20.08.2013 Views

Relativistic magnetotransport in graphene, at quantum ... - ICTP

Relativistic magnetotransport in graphene, at quantum ... - ICTP

Relativistic magnetotransport in graphene, at quantum ... - ICTP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Rel<strong>at</strong>ivistic</strong> <strong>magnetotransport</strong> <strong>in</strong><br />

<strong>graphene</strong>, <strong>at</strong> <strong>quantum</strong> criticality<br />

and <strong>in</strong> black holes<br />

Markus Müller<br />

<strong>in</strong> collabor<strong>at</strong>ion with<br />

Sean Hartnoll (Harvard)<br />

Pavel Kovtun (Victoria)<br />

Subir Sachdev (Harvard)<br />

Lars Fritz (Harvard)<br />

Jörg Schmalian (Iowa)<br />

The Abdus Salam<br />

<strong>ICTP</strong> Trieste<br />

AdS/CFT: Strongly coupled systems and exact results - Paris 26 Nov, 2009


Outl<strong>in</strong>e<br />

• <strong>Rel<strong>at</strong>ivistic</strong> physics <strong>in</strong> <strong>graphene</strong>, <strong>quantum</strong> critical<br />

systems and conformal field theories<br />

• Strong coupl<strong>in</strong>g fe<strong>at</strong>ures <strong>in</strong> collision-dom<strong>in</strong><strong>at</strong>ed<br />

transport – as <strong>in</strong>spired by AdS-CFT results<br />

• Comparison with strongly coupled fluids<br />

(via AdS-CFT)<br />

• Graphene: an almost perfect <strong>quantum</strong> liquid


Quantum critical systems <strong>in</strong><br />

condensed m<strong>at</strong>ter<br />

A few examples<br />

• Graphene<br />

• High Tc<br />

• Superconductor-to-<strong>in</strong>sul<strong>at</strong>or<br />

transition (<strong>in</strong>teraction driven)


Dirac fermions <strong>in</strong> <strong>graphene</strong><br />

Honeycomb l<strong>at</strong>tice of C <strong>at</strong>oms<br />

2 massless Dirac cones <strong>in</strong><br />

the Brillou<strong>in</strong> zone:<br />

(Subl<strong>at</strong>tice degree of<br />

freedom ↔ pseudosp<strong>in</strong>)<br />

Fermi velocity (speed of light”)<br />

Close to the two<br />

Fermi po<strong>in</strong>ts K, K’:<br />

Coulomb <strong>in</strong>teractions: F<strong>in</strong>e structure constant<br />

v<br />

F<br />

6 c<br />

≈1.<br />

1⋅10<br />

m s ≈<br />

300<br />

(Semenoff ’84, Haldane ‘88)<br />

Tight b<strong>in</strong>d<strong>in</strong>g dispersion<br />

H<br />

→<br />

≈<br />

p<br />

( p − K)<br />

⋅<br />

r<br />

v p − K<br />

=<br />

r<br />

F<br />

2<br />

e<br />

α ≡<br />

ε hv<br />

F<br />

r<br />

r<br />

σ<br />

vF subl<strong>at</strong>tice<br />

E<br />

= O<br />

( 1)


<strong>Rel<strong>at</strong>ivistic</strong> fluid <strong>at</strong> the Dirac po<strong>in</strong>t<br />

D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007).<br />

• <strong>Rel<strong>at</strong>ivistic</strong> plasma physics of <strong>in</strong>teract<strong>in</strong>g particles and holes!<br />

Crossover:<br />

T = μ<br />

Timp<br />

~ ρimp<br />

μ


<strong>Rel<strong>at</strong>ivistic</strong> fluid <strong>at</strong> the Dirac po<strong>in</strong>t<br />

D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007).<br />

• <strong>Rel<strong>at</strong>ivistic</strong> plasma physics of <strong>in</strong>teract<strong>in</strong>g particles and holes!<br />

• Strongly coupled, nearly <strong>quantum</strong> critical fluid <strong>at</strong> μ = 0<br />

