br />

• DSC: typically 0-10mA (self powered)<br />

• Keyboard: typically 30-45mA with all LEDs turned on (bus powered)<br />

• Flash memory reader: typically 40-50mA (bus powered)<br />

60


+<br />

V IN<br />

+<br />

V IN<br />

USB<br />

USB<br />

Linear<br />

Charger<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

How to Support OTG for Providing 5V Bus?<br />

Boost<br />

Charge<br />

Controller<br />

Charge<br />

Switching Charger<br />

Battery<br />

L<br />

C<br />

V BAT<br />

• Can not provide 5V VBUS<br />

• Have to add boost IC<br />

• Buck mode for charging<br />

• Boost mode for OTG<br />

• No additional cost<br />

61


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

OTG: Boost Converter Protection and Fault Detection<br />

• VBUS OVP: VBUS > 6V<br />

• Cycle by cycle current limit: 1A<br />

• Battery OVP: VBAT > 4.9V<br />

• Battery voltage too low: VBAT < 3V (before boost)<br />

VBAT < 2.6V (during boost)<br />

• Thermal shut down: 165ºC<br />

• 32sec timer expires: stop boosting and report timer fault<br />

62


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

EVM Software Interface<br />

63


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

EVM Hardware<br />

64


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Low EMI 1-2A Switching Charger<br />

65


EMI Definition<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

EMI Considerations<br />

The interference of one piece of electronic equipment on the operation of<br />

another by means of electromagnetic energy transfer.<br />

• A generator of electromagnetic energy: (a source)<br />

• Transmission of that energy between equipments: (a coupling means)<br />

• A receptor circuit whose operation is negatively impacted by the<br />

transmitted energy: (a victim circuit)<br />

EMI Principles:<br />

Inductive Coupling Capacitive Coupling<br />

di<br />

e = M<br />

i =<br />

dt<br />

C<br />

dv<br />

dt<br />

66


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Solutions to Reduce EMI<br />

• Adding filter (cost! may not work for radiated EMI)<br />

• Adding snubber (cost!)<br />

• Excellent layout (design difficulty)<br />

• Slower switching speed<br />

- No extra cost<br />

- Reduce both conducted and radiated EMI<br />

- May impact efficiency<br />

67


V IN<br />

V IN<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Major EMI Source of a Converter<br />

I Q1 I OUT<br />

V PH<br />

V PH Waveform<br />

D·T<br />

T<br />

High dv/dt and di/dt switching on<br />

the phase node is the major EMI<br />

source in a Buck converter<br />

D·T<br />

I Q1 Waveform<br />

T<br />

IQ1<br />

I OUT<br />

68


1V<br />

1V<br />

trise=5ns<br />

1us<br />

trise=100ns<br />

1us<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Why Slower Switching Helps<br />

Magnitude (dB)<br />

Magnitude (dB)<br />

Magnitude (dB)<br />

-100<br />

-150<br />

-200<br />

-250<br />

-100<br />

-150<br />

-200<br />

-250<br />

Fourier<br />

Analysis<br />

100kHz 1MHz 10MHz 100MHz 1GHz<br />

Fourier<br />

Analysis<br />

About 25dB Less!<br />

5 6 7 8 9<br />

100kHz 1MHz 10MHz 1GHz<br />

Frequency<br />

100MHz<br />

-175dB<br />

-200dB<br />

69


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

ADAPTER (9V or 12V)<br />

V IN<br />

bq24120: 1 Cell<br />

bq24123: 1-2 Cell<br />

bq24125: 1-3 Cell<br />

Typical Applications Circuit<br />

VIN=9V, Battery: 2-cell in series, ICHG=1.25A, Safety timer: 5 hours,<br />

I PRECHG = 125mA, Temperature range: 0-45C<br />

R 1 :1.5kΩ<br />

C IN<br />

10μF<br />

C 3<br />

0.1μF<br />

D3: Charge<br />

R 2 : 1.5kΩ D2: Done<br />

R 3 : 1.5kΩ<br />

D1: Adapter<br />

C TTC : 0.1μF<br />

3 IN<br />

4<br />

13<br />

6<br />

10<br />

2<br />

19<br />

5<br />

7<br />

16<br />

IN<br />

CELL<br />

VCC<br />

VSS<br />

PWM<br />

Controller<br />

STAT1<br />

STAT2<br />

PG<br />

TTC<br />

CE<br />

Q1<br />

Q2<br />

bq24123<br />

OUT<br />

OUT<br />

1<br />

20<br />

SNS 15<br />

BAT<br />

ISET1<br />

ISET2<br />

VTSB<br />

PGND<br />

PGND<br />

14<br />

8<br />

9<br />

TS 12<br />

11<br />

17<br />

18<br />

L<br />

10μH<br />

C OUT<br />

10μF<br />

R SET1 : 7.5k<br />

R SET2 : 7.5k<br />

C 2 : 0.1μF<br />

R SNS<br />

0.1Ω<br />

C 1<br />

0.1μF<br />

R T1<br />

9.31k<br />

1%<br />

R T2<br />

442k<br />

1%<br />

VTSB<br />

V BAT<br />

PACK+<br />

PACK-<br />

R T<br />

103AT<br />

70


VPH:<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Switching Waveforms and EMI Spectrum @ Vin=9V Ichrg=1A<br />

Phase node voltage<br />

≈7ns<br />

VPH: Phase node voltage<br />

≈20ns<br />

(dBuV)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

After increasing the turn-on<br />

(dBuV)<br />

time by 3 times (bq24120/123)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

FCC<br />

FCC<br />

46dB<br />

31dB<br />

CISPR (Europe)<br />

50M 100M 200M 500M 1G(Hz)<br />

CISPR (Europe)<br />

50M 100M 200M 500M 1G(Hz)<br />

• 15dB reduction around 150MHz<br />

71


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Switching Charger controller<br />

