20.08.2013 Views

Intro Logic Homework #1 SOLUTIONS - Ted Sider

Intro Logic Homework #1 SOLUTIONS - Ted Sider

Intro Logic Homework #1 SOLUTIONS - Ted Sider

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Intro</strong> <strong>Logic</strong> <strong>Homework</strong> <strong>#1</strong> <strong>SOLUTIONS</strong><br />

A. Determine whether these formulas are tautologies, contradictions, or contingent formulas<br />

by using truth tables. Explain your answers (e.g. “this is a tautology because in the final<br />

column of the truth table there are only Ts”.)<br />

NOTE: I write the final column in boldface, and write the secondto-last<br />

columns in italics.<br />

1. (P!Q)"P This is a contingent formula because the final<br />

column has a mixture of Ts and Fs.<br />

( P ! Q ) " P<br />

T T T T T<br />

T T F T T<br />

F T T F F<br />

F F F T F<br />

2. #P$P This is a contradiction because the final column<br />

has all Fs.<br />

~ P $ P<br />

F T F T<br />

T F F F<br />

3. ~(P!Q)$(~P&~Q) This is a tautology because final column has all Ts.<br />

~ ( P ! Q ) $ ( ~ P & ~ Q )<br />

F T T T T F T F F T<br />

F T T F T F T F T F<br />

F F T T T T F F F T<br />

T F F F T T F T T F


4. ~(P"Q)"(~Q"~P) This is a contingent formula because the final column<br />

has a mixture of Ts and Fs.<br />

~ ( P " Q ) " ( ~ Q " ~ P )<br />

F T T T T F T T F T<br />

T T F F F T F F F T<br />

F F T T T F T T T F<br />

F F T F T T F T T F<br />

5. [(P$Q)&(P"R)] ! [~P"(Q&R)] This is a contingent formula because the final<br />

column contains a mixture of Ts and Fs.<br />

[ ( P $ Q ) & ( P " R ) ] ! [ ~ P " ( Q & R ) ]<br />

T T T T T T T T F T T T T T T<br />

T T T F T F F T F T T T T F F<br />

T F F F T T T T F T T T F F T<br />

T F F F T F F T F T T T F F F<br />

F F T F F T T T T F T T T T T<br />

F F T F F T F F T F F F T F F<br />

F T F T F T T T T F F F F F T<br />

F T F T F T F T T F F F F F F


6. ~[~P"(Q!R)] " [~P&Q] This is a contingent formula because the final column<br />

has a mix of Ts and Fs.<br />

~ [ ~ P " ( Q ! R ) ] " [ ~ P & Q ]<br />

F F T T T T T T F T F T<br />

F F T T T T F T F T F T<br />

F F T T F T T T F T F F<br />

F F T T F F F T F T F F<br />

F T F T T T T T T F T T<br />

F T F T T T F T T F T T<br />

F T F T F T T T T F F F<br />

T T F F F F F F T F F F<br />

B. In each case, for the two given formulas, % and &, use truth tables to answer the following<br />

questions (explain your answers): i) does % logically imply &? ii) does & logically imply<br />

%? iii) are % and & logically equivalent? You may use the short cuts discussed in class.<br />

7. %: P"R &: ~R"~P<br />

i) % does logically imply & because the formula “%"&” is a tautology:<br />

( P " R ) " ( ~ R " ~ P )<br />

T T T T F T T F T<br />

T F F T T F F F T<br />

F T T T F T T T F<br />

F T F T T F T T F<br />

ii) by reversing the two italicized columns we can see that “&"%” is a tautology;<br />

therefore & does logically imply %:


(~R"~P) " (P"R)<br />

T T T<br />

F T F<br />

T T T<br />

T T T<br />

iii) since % logically implies & and & logically implies %, % and & are logically<br />

equivalent.<br />

8. %: [(P&Q)!R] &: [P&(Q!R)]<br />

i) Since the formula “%"&” is not a tautology, % does not logically imply &:<br />