Strong coupl<strong>in</strong>g!<br />

“Quantum critical”<br />

Crossover:<br />

T = μ<br />

Timp<br />

~ ρimp<br />

μ


Other rel<strong>at</strong>ivistic fluids:<br />

• Systems close to <strong>quantum</strong> criticality (with z = 1)<br />

Example: Superconductor-<strong>in</strong>sul<strong>at</strong>or transition (Bose-Hubbard model)<br />

rel ≈<br />

−1<br />

τ<br />

kBT h<br />

Maximal possible relax<strong>at</strong>ion r<strong>at</strong>e!<br />

• Conformal field theories<br />

E.g.: strongly coupled Yang-Mills theories<br />

→ Exact tre<strong>at</strong>ment via AdS-CFT correspondence<br />

Damle, Sachdev (1996, 1997)<br />

Bhaseen, Green, Sondhi (2007).<br />

Hartnoll, Kovtun, MM, Sachdev (2007)<br />

C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son (2007)<br />

Hartnoll, Kovtun, MM, Sachdev (2007)


Strongly correl<strong>at</strong>ed electrons: Cupr<strong>at</strong>e high T c<br />

Thermoelectric<br />

measurements.<br />

Example: Anomalously<br />

large Nernst Effect!<br />

(“thermal analogue” of<br />

the Hall effect)<br />

Conformal<br />

field theory?


Simplest example exhibit<strong>in</strong>g “<strong>quantum</strong><br />

critical” fe<strong>at</strong>ures:<br />

Graphene


Questions<br />

• Transport characteristics <strong>in</strong> the<br />

strongly coupled rel<strong>at</strong>ivistic plasma?<br />

• Response functions, nearly universal<br />

transport coefficients<br />

• Graphene as a nearly perfect and<br />

possibly turbulent <strong>quantum</strong> fluid<br />

(like the quark-gluon plasma)<br />

<strong>Rel<strong>at</strong>ivistic</strong>,<br />

Strong coupl<strong>in</strong>g<br />

regime<br />

T = μ<br />

T<br />

imp<br />

μ<br />

~ ρ<br />

imp


Graphene – Fermi liquid?<br />

1. Tight b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>etic energy<br />

→ massless Dirac quasiparticles<br />

2. Coulomb <strong>in</strong>teractions:<br />

Unexpectedly strong!<br />

→ nearly <strong>quantum</strong> critical!<br />

Coulomb only marg<strong>in</strong>ally irrelevant for μ = 0!<br />

RG:<br />

(μ = 0)<br />

(μ > 0)<br />

< μ :<br />

2<br />

e<br />

α ≡<br />

εhv<br />

F<br />

= O<br />

T Screen<strong>in</strong>g kicks <strong>in</strong>, short ranged Cb irrelevant<br />

( 1)<br />

Strong<br />

coupl<strong>in</strong>g!


Strong coupl<strong>in</strong>g <strong>in</strong> undoped <strong>graphene</strong><br />

Inelastic sc<strong>at</strong>ter<strong>in</strong>g r<strong>at</strong>e<br />

(Electron-electron <strong>in</strong>teractions)<br />

Relax<strong>at</strong>ion r<strong>at</strong>e ~ T,<br />

like <strong>in</strong> <strong>quantum</strong> critical systems!<br />

Fastest possible r<strong>at</strong>e!<br />

MM, L. Fritz, and S. Sachdev, PRB ‘08.<br />

μ >> T: standard 2d<br />

Fermi liquid<br />

μ < T: strongly<br />

coupled rel<strong>at</strong>ivistic<br />

liquid<br />

“Heisenberg uncerta<strong>in</strong>ty pr<strong>in</strong>ciple for well-def<strong>in</strong>ed quasiparticles”<br />

( ) 1 2<br />

~ k T E τ ~ α k T<br />

−<br />

≥ Δ = h<br />

Eqp B<br />

<strong>in</strong>t ee B<br />

As long as α(T) ~ 1, energy uncerta<strong>in</strong>ty is s<strong>at</strong>ur<strong>at</strong>ed, sc<strong>at</strong>ter<strong>in</strong>g is maximal<br />