72


ADAPTER<br />

R SNS2<br />

Regulation Loops<br />

1. Input Current<br />

2. Charge Current<br />

3. Battery Voltage<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Input Current Based DPM Battery Charger<br />

I ADP<br />

Q1<br />

Q2<br />

• Input Current Regulation<br />

SYSTEM LOAD<br />

L<br />

I SYS<br />

R SNS1<br />

I CHG<br />

ISYS DPPM<br />

ISYS1 I ADP<br />

I CHG<br />

Mode<br />

Adapter Current<br />

Limit<br />

t0 t1 t2<br />

Charge<br />

Current<br />

Regulation<br />

• Current sharing between system and battery charger<br />

• Minimize the AC adapter size and power rating<br />

I CHG1<br />

I SYS2<br />

I CHG2<br />

Adapter<br />

Regulation<br />

73<br />

Time


ADAPTER<br />

<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Input Current Regulation Based DPM Battery Charger Example<br />

R SNS2<br />

bq24750/51<br />

bq24745<br />

Regulation Loops<br />

1. Input Current<br />

2. Charge Current<br />

3. Battery Voltage<br />

I ADP<br />

Q1<br />

Q2<br />

SYSTEM LOAD<br />

L<br />

I SYS<br />

R SNS1<br />

I CHG<br />

Test Conditions:<br />

n System step load 0- 4.0A<br />

n Constant charge current = 4A<br />

n AC adapter current limit = 5A<br />

LOAD CURRENT: 5A/div<br />

ADAPTER CURRENT: 5A/div<br />

CHARGE CURRENT: 5A/div<br />

BATTERY VOLTAGE 10V/div<br />

• Constant System Bus Voltage<br />

• Maximizing use of AC adapter power to minimize the charge time<br />

74


Adapter<br />

AC Adapter<br />

Detection<br />

ACGOOD<br />

C1<br />

10µF<br />

VREF<br />

C4:1µF<br />

Pack Temperature<br />

Monitoring<br />

HOST<br />

<strong>Brazil</strong> <strong>Tech</strong> ADC <strong>Day</strong> <strong>2008</strong><br />

Input Current Based DPM Battery Charger Application Circuit<br />

DAC<br />

DAC<br />

DAC<br />

DAC<br />

R8<br />

430.8k<br />

R9<br />

66.4k<br />

Q1<br />

R4<br />

5.6k<br />

R5<br />

118k<br />

Q2<br />

R3<br />

10k<br />

R1: 10mΩ<br />

C11<br />

0.1µF<br />

ACN<br />

ACP<br />

ACDRV<br />

ACDET<br />

ACGOOD<br />

TS<br />

AGND<br />

CELLS<br />

SRSET<br />

ACSET<br />

VREF<br />

DPMDET<br />

CHGEN<br />

VDAC<br />

VADJ<br />

IADAPT<br />

PVCC<br />

bq24750<br />

BATDRV<br />

REGN<br />

BTST<br />

HIDRV<br />

PH<br />

LODRV<br />

PGND<br />

SRP<br />

SRN<br />

BAT<br />

ACOP<br />

C6<br />

10uF<br />

C8:1µF<br />

Q3<br />

C17<br />

0.47µF<br />

Q4<br />

C7<br />

0.1µF<br />

C2<br />

2x10µF<br />

C6<br />

10uF<br />

L: 10µH<br />

C4<br />

10µF<br />

R2<br />

10mΩ<br />

SYSTEM LOAD<br />

Q5<br />

C5<br />

10µF<br />

Power<br />

Source<br />

Selector<br />

Battery Pack<br />

C3<br />

10µF<br />

75


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Li-Ion Switch-Mode Charger Portfolio<br />

EMI improvement<br />

(increase gate resistance<br />

to slow down switching)<br />

Standalone only<br />

2-cell for UMPC<br />

bq24103/5<br />

bq24113/5<br />

18V IN -2A<br />

1.1MHz Sync PWM<br />

Integrated FETs<br />

1 - 3 Cells in Series<br />

3.5x4.5 QFN<br />

Standalone & Host<br />

Controlled<br />

Very small<br />

solution size<br />

Stand-alone Host-controlled<br />

bq24123/5<br />

bq24721C<br />

bq24705<br />

(4x4)<br />

30V IN –8A<br />

300/500kHz Sync PWM<br />

High V/I Accuracy<br />

Dynamic Power Mgt<br />

3-4 Cells in Series<br />

5x5 QFN-28<br />

SMBus Interface<br />

Power source selector<br />

bq24740<br />

(5x5)<br />

No power source selector<br />

bq24750/51A<br />

bq24745<br />

(5x5)<br />

SMBus, 1-4 cell<br />

No power source selector<br />

30V IN –8A<br />

300kHz Sync PWM<br />

High V/I Accuracy<br />

Dynamic Power Mgt<br />

2-4 Cells in Series<br />

5x5 QFN-28<br />

Power source selector<br />

76


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Summary: Battery Charging<br />

• Charge voltage and charge current<br />

• Internal or external power FET<br />

• Linear or switching topology<br />

• Standalone or host controlled<br />

• Charge cycle management<br />

– Pre-charge voltage, pre-charge current<br />

– Termination current, status reporting<br />

– Safety timer<br />

• Thermal management:<br />

– Battery temperature qualification<br />

– Thermal regulation<br />

– Thermal shutdown<br />

• Power path management<br />

77


<strong>Brazil</strong> <strong>Tech</strong> <strong>Day</strong> <strong>2008</strong><br />

Thanks you!<br />

Q & A<br />

78

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!