[ ( P & Q ) ! R ] " [ P & ( Q ! R ) ]<br />

T T T T T T T T T T T<br />

T T T T F T T T T T F<br />

T F F T T T T T F T T<br />

T F F F F T T F F F F<br />

F F T T T F F F T T T<br />

F F T F F T F F T T F<br />

F F F T T F F F F T T<br />

F F F F F T F F F F F


ii) by reversing the two italicized columns we can see that “&"%” is a tautology;<br />

therefore & does logically imply %:<br />

[P&(Q!R)] " [(P&Q)!R]<br />

T T T<br />

T T T<br />

T T T<br />

F T F<br />

F T T<br />

F T F<br />

F T T<br />

F T F<br />

iii) % and & are not logically equivalent, because % does not logically imply &;<br />

and for formulas to be logically equivalent, each must logically imply the<br />

other.<br />

9. %: Q"R &: R"Q<br />

i) % does not logically imply & because the formula %"& is not a tautology:<br />

( Q " R ) " ( R "<br />

T T T T T T T<br />

T F F T F T T<br />

F T T F T F F<br />

F T F T F T F<br />

Q )


ii) By reversing the italicized columns, we see that & does not logically imply % because<br />

the formula &"% is not a tautology:<br />

(R"Q) " (Q"R)<br />

T T T<br />

T F F<br />

F T T<br />

T T T<br />

iii) In order for % and & to be logically equivalent, each would have to logically imply<br />

the other. Since % didn’t logically imply & (nor for that matter did & logically imply<br />

%), these formulas are not logically equivalent.<br />

10. %: P$Q &: (P"Q) & (~P"~Q)<br />

i) Since %"& is a tautology, % logically implies &:<br />

[ P $ Q ] " [ ( P " Q ) & ( ~ P " ~ Q ) ]<br />

T T T T T T T T F T T F T<br />

T F F T T F F F F T T T F<br />

F F T T F T T F T F F F T<br />

F T F T F T F T T F T T F<br />

ii) Since &"% is a tautology, & logically implies %:<br />

[(P"Q) & (~P"~Q)] " [P$Q]<br />

T T T<br />

F T F<br />

F T F<br />

T T T<br />

iii) Since each logically implies the other, % and & are logically equivalent.


C. Use truth tables to decide whether the following arguments are valid or invalid; explain<br />

your answers. I'll write the arguments in the following form: Premise 1; Premise 2; ...<br />

Premise n / Conclusion<br />

NOTE: I’ll put the final columns of the premises and conclusion in<br />

boldface.<br />

11. P"~Q; ~Q"P / ~P$Q. The argument is valid because there is no case where the<br />

premises are all true while the conclusion is false.<br />

P " ~ Q ; ~ Q " P / ~ P $ Q<br />

case 1 T F F T F T T T F T F T<br />

case 2 T T T F T F T T F T T F<br />

case 3 F T F T F T T F T F T T<br />

case 4 F T T F T F F F T F F F<br />

12. P"Q; Q"R ; ~R / P This argument is invalid because in case 8, all the<br />

premises are true while the conclusion is false.<br />

P " Q ; Q " R ; ~ R / P<br />

case 1 T T T T T T F T T<br />

case 2 T T T T F F T F T<br />

case 3 T F F F T T F T T<br />

case 4 T F F F T F T F T<br />

case 5 F T T T T T F T F<br />

case 6 F T T T F F T F F<br />

case 7 F T F F T T F T F<br />

case 8 F T F F T F T F F


13. P!Q; P"R; Q"R / ~~R This argument is valid because there is no case in which<br />

all the premises are true while the conclusion is false.<br />

P ! Q ; P " R ; Q " R / ~ ~ R<br />

case 1 T T T T T T T T T T F T<br />

case 2 T T T T F F T F F F T F<br />

case 3 T T F T T T F T T T F T<br />

case 4 T T F T F F F T F F T F<br />

case 5 F T T F T T T T T T F T<br />

case 6 F T T F T F T F F F T F<br />

case 7 F F F F T T F T T T F T<br />

case 8 F F F F T F F T F F T F

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!