→ Nearly universal strong coupl<strong>in</strong>g fe<strong>at</strong>ures <strong>in</strong> transport,<br />

similarly as <strong>at</strong> the 2d superfluid-<strong>in</strong>sul<strong>at</strong>or transition [Damle, Sachdev (1996, 1997)]<br />

−<br />

τ<br />

1<br />

ee<br />

−1<br />

τ ee<br />

=<br />

2<br />

~ α<br />

( k T )<br />

C B<br />

hμ<br />

kBT h<br />

2


Consequences for transport<br />

1. -Collisionlimited conductivity σ <strong>in</strong> clean undoped <strong>graphene</strong>;<br />

-Collisionlimited sp<strong>in</strong> diffusion D s <strong>at</strong> any dop<strong>in</strong>g<br />

2. Graphene - a perfect <strong>quantum</strong> liquid: very small viscosity η!<br />

3. Emergent rel<strong>at</strong>ivistic <strong>in</strong>variance <strong>at</strong> low frequencies!<br />

Despite the break<strong>in</strong>g of rel<strong>at</strong>ivistic <strong>in</strong>variance by<br />

• f<strong>in</strong>ite T,<br />

• f<strong>in</strong>ite μ,<br />

• <strong>in</strong>stantaneous 1/r Coulomb <strong>in</strong>teractions<br />

Collision-dom<strong>in</strong><strong>at</strong>ed transport → rel<strong>at</strong>ivistic hydrodynamics:<br />

a) Response fully determ<strong>in</strong>ed by covariance, thermodynamics, and σ, η<br />

b) Collective cyclotron resonance <strong>in</strong> small magnetic field (low frequency)<br />

Hydrodynamic regime:<br />

(collision-dom<strong>in</strong><strong>at</strong>ed)<br />

τ<br />

− 1<br />

ee >><br />

τ<br />

−1<br />

imp<br />

, ω , ω<br />

typ<br />

c<br />

AC


Collisionlimited conductivities<br />

Damle, Sachdev, (1996).<br />

Fritz et al. (2008), Kashuba (2008)<br />

F<strong>in</strong>ite charge or sp<strong>in</strong> conductivity <strong>in</strong> a pure system (for μ = 0 or B = 0) !<br />

• Key: Charge or sp<strong>in</strong> current without momentum<br />

(particle/sp<strong>in</strong> up)<br />

(hole/sp<strong>in</strong> down)<br />

σ<br />

Drude<br />

J s,<br />

c ≠<br />

r<br />

0,<br />

• F<strong>in</strong>ite collision-limited conductivity!<br />

e<br />

= ρτ → σ<br />

m<br />

but<br />

P r<br />

( μ = 0)<br />

~<br />

k<br />

e<br />

T v<br />

Marg<strong>in</strong>al irrelevance of Coulomb:<br />

=<br />

0<br />

B<br />

2<br />

Pair cre<strong>at</strong>ion/annihil<strong>at</strong>ion<br />

leads to current decay<br />

⎛<br />

⎜<br />

e<br />

⎝<br />

σ<br />

( μ = 0) < ∞ ; σ ( μ ≠ 0)<br />

= ∞<br />

( μ;<br />

B<br />

2<br />

0)<br />

∝ v < ∞,<br />

• F<strong>in</strong>ite collision-limited sp<strong>in</strong> diffusivity! Ds = Fτ<br />

ee<br />

• Only marg<strong>in</strong>al irrelevance of Coulomb:<br />

Maximal possible relax<strong>at</strong>ion r<strong>at</strong>e ~ T<br />

−1<br />

2 kBT τ ee ≈ α<br />

h<br />

→ Nearly universal conductivity <strong>at</strong> strong coupl<strong>in</strong>g<br />

2<br />

2<br />

( kBT<br />

) h 1 e<br />

~<br />

2 2<br />

2<br />

( hv)<br />

⎟α k T α h<br />

⎟<br />

⎞<br />

4<br />

α ≈<br />

log<br />

⎠<br />

B<br />

( ) 1 <<br />

Λ T<br />

Expect s<strong>at</strong>ur<strong>at</strong>ion<br />

as α →1, and<br />

eventually phase<br />

transition to<br />

<strong>in</strong>sul<strong>at</strong>or


Boltzmann approach<br />

Boltzmann equ<strong>at</strong>ion <strong>in</strong> Born approxim<strong>at</strong>ion<br />

⎛<br />

⎜<br />

⎝<br />

a.) +, i +, i<br />

−, i<br />

∂ ⎞<br />

+ eE⋅<br />

⎟ f<br />

∂k<br />

⎠<br />

Cb<br />

2<br />

( k,<br />

t)<br />

= I [ k,<br />

t | { f ( k′<br />

, t)<br />

} ] ∝ α ( T )<br />

∂ t<br />

±<br />

coll<br />

±<br />

b.)<br />

−, i<br />

1<br />

2<br />

−<br />

+, i +, i<br />

−, i<br />

+, i +, i<br />

+, i<br />

+, i<br />

−, i<br />

−<br />

2<br />

L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB 2008<br />

+(N − 1)<br />

+, i +, i<br />

−, j<br />

−, j<br />

2<br />

+(N − 1)<br />

+, i +, i +, i +, i<br />

2<br />

+, i<br />

Collision-limited conductivity:<br />

+, i<br />

+(N − 1)<br />

+, j<br />

0.<br />

76<br />

σ ( μ = 0)<br />

= 2<br />

α<br />

+, j<br />

e<br />

2<br />

( T ) h<br />

+, i +, j<br />

−, j<br />

2<br />

−, i<br />

2


Transport and thermoelectric<br />

response <strong>at</strong> low frequencies?<br />

Hydrodynamic regime:<br />

(collision-dom<strong>in</strong><strong>at</strong>ed)<br />

τ<br />

− 1<br />

ee >><br />

ω,<br />

τ , ω<br />

−1<br />

imp<br />

th<br />

cyclo


Hydrodynamics<br />

Hydrodynamic collision-dom<strong>in</strong><strong>at</strong>ed regime<br />

Long times,<br />

Large scales<br />

• Local equilibrium established:<br />

• Study relax<strong>at</strong>ion towards global equilibrium<br />

• Slow modes: Diffusion of the density of conserved quantities:<br />

t<br />

• Charge<br />

• Momentum<br />

• Energy<br />

>> τ ee<br />

Tloc r ( ) , μloc( r)<br />

; r<br />

u loc( r)


<strong>Rel<strong>at</strong>ivistic</strong> Hydrodynamics<br />

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).<br />

Conserv<strong>at</strong>ion laws (equ<strong>at</strong>ions of motion):<br />

Charge conserv<strong>at</strong>ion<br />

Energy/momentum conserv<strong>at</strong>ion<br />

1<br />

T<br />

τ<br />

imp<br />

0ν<br />

μ μ<br />

1. Construct entropy current S = Q T<br />

2. Second law of thermodynamics<br />

3. Covariance<br />

∂<br />

μ<br />

μS ≥<br />

0<br />

Irrelevant <strong>at</strong> small k


Thermoelectric response<br />

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).<br />

Thermo-electric response<br />

Charge and he<strong>at</strong> current:<br />

Transverse thermoelectric response (Nernst)<br />

J<br />

Q<br />

μ<br />

μ<br />

=<br />

μ<br />

ρ −<br />

= u<br />

( ) μ μ<br />

ε + P u − μ J<br />

Recipe: i) Solve l<strong>in</strong>earized hydrodynamic equ<strong>at</strong>ions<br />

ii) Read off the response functions (Kadanoff & Mart<strong>in</strong> 1960)<br />

ν<br />

μ<br />

etc.


Collective cyclotron resonance<br />

S. Hartnoll and C Herzog, 2007;<br />

<strong>Rel<strong>at</strong>ivistic</strong> magnetohydrodynamics: pole <strong>in</strong> AC response<br />

Pole <strong>in</strong> the response<br />

c<br />

FL<br />

2<br />

c<br />

( ε + P)<br />

v<br />

m<br />

ω ωc<br />

iγ<br />

− ± =<br />

∗<br />

Collective cyclotron frequency of the rel<strong>at</strong>ivistic plasma<br />

ρ B c<br />

ω = ↔ ω<br />

Broaden<strong>in</strong>g of resonance:<br />

F<br />

MM, and S. Sachdev, 2008<br />

=<br />

e<br />

γ = σ<br />

B<br />

Q<br />

2 ( B c)<br />

2 ( ε + P)<br />

/ v<br />

Observable <strong>at</strong> room temper<strong>at</strong>ure <strong>in</strong> the GHz regime!<br />

c<br />

F


Yes!<br />

<strong>Rel<strong>at</strong>ivistic</strong> hydrodynamics<br />

from microscopics<br />

Does rel<strong>at</strong>ivistic hydro really apply to <strong>graphene</strong><br />

even though Coulomb <strong>in</strong>teractions break rel<strong>at</strong>ivistic<br />

<strong>in</strong>variance?<br />

Key po<strong>in</strong>t: There is a zero (“momentum”) mode of the collision <strong>in</strong>tegral<br />

due to transl<strong>at</strong>ional <strong>in</strong>variance of the <strong>in</strong>teractions<br />

The dynamics of the zero mode under an AC driv<strong>in</strong>g field (coupl<strong>in</strong>g it to other<br />

modes) reproduces rel<strong>at</strong>ivistic hydrodynamics <strong>at</strong> low frequencies exactly.<br />

Condition: <strong>Rel<strong>at</strong>ivistic</strong>, weak-coupl<strong>in</strong>g quasiparticle picture applies


Beyond weak coupl<strong>in</strong>g<br />

approxim<strong>at</strong>ion:<br />

Graphene<br />

↔<br />

Very strongly coupled, critical<br />

rel<strong>at</strong>ivistic liquids?<br />

AdS – CFT !


Au+Au collisions <strong>at</strong> RHIC<br />

Quark-gluon plasma is described<br />

by QCD (nearly conformal,<br />

critical theory)<br />

_<br />

Low viscosity fluid!


Compare <strong>graphene</strong> to<br />

Strongly coupled rel<strong>at</strong>ivistic liquids<br />

Response for special strongly coupled rel<strong>at</strong>ivistic fluids<br />

(maximally supersymmetric SU(N) Yang Mills theory with N<br />

→ ∞ colors)<br />

By mapp<strong>in</strong>g to weakly coupled gravity problem:<br />

AdS (gravity) ↔ CFT 2+1 [SU(N>>1)]<br />

weak coupl<strong>in</strong>g ↔ strong coupl<strong>in</strong>g<br />

S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007)<br />

Obta<strong>in</strong> exact results for transport via the AdS–CFT correspondence


SU(N) transport from AdS/CFT<br />

Gravit<strong>at</strong>ional dual to SUSY SU(N)-CFT 2+1 : E<strong>in</strong>ste<strong>in</strong>-Maxwell theory<br />

It has a black hole solution (with electric and magnetic charge):<br />

AdS 3+1<br />

Black hole<br />

(embedded <strong>in</strong> M theory as )<br />

z = 0<br />

Electric charge q and magnetic charge h<br />

↔ μ and B for the CFT


SU(N) transport from AdS/CFT<br />

Gravit<strong>at</strong>ional dual to SUSY SU(N)-CFT 2+1 : E<strong>in</strong>ste<strong>in</strong>-Maxwell theory<br />

AdS 3+1<br />

Black hole<br />

(embedded <strong>in</strong> M theory as )<br />

It has a black hole solution (with electric and magnetic charge):<br />

z = 0<br />

Background ↔ Equilibrium<br />

Transport ↔ Perturb<strong>at</strong>ions <strong>in</strong> g tx,<br />

ty , Ax,<br />

y .<br />

( ) 2<br />

2<br />

Response via Kubo formula from δ I δ g,<br />

A .


Compare <strong>graphene</strong> to<br />

Strongly coupled rel<strong>at</strong>ivistic liquids<br />

S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007)<br />

Obta<strong>in</strong> exact results via str<strong>in</strong>g theoretical AdS–CFT correspondence<br />

• Confirm the results of hydrodynamics: response functions σ(ω), resonances<br />

• Calcul<strong>at</strong>e the transport coefficients for a strongly coupled theory!<br />

3 2<br />

shear<br />

SUSY - SU(N): σ ( μ = 0 ) = N ; ( μ = )<br />

Interpret<strong>at</strong>ion:<br />

2<br />

9<br />

e<br />

h<br />

2<br />

η<br />

s<br />

0 =<br />

1 h<br />

4π<br />

k<br />

3 2<br />

N effective degrees of freedom, strongly coupled: τT = O(1)<br />

B


Graphene – a nearly perfect liquid!<br />

Anomalously low viscosity (like quark-gluon plasma)<br />

“Heisenberg”<br />

Doped Graphene &<br />

Fermi liquids:<br />

(Khal<strong>at</strong>nikov etc)<br />

Undoped Graphene:<br />

Conjecture from<br />

AdS-CFT:<br />

η<br />

η<br />

η<br />

~ E qpτ<br />

≥ 1<br />

s<br />

2<br />

∝ n ⋅mv<br />

⋅τ<br />

Exact (Boltzmann-Born Approx):<br />

→<br />

MM, J. Schmalian, and L. Fritz, (PRL 2009)<br />

shear viscosity<br />

entropy density<br />

n ⋅ E<br />

F<br />

⋅<br />

hE<br />

( ) 2<br />

k T<br />

B<br />

Measure of strong coupl<strong>in</strong>g:<br />

η<br />

= ><br />

s<br />

h<br />

kB<br />

1<br />

4π<br />

2<br />

∝ n ⋅mv<br />

⋅τ<br />

→ nth<br />

⋅k<br />

BT<br />

⋅ = n s ∝ k<br />

2<br />

2 th<br />

Bnth<br />

α kBT<br />

α<br />

F<br />

h<br />

T<br />

s ∝ kBn<br />

E<br />

h<br />

F<br />

η h ⎛ EF<br />

⎞<br />

~ ⎜ ⎟<br />

s k ⎝ T ⎠<br />

B<br />

3


Graphene α<br />

= 1<br />

T. Schäfer, Phys. Rev. A 76, 063618 (2007).<br />

A. Turlapov, J. K<strong>in</strong>ast, B. Clancy, Le Luo, J. Joseph, J. E. Thomas, J. Low Temp. Phys. 150, 567 (2008)


Electronic consequences of low viscosity?<br />

Electronic turbulence <strong>in</strong> clean, strongly coupled <strong>graphene</strong>?<br />

(or <strong>at</strong> <strong>quantum</strong> criticality!)<br />

Reynolds number:<br />

Strongly driven mesoscopic systems: (Kim’s group [Columbia])<br />

L = 1μm<br />

u<br />

T<br />

typ<br />

=<br />

0.<br />

1v<br />

= 100K<br />

Re ~ 10 −100<br />

MM, J. Schmalian, L. Fritz, (PRL 2009)<br />

Complex fluid dynamics!<br />

(pre-turbulent flow)<br />

New phenomenon <strong>in</strong> an<br />

electronic system!


Summary<br />

• Undoped <strong>graphene</strong> is strongly<br />

coupled <strong>in</strong> a large temper<strong>at</strong>ure w<strong>in</strong>dow!<br />

Strong<br />

coupl<strong>in</strong>g<br />

• Nearly universal strong coupl<strong>in</strong>g fe<strong>at</strong>ures <strong>in</strong> transport;<br />

many similarities with strongly coupled critical fluids<br />

(described by AdS-CFT)<br />

• Emergent rel<strong>at</strong>ivistic hydrodynamics <strong>at</strong> low frequency<br />

• Graphene: Nearly perfect <strong>quantum</strong> liquid!<br />

→ Possibility of complex (turbulent?) current flow <strong>at</strong> high bias

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!